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Abstract. This paper investigates the effect of additional information upon parameter es-
timation in multivariate structural models. It is shown that the asymptotic covariances of
estimators based on a model with additional variables are smaller than those based on a model
with no additional variables, where the estimation methods employed are the methods of max-
imum likelihood and minimum chi-square. Some applications to moment structure models are
provided.
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1. INTRODUCTION

In multivariate analysis it is important to investigate effects of additional variables as
well as the latent structure of given observed variables. In principal component analysis,
discriminant analysis, and canonical correlation analysis, this issue has been studied in
some detail and the results can be applied to variable selection (see e.g., Fujikoshi [1];
Fujikoshi, Krishnaiah, and Schmidhammer [2]; Wijsman [3]). In principal component
analysis, for example, the largest eigenvalues of the sample covariance matrix of a set
of variables are usually smaller than the corresponding ones based on the covariance
matrix of original variables augmented by additional variables. By statistically observing
the increase in the magnitude of the eigenvalues, one can investigate the effect of the
additional variables, e.g., whether the added variables significantly contribute to the
principal components. Rao [4] investigated the effect of additional variables upon the
power of tests in multivariate regression.

In this article, we study a similar but alternative type of effects of additional
variables in multivariate structural analysis. We define a small model and a large model
in which the variables in the small model are part of those in the large model, and then
estimators for a common parameter 6 based on the two models are compared. A more
specific setup is the following.
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Let y; and yo be random pi- and py-vectors. Assume that the distribution of y;
involves an unknown parameter vector 6; the distribution of y, relates not only to the
parameter 6 but to a nuisance parameter ¢ as well. The joint distribution of [y, y5]’
then depends on [¢', ¢']". We will call y; and [y}, y5]" a small model and a large model,
respectively. The subject of this note is to investigate whether inference regarding 6
is better based on the small model or based on the large model. The (asymptotic)
covariance matrices of estimators for # based on the two models are compared. The
large model may have more information about 6 than the small one, but the nuisance
parameter ¢ involved in the large model may disturb estimation of 6.

The above situation appears in many models in multivariate structural analysis as
described in Section 3. Here let us take a multiple regression model as an example. Let

Ely.] = X114, (1-1)

where X717 1s a design matrix of order p; X ky and 31 is a ky-vector of regression coeffi-
cients. Assume that the covariance matrix of y; is 021, . This is a small model. Then

the best linear unbiased estimator (BLUE) for (31 is given as Bl = (X7, X11) ' Xy,
and Var(3;) = o?(X]; X11)" 1.
A large model is constructed by adding extra observations y; to y;. The covariance

matrix of [y}, y5]" is assumed to be 021, 4,,. When the independent variables are the
same as in the small model, the large model can be expressed in the form:

e[n] =[] (12)

where X7 is of py X k1. The covariance matrix of the BLUE for (31 in the large model is
o?(X1;X11 + X4, X21)7 Y, which is obviously smaller than Var(gl) in the small model.
This is because the large model has more observations (or information) and no nuisance
parameters to be estimated.

It is often argued that more observations need to introduce more independent
variables. In such a case, the large model can be described as

Y1 X11 0 B ]
E - : 1.3
[W] {Xm Xzz} {52 (1.3)
where Xg9 18 of py X kg and 35 is a kg-vector. Note that X1,=0 since the small model
holds. In this circumstance, 8 = [3],0?]’ that is a parameter vector of interest, while

¢ = 2. Let (ﬁl,ﬁz) denote the BLUE in the regression model (1.3). It will be shown
that

’ 1
~ Xy 0] [X: o , RPN
v = ([3 ] [X ) soemn va,

where A'' denotes the (1,1) block of the inverse matrix A~!. Consequently the large
model permits better inference than the small one.

