
Use of SEM Programs to Precisely Measure
Scale Reliability

Yutaka KANO1 and Yukari AZUMA2

1 School of Human Sciences, Osaka University, Suita, Osaka 565-0871, Japan
kano@hus.osaka-u.ac.jp

2 School of Human Sciences, Osaka University, Suita, Osaka 565-0871, Japan
azuma@koko15.hus.osaka-u.ac.jp

Summary. It is first pointed out that most often used reliability coefficient α and
one-factor model based reliability ρ are seriously biased when unique factors are
covariated. In the case, the α is no longer a lower bound of the true reliability. Use
of Bollen’s formula (Bollen 1980) on reliability is highly recommended. A web-based
program termed “STERA” is developed which can make stepwise reliability anal-
ysis very easily with the help of factor analysis and structural equation modeling.
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1 Introduction

Reliability analysis has been discussed extensively since Cronbach (1951) pro-
posed the famous reliability coefficient α, and the discussion recently has been
made within the scope of the structural equation modeling (e.g., Raykov 2001;
Hancock & Mueller, 2000; Green & Hershberger, 2000; Komaroff, 1997). A
recent version of EQS (EQS6.0, Bentler 2002) can print a variety of scale
reliability estimates. Although reliability analysis is an old topic, it is still
given much attention.

Consider a one-factor model with possibly covariated1 unique factors:

Xi = µi + λif + ui (i = 1, . . . , p), (1)

where µi = E(Xi), λi being a factor loading parameter, E(f) = E(ui) = 0,
V (f) = 1, Cov(ui, uj) = ψij and Cov(f, ui) = 0. Here f and ui are called a
(common) factor and a unique factor, respectively.

The scale score is defined as the total sum of Xi, i.e., X =
Pp

i=1Xi. The
scale reliability ρ0 of X is then defined as the proportion of the true score
variance to the total variance, that is,

1 The term “correlated” is more often used in this context. Without a few excep-
tions, we use “covariated” in this paper since we mainly focus upon covariances
between unique factors rather than correlations. Mathematically both of the
terminologies are equivalent.
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(
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2 +
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On the other hand the traditional reliability (test) theory assumes ψij = 0
for i 6= j, so that the ρ0 reduces to

ρ =
(
Pp

i=1 λi)
2

(
Pp

i=1 λi)
2 +

Pp
i=1 ψii

. (3)

The no-covariance assumption may not hold for many empirical data sets,
and the recent literature focuses on effects of the unique factor covariances
upon the traditional reliability measure Cronbach’s α.

Bollen (1980) would be the first work that points out the importance of
nonzero unique factor covariances in reliability analysis and derives the for-
mula (2). He employed a confirmatory factor analysis model to develop a scale
of political democracy, and found that the assumption of uncorrelatedness of
the unique factors in the scale is inappropriate. He developed a confirmatory
factor analysis model with covariated unique factors for the scale. The for-
mula (2) is identical with Bollen’s (Bollen 1980, formula (1) on page 378).
Bollen’s analysis (Bollen 1980, Figure A3) is reproduced in Fig.1.

Fig. 1. Bollen’s analysis: Political democracy scale

If there are many pairs of covariated unique factors, there may be addi-
tional common factors that can account for the covariances. Practitioners,
then, consider that the scale is not unidimensional, extract multiple common
factors and develop subscales. The problem is how to do it when there still
remain covariances that can not be explained by the multiple factors, even
after some subscales were developed. A typical case is where there is a com-
mon factor with only two indicators (Kano 1997) within a single (sub)scale
and the factor is not interpretable or does not interest the practioners. They
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can then use the model (1) to estimate the reliability through the formula
(2). The model could also be used when they are not interested in additional
factors even if subscales are to be developed.

In this paper, we begin by illustrating how seriously covariated unique
factors invalidate classical reliability coefficients α and ρ with ψij = 0. In
Section 3, we take Lagrange Multiplier (LM) tests to determine the pairs of
unique factors to be covariated, and show a newly developed program called
“STERA.” We finally end with concluding remarks in Section 4.

