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Abstract: There are many causes of occurrence of improper solutions in
factor analysis. Identifying potential causes of the improper solutions gives
very useful information on suitability of the model considered for a data set.
This paper studies possible causes of improper solutions in exploratory
factor analysis, focusing upon (A) sampling fluctuations, (B) model underi-
dentifiable and (C) model unfitted, each having several more detailed items.
We then give a checklist to identify the cause of the improper solution ob-
tained and suggest a method of reanalysis of the data set for each cause.

Keywords: Covariance Structure Analysis, Checklist, Underidentifiability,
Sample Fluctuations.

1. Factor Analysis Model and Improper Solution

In factor analysis, an observed random p-vector @ is assumed to have the
following form: & = Af + uw, where A = ();;) is a p x k matrix of factor
loadings, f =[F1,---, Fi]' is a k-vector of common factors, w = [Uy,---, U]
being a p-vector of unique factors. Here k is the number of factors. Assume
further that Var(f) = I, Cov(f,u) = 0, Var(u) = U = diag(ty,---,v,).
The covariance matrix ¥ (= (oy;)) of the observed vector @ is representable
as X = AN’ 4+ W. Each diagonal element ¢; of W is a variance of U;, so that it
should be estimated as a positive value. It is said to be an improper solution
or a Heywood case when some elements ; are not positively estimated.

2. Cause, Identification and Treatment
Following van Driel (1978), we distinguish among three types of causes of
improper solutions as in Table 1: (A) sampling fluctuations, (B) model un-
deridentifiable, and (C) model unfitted. We shall make brief comments on
these causes. Since the parameter space of 1, is the finite interval (0,0;)
and estimation methods naturally do not require estimates @/A)Z to be in the
interval, ;/A)Z can be outside the parameter space or can be at its boundary
at a positive probability, because of sampling variations. A typical exam-
ple is an improper solution which takes place in a simulation study under
a true identified model. Thara and Okamoto (1985) compared estimation
methods such as ML, and LS in terms of frequency of improper solutions due
to sampling fluctuations. Anderson and Gerbing (1984), Boomsma (1985)
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A: sampling fluctuation

Bl: A=

element in a col-
umn of A

Ay 0 (only one nonzero)

B: underidentifiability

B2 A=| A O elements in a col-
umn of A

A2k (only two nonzero)

B3: others

C1: some true unique variances #; < 0
C: factor model unfitted { C2: inconsistent variables X; included
C3: others (e.g., minor factors)

D: others (e.g., outliers)
Table 1: Types of causes of improper solutions

and Gerbing and Anderson (1985) have studied how model characteristics
influence on the frequency of occurrence of improper solutions in the context
of confirmatory factor analysis. In my experience, however, improper solu-
tions due to sampling fluctuations are not so often met in practice. When
sampling fluctuations cause an improper solution, it may be useful to con-
strain uniqueness estimates ;/A)Z to be nonnegative. Gerbing and Anderson
(1987) discussed interpretability of constrained estimates for improper solu-
tions caused by sampling fluctuations in confirmatory factor analysis.

The causes (B) and (C) are important in model inspection. Anderson
and Rubin (1956) gave a necessary condition for identification that there be
at least three nonzero elements in each column in A. The cases (B1) and
(B2) in Table 1 violate the necessary condition.

In (B1), the parameters (Ayx, 1) can take any values as far as they
meet A2, + ¢y = oy; — SFZ1 A2 | so that ¢y can be negative. The location
of the nonzero loading in the k-th column is arbitrary. The k-th common
factor is not a common factor but a unique factor. Thus, it is actually a
(k — 1)-factor model. Accordingly, an improper solution takes place when
the number of factors is overestimated. Why is it overestimated? In many
cases, a test of goodness of fit suggests it, that is, the test rejects a (k — 1)-
factor model. There would be two potential cases yielding this anomaly
((k — 1)-factor model is rejected; examination of a k-factor solution suggests

a (k — 1)-factor model):

(B11) Sample size n is large enough to reject reasonably well-fitted models;
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in other words, because of large samples, the statistical test becomes
too sensitive to small deviation from the model, possibly caused by
minor factors;

(B12) Distribution assumptions such as normality are violated, and then the
distribution of test statistics can not be approximated by a chi-square
distribution.

The both cases have been pointed out in the context of covariance structure
analysis. For (B11), researchers are advised to use goodness of fit indices
such as GFI, CFI and RMSEA to measure the distance of the population
from the model (e.g., Joreskog and Sérbom 1993 section 4.5.2; Bentler 1995
chapter 5). They would then get useful information concerning acceptability
of the model. The cause (B11) is also interpreted as an effect of minor factors.
In (B12), researchers can take elliptical theory or a type of asymptotically
distribution-free (ADF) method. Kano (1990) suggests a noniterative esti-
mation procedure which prevents a unique factor from being reinterpreted
as a common factor.