In this article, we shall show that a result similar to (1.4) holds for a wide variety of
statistical models. The estimation methods treated here are the methods of maximum
likelihood and minimum chi-square due to Ferguson [5]. The results are applied to
moment structure models, including a factor analysis model in Section 3. In Section 4,
we discuss the relationship of our results to well-known inequalities.
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2. MAIN RESULTS

First we consider the method of maximum likelihood. Let the distribution of y; permit
the density function f(y1]0); let (y1,¥2) permit g(y1,y2|6, #). The first one is a small
model; the latter is a large model. Assume that the model parameters are identified in
both models and that these density functions satisfy the usual regularity conditions to
derive the following asymptotic results. The purpose here is to show that the asymptotic
covariance matrix of the maximum likelihood estimator (MLE) for 6 based on the large
model is smaller than that based on the small model.

The Fisher information matrices in the small and large models will be written as

-=[() ()]

967 1967
Igg  Igy g g
I = =EF
[IM I 9o | | 92
g g

Here we have written fo = 25 f(y1]0), 9o = 559(¥1,¥210,9), and g4 = 259(y1,¥216, ).
As is well-known, the asymptotic covariance matrix of the MLE is given by the inverse
of the Fisher information matrix. As a consequence, the inequality to be shown is

—1
iz > 1 = (Too — Ioo I3} 1) (2.1)

A result (b) on page 331 in Rao [6] mentions that the information matrix based on the
observed vector (y1,y2) is not less than that based on any function of (y;,y2). This
result implies that the difference

Too Iy | |166 O
Ijo 14y 0 0
is non-negative definite, which further implies that

(Igo —igg) — Tog I3, 4

is also non-negative. Thus, (2.1) follows.
A direct proof that does not use Rao’s result will be given in the APPENDIX.
Next we shall consider the method of minimum chi-square (Ferguson [5]) to es-
timate parameters. Let y; and y; be statistics depending on a sample size n such
that

ﬁ[ yi—mi(6) ] Ly N(0, V),

y2 —mz(0,¢)
where mq(6) and m2(6,¢) are the asymptotic expectations of y; and y,, and V =
{“;11 glz} is the asymptotic covariance matrix of [y}, y5]’. Notice that some elements
21 Va2

of @ may be unrelated to m2(6, ¢).

According to Ferguson [5], the estimator # based on the small model y1 1s defined
by a solution to

min (y1 — m1(6))' Vi7" (y1 = ma(6))
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Om(6)
o6’

matrix of § is then represented as (A4, V,7'Ay1) ™", In the same manner, the estimator

(6, ¢) based on the large model is defined through

with ‘711 a consistent estimator for Vj{. Let Ay; = . The asymptotic covariance

y1— ml(e) yi— m1(9)

gllqg {Yz —mz(eaﬁb)} v {Yz - mz(eaﬁb)} ’ (22)
where V is also a consistent estimator for V. Let Ay = W and Ay, =
%j/@ The asymptotic covariance matrix of 6 is given by

Ay 071 i [An 0 !
(ERSIFRAR 23)
Thus, what to prove here is
’ 11
(AL VT A > ({ii AOZJ pt [ii AOZZD | (2.4)
Vit o

The proof is very simple. Since V™! can be written as [ ] plus a nonnegative

0 0
definite matrix, substitution of this into (2.3) leads to

— 11
([A’uVlollAu 8} +M>

Mll M12

My, Moy ] . Thus, we have

for some nonnegative definite matrix M = [

ALVIT A+ My Mo

11
My, Mzz} = (A’11V£1A11 + My — M12M2_21M21)_1

< (A/nVﬁlAll)_la

since My, — MM, My, is nonnegative definite. This proves (2.4).

Consequently, it is seen that the larger model always makes better inference con-
cerning 6 as long as the above two estimation methods are employed. These results
trivially extend to estimators based on a wider class of discrepancy functions in view
of the equivalence of minimum chi-square and other minimum discrepancy functions
(Shapiro [7]) and the asymptotic equivalence of MLE and other generalized least squares
estimators in the context of covariance structure analysis (Browne [§]).