2 Impacts of covariated unique factors

A most often used reliability coefficient in social sciences is neither ρ nor ρ0

defined in (3) and (2) but Cronbach’s coefficient α defined as

α =
p

p− 1

ÃPp
i 6=j Cov(Xi, Xj)

V (X)

!
(4)

Under the assumption of a one-factor model without covariances between
unique factors, it is known that α ≤ ρ, and that the equality holds when
items are essentially τ -equivalent (or weakly parallel measurement), i.e., λi’s
are the same. Thus, the coefficient α is a conservative measure of the true
reliability, and some researchers prefer the α because of the conservativeness.
Here, a question arises as to what if the independence assumption on unique
factors fails. What kind of influence is made on the ρ and α? An appealing
example is provided in Fig.2.

model 1 model 2 model 3

α : 0.69 0.74 0.77
ρ : 0.69 0.74 0.78
ρ0 : 0.69 0.65 0.61

Fig. 2. Covariated unique factors and reliability coefficients

The model 1 in Fig.2 is a basic one-factor model with equal factor loadings
of 0.6. The models 2 and 3 are those with unique factor covariances of 0.3
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for one and two pairs of unique factors. We reported just below the path
diagrams values of α, ρ and ρ0 respectively defined in (4), (3) and (2). For
computing ρ, we first calculated correlation matrices derived from the models
and made one-factor analysis of the correlation matrices so that factor loading
and unique factor variance estimates were obtained for each model.2 The
reliability was evaluated based on (3) using these estimates. Thus, the values
of ρ are wrong reliability estimates that result from ignoring existing unique
factor covariances.

The model 1 meets the essentially τ -equivalent assumption, and hence the
α and ρ, identical with ρ0, represent the true reliability as 0.69.

It is seen from the results in the models 1 and 2 that since ρ0 gives the
correct reliability value, α and ρ result in seriously biased estimates, and that
more unique factor covariances result in more serious bias. The α coefficient
is no longer a conservative estimate for the true reliability. This observation
coincides with Zimmerman et. al. (1993) and Komaroff (1997). When nega-
tive covariances appear between unique factors, α and ρ underestimate the
reliability. Thus, existence of unique factor covariances invalidates use of α
and ρ.

It is easy to explain why such biases are made. Unique factor covariances
contribute to the covariances between observed variables. The α is a mono-
tonically increasing function of the total covariances, so positive unique factor
covariances lead to a positive bias. A similar explanation can be made for ρ.
When the unique factor covariances are ignored, factor loading estimates are
seriously overestimated, leading to overestimation of ρ. On the other hand,
when we use ρ0, unique factor covariances contribute to the denominator of
the formulae, and the covariances are regarded as an error. Usually the co-
variances of unique factors do not interest us, so the formula ρ0 is reasonable.

One can examine the fit of a one-factor model employed to detect whether
unique factor covariances should be introduced. A bad-fitted one-factor model
may indicate existence of unique factor covariances. (Exploratory) factor
analysis without model fit examination can cause an inflated or deflated re-
liability estimate, so it is not recommended.

3 LM approach and STERA

In the previous section, we pointed out the importance of introduction of
unique factor covariances. Here, we discuss a pragmatic estimation method
of the reliability based on the expression ρ0 in (2). A drawback of the model
(1) is nonidentifiability, so that one cannot estimate parameters. The ψij has
p(p + 1)/2 parameters, which is the same as the number of variances and
covariances of the observed variables.

2 Obviously, the models are fitted very poorly.
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Fig. 3. Preliminary exploratory factor analysis

One way to estimate ψij is to use the residual covariance matrix, that

is, ψ̂ij = sij − λ̂iλ̂j (i 6= j), where sij is the sample covariance between

Xi and Xj , and λ̂i is an estimate in the usual one-factor analysis model,
i.e., the model with ψij = 0 (i 6= j). The approach, however, does not work
because

Pp
i,j,i 6=j ψ̂ij is almost zero almost always. Estimation process tries

to minimize the residuals and in many cases, this also minimizes the sum of
residuals as in regression analysis.

Here we propose that one perform Lagrange Multiplier tests for unique
factor covariances sequentially, as suggested by Raykov (2001). For this, the
SEM program EQS is useful (Bentler 1995). The LM option of the EQS as
/LMTEST with SET= PEE; gives a list of the pairs of unique factors to be

Fig. 4. Unique factor covari-
ances to be allowed

covariated. A covariance parameter be-
tween a statistically significant pair is
released to be a free parameter, and the
model is reestimated.
It is a feasible process but very te-

dious. In addition, one has to calcu-
late values of ρ0 by him/herself. We
have developed a web-based program
that can easily implement such relia-
bility analysis. The program is called
STERA (STEpwise Reliability Analy-
sis). Any one who can access internet
can use this program.
You are requested to input a sample

correlation matrix, the number of vari-
ables, the number of factors, and sam-
ple size when you access the top page
of the STERA.
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Fig. 5. One unique covariance is introduced

We took Bollen’s political democracy data (Bollen 1980, Table 2, n = 113)
to demonstrate the program. When you submit a job after giving necessary
information, you will receive an output webpage as in Fig.3, where results of
exploratory factor analysis are presented including model fit information.