Checking Ttem Cause of Improper Solutions
A B1 B2 C1
(1) Does iteration converge? yes no no yes

(2) Is the solution stable? (not

depending largely on estima- unstable in one ‘unstable .
. . yes In two particu- yes
tion methods, starting values, X; ,
.. ;i lar X;’s
nor optimization algorithms)
(3) Are SE’st of ¢; almost the one or two

same in magnitude? yes  one large SE large SE(’s) yes

(4) Does the confidence inter-
val of t;, not positively esti- | yes no no no
mated, contain zero?

(5) Are residual elements of no for solution
S — (AA' 4+ W) almost the same | yes yes reducing k by yes
in magnitude? one

Table 2: Checklist for identifying the cause of improper solutions. See text
for examining C2. 1SFE denotes standard error.

In (B2) an improper solution occurs in the first or second variables only,
because the loadings Ay and Ay can take any value as long as they satisfy



AMpAgp = 019 — Ef;ll AirAg.. One can not make exploratory factor analysis
when the population factor loading matrix A has the form (B2). In the case,
the researchers can not help making a constraint to remove the indefiniteness,
such as Ajp = Agp or ¢y = . It is optional whether to impose Ajp = 0
(1=3,---,p). See Kano (1997) for details.

When an improper solution occurs due to (B), underidentifiability, it
often happens that iteration does not terminate; the solution depends on
starting values, estimation methods (e.g., ML, GLS, LS) or optimization
algorithms. In (B1) the location of only one nonzero element, or the variable
in which ¢; < 0 is arbitrary and it also depends on starting values etc. As
noted above, negative estimates can appear at two particular variables for
(B2). These observations will distinguish between (B1) and (B2).

For (C1) or (C2), researchers have to remove all variables inconsistent
with the model considered. They can remove the variables with negative
unique variances in the case (Cl). In (C2) we could examine residuals to
identify inconsistent variables. A more sophisticated manner would be to
take a likelihood ratio test approach, developed by Kano and Thara (1994).

The case (D) contains all causes other than (A)-(C). Outliers in samples
may cause improper solutions, as pointed out by Bollen (1987). Existence of
outliers is classified in the case (D). The other cases in (D) are yet unknown
and still need to be studied.

In Table 2, we summarize as a checklist how to identify the cause of
improper solutions. Table 3 presents the method of reanalysis for each cause
of improper solutions.

Cause Treatment
A Obtain a boundary solution with all ¢; > 0
B11 | Refer to goodness of fit indices such as GFI and CFI
B12 | Apply an ADF type of estimation method
B2 Estimate under constraint such as Ay = Aop or 1 = 1y
C1 Remove the variable X; with ¢; < 0

C2 Remove inconsistent variables

Table 3: Treatment after identifying the cause of improper solutions

3. Example
Maxwell (1961) conducted maximum likelihood factor analysis of each of
two samples of 810 normal children, and 148 neurotic children attending a
psychiatric clinic, where the first five items of the samples are cognitive tests
and the other five are inventories for assessing orectic tendencies (see Table
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7 for items). He found that the iterative process for obtaining the MLE
does not terminate and the communality of the eighth variable approaches
to one for 4-factor model for the normal sample whereas a 3-factor model
successfully analyzes the sample of neurotic children. He concluded that the
method of maximum likelihood along with goodness-of-fit testing does not
always perform well. It later turned out that the 4-factor solution for the
normal sample is improper (e.g., Joreskog 1967).

Here, we shall take the sample of normal children to illustrate our pro-
cedure for improper solutions. In the sample, Sato (1987), among others,
reported that the improper solution depends on initial estimates for itera-
tion and gave three different improper solutions with @/36, ;/38 or ;/39 negative,
respectively, and that it is difficult to achieve convergence in iteration when
uniqueness estimates are not constrained to be nonnegative. Table 4 shows
MLE for uniqueness and their standard errors, for each case of 0 < ¢; < oo
and —oo < ¥; < oo. The analysis was made with a covariance structure
program Eqs, developed by Bentler (1995).

goodness-of-fit by s g

X%,-value P-value
0 < <oo MLE | 18.447 0.072 | 384 621 302 638

SE 037 059 039 037
—oo < ¥; < oo MLE 14.589 0.202 | 397 629 298 644
SE 037 056 040 037

Vs ve  r ¥s Yo VP10

0<vy¥;<oo MLE | 352 778 287 000 690 599
SE | 096 040 052 003 037 050

—oo < 1y < oo MLE | 324 802 275 -—-276614 725 609
SE | 108 042 046 156 040 044

Table 4: Uniqueness estimates (MLE) and their standard errors (SE) in
Mazwell’s data (n = 810; k = 4). Values are multiplied by 1000.