The inequality in (1.4) is obtained as a corollary of the result in (2.4) when A;; =
Xijand V =021, 4p,.

It is important and interesting to investigate when the strict inequalities hold in
(2.1) and (2.4). It would be possible to establish a corresponding result on the problem
of testing statistical hypotheses. These are left as the future work.
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3. EXAMPLES

This work was motivated by Bentler and Chou’s [9] paper, which showed numerically
that the asymptotic covariances of estimates for the factor loadings in a mean and
covariance structure model are substantially smaller than those in the usual factor
analysis model which is a covariance structure model.

Let S be the unbiased sample covariance matrix based on a sample of size N =
n+ 1. In a covariance structure model, the population covariance matrix is represented
by X(6), that is

E[S] = X(6). (3.1)

One makes inference concerning € based only on S. The method of maximum likelihood
under the normality minimizes

Fiy1(S.5(6)) = log [S(6)] — log | S| + t:[Z(8) ™' S] - p.

In covariance structure analysis, the method of minimum chi-square due to Ferguson
is called the asymptotically distribution-free (ADF) method, which was introduced by
Browne ([10], [11]) and developed by Bentler and Dijkstra [12]. The ADF method uses
the fact that

Vin(v(S) = v(Z(8))) =+ N(0. Vi),
where v(5) denotes a p*-vector consisting of the distinct elements of a symmetric matrix

S with p* = p(p+1)/2 and Vi1 is a p* x p* matrix involving the fourth-order moments
of observed variables.

Let X be the sample mean vector. A mean and covariance structure model assumes

(3.2)

s3]

X

I
=
=
=

where 0 is a parameter of interest. Thus S is a small model; (9,%) is a large model.
Under the normality assumption, the density functions of S and (5, X) are, respectively,
Wi(s|Z(0)/n,n) and W(s|X(0)/n,n) -N(z|u(8,¢),E(0)/n). The method of maximum

likelihood is equivalent to minimizing

Fyrr(S,2(0)) + (X — u(8,6))'S(0) 7 (x — (8, 9)).
See Bentler ([13] page 226).
In the general case, we know that

(9] 1)) o

X

where V5o = ¥(6) and Vi is a matrix of the third-order moments. The estimator for
(6, ) is obtained via (2.2). Ferguson’s method for this problem was first implemented
by Muthén [14]. The results obtained in the previous section show that the estimators
for § in the mean and covariance structure model (3.2) are better than those in the
covariance structure model (3.1).

A mean and covariance structure model is naturally introduced from a usual factor
analysis model in which

x = A\ + u, (3.3)
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where f and u are common and unique factors satisfying

E[f] =0, E[u]=0, Cov[f,u]=0,
Var[f] =®, and Var[u] = 7. (34)

Then we have

Var[x] = A(N)PA(N) + T (= X(F), say). (3.5)

The common factor f sometimes has a nonzero mean vector piy. In such a case, the
mean of the observable vector is

Elx] = A(\)ur. (3.6)

The model defined in (3.5) and (3.6) is a mean and covariance structure model (see
also Browne [15]). The results obtained previously show that the mean and covariance
structure model makes better inference than the covariance structure model (3.5) as far
as estimation of 8 = (A, ®, ¥) is concerned. What Bentler and Chou [9] demonstrated

numerically is that the standard errors of the \ in the mean and covariance structure
model are substantially smaller than those in the covariance structure model in the ADF
setting. Thus, the result obtained here provides a theoretical basis for their observation.