When you submit a job of multiple factor analysis, the program presents
reordered factor loading estimates, and reliability analysis will proceed for
each factor. Factor analysis with one common factor has been made for each
set of observed variables with each factor, and reliability estimates are pre-
sented based on both one-factor and multiple factor analysis results. To dis-
tinguish, estimates based on one-factor analysis are attached with the sym-
bol “@” as in Fig.3. Since this example is a one-factor analysis, both of the
results are identical with each other. Values of α and ρ are estimated as
0.934 and 0.935. The goodness-of-fit statistic indicates rejection of the model
(χ2 = 38.281 df= 9, p value= 0.000).

Below the table in Fig.3, you find anther table (Fig.4) which shows which
pair of the unique factors should be covariated from the statistical point of
view. The table indicates a predicted chi-square statistic of the model if the
unique covariance of the pair is allowed. In the example, you check a box
in the pair of E2 and E3 and submit the job to get model fit information of
the revised one, reliability estimates and a further analysis of unique factor
covariances. Those are presented in Fig.5. The covariance is estimated as
0.123 and the reliability estimate ρ̂0 is given as 0.918, which is a bit lower
than the original one. However, again the new model receives a poor fit (p
value= 0.006), so you need to introduce one more covariance. For this, you
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can check the box of E6 and E2. You will be then noticed that you need to
allow the covariance between E5 and E6. If you add the covariance, then you
will reach a final accepted model, where the model is fitted satisfactorily (p
value= 0.480). The model is identical with Bollen’s (Fig.1).

The reliability coefficient ρ0 estimated based on the model in Fig.1 is
0.907, which is lower than ρ̂ = 0.935 or α̂ = 0.934.

4 Concluding remarks

Many text books (e.g., Allen and Yen, 1979) on measurement theory alert
that the coefficient α is nothing but a lower bound for true reliability if
essential τ equivalence assumption (i.e., item homogeneity; λi’s are the same)
is violated. Less attention on the independence assumption on unique factors
has been paid, as noted by Green and Hershberger (2000). We feel, however,
that the independence assumption is more important than the essential τ
equivalence assumption because dependency among unique factors can cause
overestimation of the true reliability.

It is important to examine goodness-of-fit of a factor analysis model to
detect substantial unique factor covariances. When the model receives a poor
fit and unique factor covariances are considered as a possible cause, an LM
test is useful to determine which pair of the unique factor be covariated.

There are many situations, already studied in the literature, which cause
unique factor covariances. According to Rozeboom (1966), speeded tests can
introduce covariated unique factors so that the coefficient α cannot be used.
He also noted that when items on a test are administrated on a single oc-
casion, errors among items are likely to be positively correlated. Green and
Hershberger (2000) made an attempt to model error covariances in true score
models. There may be a method factor that influences some of the items, so
that unique factors of the items influenced can be covariated. There may be
a third variable (confounding variable) that is not noticed by the researcher
but can influence some of the items.

There are also situations where the error covariances are a source of reli-
able and repeatable variance that has a similar interpretation to that of the
true scores. In the case, one could consider that the error covariances are to
be added to the variance of the true scores. We have not discussed this case
fully in the paper.

It is said that in the context of structural equation modeling, one should
not introduce error covariances (to improve a model fit) without substantial
consideration, see, e.g., Browne (1982). The LM option of EQS as default does
not print results on error covariances. Thus, error covariances are allowed
only if adequate reasons are given to the introduction of the covariances. We
feel that in reliability analysis one should be more optimistic for introducing
unique factor covariances because inflated α or inflated one-factor based ρ
can prove a wrong validation of the scale constructed.
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Alternative approaches could be taken to estimate reliability for a case
where unique factor covariances appear. Vautier (2001) proposed an alterna-
tive way of identifying pairs of nonzero unique factor covariances in which
he calls it a heuristic shifting method. A stepwise variable selection in factor
analysis (Kano & Harada, 2000) could be used to select a set of variables
that perfectly conforms to a factor analysis model and use the coefficient ρ.

In this paper, we have discussed a feasible procedure of precisely estimat-
ing the true reliability ρ0 defined in (2) of a scale and developed an easily
accessible program STERA.3 We hope many readers will access the program
to correctly evaluate reliability of scales they use.
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