Obviously, the cause of the improper solution is not “A: sampling fluc-
tuations.” Maybe we should consider “B: identifiability” as a possible cause.
Table 5 shows the list of top five (standardized) residuals in absolute value
in 3-factor solution. There is no salient residual in the list, which implies
that (B2) is not the cause. To conclude that the cause is (Bl), we have to
examine (B11) and (B12), but unfortunately, we can not check normality
of observations because raw data are not available. We would say that the
sample size n = 810 is so large that the power of the goodness-of-fit test
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is raised too much. In fact, other fit indices indicate reasonable fit of the

3-factor model, for instance, GFI=0.981; CFI=0.973. As a conclusion, a

X9-X8 X8-X6 X10-X8 X8-X4  X9-X6
0.095 0.084 -0.050 0.046 -0.044

Table 5: Top five residuals in 3-factor solution

probable cause of the improper solution is (B1) and the analysis here sug-
gests a 3-factor model for the sample of normal children, as well as for the
sample of neurotic children.

Any model is nothing but an approximation to reality, and deviation of
a model from reality always exists. Statistical test can detect the deviation
even when it is very small, provided that the sample size gets large. There
are two considerations: (i) one employs a slightly misspecified model if one
considers the deviation as just an error and so negligible; (ii) one rejects the
model and finds a suitable treatment to reduce the deviation.

The treatment above for the improper solution of the normal sample is
based on the consideration (i). There is an alternative story based on (ii).
The cause of the improper solution is then (C) in this story. The key can
be found in the list of the residuals in Table 5.

In Table 5, we can find that the top four residuals are related to the
eighth variable. This indicates the possibility that the eighth variable be
inconsistent with the model under consideration. The inconsistency could be
a cause of the rejection of the 3-factor model. Table 6 shows the goodness-of-
fit chi-square test statistics of 10 models, each of which is formed by removing
one of 10 variables. The only accepted model is the one in which the eighth
variable is removed. As a result, the eighth variable can be regarded as
inconsistent with the 3-factor model. See Kano and Thara (1994) for details.

Variable Deleted
1 2 3 4 5 6 7 8 9 10

LRT | 35.32 37.38 4828 6537 21.63 5589 40.73 1458 45.68 3847

Table 6: x1, values of 10 models after deletion of one variable. (\1,(.05) =
18.55)

Table 7 shows the MLE in 3-factor model after deletion of the eighth
variable.

We have here suggested two possibilities for treatment of the improper
solution in Maxwell’s data. Which approach is to be taken, in others words,
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Factor 1 Factor 2 Factor 3 | Communal.
COGNITIVE TESTS

X1 Verbal Ability 574 412 323 | 603
X2 Spatial Ability 095 585 139 | 371
X3 Reasoning 406 697 225 I 702
X4 Numerical Ability 325 487 117 | 356
X5 Verbal Fluency 780 243 092 | 675
ORECTIC TENDENCIES |
X6 Neuroticism Questionnaire 104 175 396 | 198
X7 Way to be different 228 143 808 | 725
X8 Worries and Anxiety -—= -—= -— | --
X9 Interests 103 180 482 I 275
X10 Annoyances 000 028 625 | 391

Table 7: 3-factor solution, rotated by normalized-VARIMAX, of 9 vari-
ables after deletion of the 8th variable. Yi,-value= 14.58 (n = 810), P-
value=.2712. Fstimates are multiplied by 1000.

whether the deviation of the 3-factor model using 10 variables can be con-
sidered small enough or not, may depend on researchers and also on inter-
pretability of those two results of the analyses.

4. Remarks

Users may not implement the procedure described above, if they use usual
exploratory factor analysis (EFA) programs only. It is absolutely necessary
to use programs with which the user can (i) do analysis under no constraint
on 1, that is, ¢; can take negative values; (ii) get standard errors of esti-
mates, particularly, of 1 (iii) specify starting values; and (iv) get (stan-
dardized) residuals, S — (AA’ + \i/) For this, covariance structure analysis
(CSA) programs (e.g., Amos, Eqs, Lisrel) are very useful, although they do
not have the option of factor rotation. Researchers are recommended to
use both CSA and EFA programs to make exploratory factor analysis in a
proper way.
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