Muthén [14] discussed the ADF estimation in a multiple-group mean and covari-
ance structure model, where in the g-th population the observed random p-vector is of
the form:

x(9) = (9 L AWF) 4 ylo)

and the structural equation is
£ = o) 4 gl 4 (o)

for g =1,---,G. Here ;{9 is a p-vector of location parameters, a9 is a k-vector of
intercepts, B is a k x k matrix of slopes, (9 is a k-vector of residuals (for more
details, see Muthén [14]). In such a case, let us write

E[x(g)] - M(g)(97¢(9))7
Val"[X(g)] — 2(9)(97 qb(g))

for g =1,--- ,G, where 6 is a common parameter vector across the GG populations and
&) appears only in the g-th population.

Consider the following two estimation methods: One 1s to estimate
(4, AN ,qb(G)) simultaneously based on the pooled samples from the G populations
(this is a large model); the other is to estimate (8, ¢'9)) by using the only sample from
the g-th population (this is a small model) for each g. For the second case, we get G
estimators for f. Then, the results obtained here prove that the asymptotic covariance
matrix of @ in the first method is smaller than that of each of the 8’s in the second
one. Furthermore, the asymptotic covariance matrix of qb(g) in the first method is also
smaller than that in the second one.

The next example is concerned with an estimation method in a factor analysis
model, which was developed by Mooijaart [16], especially for nonnormal observations.
He made use of the third-order moments as well as the second-order moments, and ap-
plied Ferguson’s method to estimate parameters. In the factor analysis model described
n (3.3) and (3.4), we further assume that f and u are independently distributed. In
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such a case, the third-order moments of x can be expressed as
Ex@x@x] = (AN @ AN) @ A(N)) 3 + T3 (3.7)

where &3 = E[f @ f @ f] and ¥3 = E[lu ® u @ u]. Let m3(6,¢) be a column vector
consisting of nonduplicated elements of (3.7), where ¢ = (®3,¥3), and let s5 be a
vector of the sample third-order moments corresponding to ms3(6,#). The estimation
method of Mooijaart [16] is to minimize

st Rl A

Here V is a weight matrix involving up to the 6th-order moments. For more details, see
Mooijaart’s paper.

In this example, again, it follows that the standard error of 8 based on the large

model (3.5) and (3.7) is smaller than that based on the small model (3.5) above.

The final example is two factor analysis models with the same number of factors
in which observable variates in one factor model are part of those in the other model,
that is, the large model, [y!,y5]’, has the following covariance structure:

w([p]) - [ o[ ]+ 13 2]

The small model, yq, is then
Var(yl) = Al(/\)q)Al(/\)/ + \Ijl.

Several authors have investigated effects of the augmentation of the number of variables
in factor analysis, including Bentler and Kano [17], Kano [18], [19], [20], Schneeweiss
[21], Williams [22] and others. Kano and Shapiro [23] showed that the asymptotic
covariances of the MLE for ¥, decrease as observable variates increase in number. The
results obtained here apply to this situation, so that it follows that the asymptotic
covariances of the estimators for (A, ®, ;) in the large model are smaller than those in
the small model. Therefore, this result includes Kano and Shapiro’s as a special case.

4. DISCUSSION

We should distinguish the situation developed in this article from the one which has
been often discussed, in which case one model is obtained by replacing with the true
value some of the parameters in the other model, that is, one compares between

9(yl6, do) (4.1)

and

916, ¢), (4.2)

where ¢q is the true value of ¢. In the model (4.1), ¢ does not have to be estimated. In
such a situation, the asymptotic covariances of the MLE for 6 based on the model (4.1)
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have been shown to be smaller than those on (4.2) by using a well-known inequality:

11
< [fee des | <ng A s 9> . (4.3)
o = I¢9 I¢¢ L 4

More generally, Altham [24] compared between the MLEs for (6, ¢) based on the two
models ¢g(y|0, ) and g(y|0(u), d(u)), where u is a more basic parameter vector and the
structures 6(u) and ¢(u) are known, and showed that the model using the structure
permits better inference. In the analysis of covariance structures, this fact was noted
by Bentler and Mooijaart [25].

We should notice that the situation treated in this article is different from the above
one because in our setting the numbers of observable variates are different between two
models to be compared whereas Altham has assumed that they are the same.

The result in Rao [6] that was referred to in Section 2 is closely related to the
current work. Suppose that the small model y; is dependent on ¢ as well as €, and let

1= {;ZZ ;ZZ} be the Fisher information matrix based on y;. Then the result in Rao
guarantees that 7 < I, which implies that I'! < ¢!!, provided that i is nonsingular. The
large model yields better estimation. In our setting, unfortunately, the distribution of
y1 is unrelated to ¢, so that the information matrix ¢ is singular. Thus, our results are
not a straightforward corollary of Rao’s, while the theoretical development here may
be minimal. Some practical implications of our results (2.1) and (2.4) are interesting
and useful. As shown in Section 3, there are many examples to which the result can
be applied. For instance, even when one is not interested in the mean vector but is
interested in the covariance structure only, the result obtained here suggests that use of
the sample mean could make the inference on the covariance structure more accurate.
For another thing, computational output for the standard errors of 8 in a large model
should probably be smaller than that in a small model (this is not always true, however);
therefore, if the relation does not hold, one should doubt whether the analysis has been
made properly. Thus, it is worthwhile noting explicitly the superiority of large models
for estimation of 6.

Consider the following inequalities
—1 1 -1
Tog <177 <igy.

The first inequality is already known as described in (4.3), and the second one is the
one we have developed here. These inequalities show that the MLE for 6 using the
model g(y1,y2|0, @) is better than the MLE based on f(y1]0), and the MLE based on
9(y1,y2|0, ¢0) is the best.

The corresponding inequalities involving estimators by the method of minimum
chi-square are

-1 11
A’ _1[A11} {AH 0 } _1{A11 0 }
V < V 4.4
(|:A21:| Agy o Agy Ago Az1 Ago (44)
< (AW AT

Note that the matrix in the far left side in (4.4) represents the asymptotic covariance
matrix of the estimator based on (2.2) with a known ¢q. It turns out that the best is
the estimator using (m1(6), m2(0, o)), the second is the one based on (m1(6), mz(6, ¢)),
and the worst is based on mq(8).
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Recall the multiple regression model described in Section 1. The far left quantity
in (4.4) corresponds to the model (1.2), whereas the middle and the right side in (4.4)
correspond to the models (1.3) and (1.1) as already noted in Section 2.

Finally, we have assumed the models are correctly specified and the sample is large
enough. Generally speaking, a larger model will require more samples than a smaller
model in order that the asymptotic results are relevant. Also, in practical situations, it

is computationally more difficult to fit a larger model. Nevertheless, these results are
quite informative.
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APPENDIX

We give a simple and direct alternative proof of (2.1).

Since y; is the vector of marginal variates of (y1,¥y2), we note that

f(y1|9) = /g(y17y2|97¢)dy27

from which it follows that

0

/g¢(y17y2|97¢)dy2 = 8_¢ (y116) = 0.

From these relations, we can express the conditional expectations of ‘qf and f7¢ given
y1 = y; as follows:

1
E [%b y1 = y1:| = %%dyz = ? /g¢dy2 =0, (Al)

0
E |:%9‘YI :y1:| = %/gedyz = %%/gdyz = % (A2)

By Schwartz’ inequality, we can evaluate the following conditional expectation as

!
g9 —19¢ g9 —19¢
E (= —Igsl —> (——Lgl —> y
Kg i vle0 g !

g
!
ge —190¢ ge —199¢
ZE{——IeI _‘YI]E[__IOI _‘YI:|
g ?L g g g * oo g

()
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The last equality holds in view of (Al) and (A2). Note that

!
Ipg —TosI g Ioo = B [(%9 M %) (%9 - Ieﬂﬁgf) ] :

Taking expectation of both sides in (A3) in terms of y; and using the above equality
lead to (2.1). Q.E.D.
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