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Abstract

The methods of maximum likelihood (ML) and generalized least squares (GLS) under
the normality assumption are often used for inference on covariance structures, and
asymptotic properties and robustness of the statistical inference have been extensively
studied. In this article, we generalize these results to inference based on Fisher consistent
(FC) estimators which include simple least squares (LS) and noniterative estimation
methods as well as ML and GLS. Although the LS and noniterative methods do not
yield asymptotically efficient estimators under the normality, for small or moderate
samples they are often superior to efficient estimators in mean squared error and less
often result in so-called improper solutions. This shows that there do exist cases where
such inefficient inference should be made rather than ML and GLS. Thus, the extension
to be described here is important. Furthermore, a key relation shown from a property
of the FC estimators makes the derivation of asymptotics of the inference very easy and
comprehensive. The asymptotic efficiency of the MLE within the class of FC estimators
is proved under a situation where the fourth-order moments of observations may not be
finite.

1. INTRODUCTION

In a covariance structure model, the covariance matrix of a p-dimensional observation
X is represented as

Cov(x,x) = X(6),

where 6 i1s a ¢-dimensional structural parameter vector to be estimated. Statistical
inference in the analysis of covariance structures is usually made under the normality
assumption on observations. That is, observations, x(), -+ x(N) are assumed to come
from a normal population N(u,X(6)), and then estimation of 6, testing hypotheses
regarding 0, and testing goodness-of-fit are made by methods of the maximum likelihood,
least squares or others. All softwares for analyzing covariance structures are formed on
the basis of normal theory, e.g., LISREL by Joéreskog and Sérbom (1988) and EQS
by Bentler (1989). On the other hand, many researchers have pointed out that the
main assumption of the normality is questionable in areas of social sciences where these
analyses are often utilized. Thus, it is very important to develop statistical theory under
general distributions, e.g., ADF methods (Browne 1982, 1984; Bentler and Dijkstra
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1985) and to investigate to what extent the normal theory inference remains valid, in
other words, robustness to violation of the normality assumption.

In the 1980’s, robustness theory has been developed very much. Muirhead and
Waternaux (1980) studied a wide range of the likelihood ratio (LR) test statistics under
elliptical populations, and showed that some of the LR statistics remain valid if one
makes a correction with the multivariate kurtosis n of observations whereas others are
not valid at all. Tyler (1983) provided an elegant condition in terms of null hypotheses
under which the correction with n makes the LR statistics valid. Browne (1982, 1984)
showed that in a covariance structure model, the n correction is possible if the covariance
structure is invariant under a constant scaling factor. This result is slightly more general
than Tyler’s. Shapiro and Browne (1987) unified these results. Bentler (1983) developed
a fit-function for models not meeting the invariance assumption. Shapiro (1986, 1987)
provided general and useful conditions in terms of the fourth-order moments under which
asymptotic efficiency of estimators and chi-squaredness of goodness-of-fit statistics hold
and the standard errors of estimators are correct.

Another approach to investigating robustness is to assume independence among la-
tent variates which generate the covariance structure. Amemiya (1985) first developed
this situation and showed chi-squaredness of goodness-of-fit statistics in structural and
functional relationships for a case when the fourth-order cumulants of error variates
are zero, but no distributional assumption on the structural variates is made. In 1985,
Amemiya and Anderson showed that the above condition can be weakened for a factor
analysis model, in which only independence among latent variables is assumed, and re-
markably, the fourth-order moments may not exist. This result is extremely interesting,
but the proof was very complicated. A revised version of the paper was published by
Amemiya and Anderson (1990). This result and a corresponding result on estimation
due to Anderson and Amemiya (1988) for a factor analysis model were extended to
those for a linear latent variate model by Anderson (1987, 1989).

On the other hand, Browne-Shapiro have developed similar results under the assump-
tion that the fourth-order moments be finite (Browne 1987; Browne and Shapiro 1987,
1988). In this framework, one can derive asymptotic efficiency of estimators and obtain
asymptotic distributions of estimators for variances of latent variables, which are out of
the scope of Anderson-Amemiya. Mooijaart and Bentler (1985, 1991) took a close look
at factor analysis models, and Satorra and Bentler (1990) extended Brown-Shapiro’s to
inference based on arbitrary discrepancy functions.

As seen above, the three frameworks, namely ellipticity, independence and indepen-
dence with finite fourth-order moments, have been developed independently and appear
to be essentially different. A notable feature of the paper is to separately discuss distri-
butional assumptions and estimation methods, and we shall describe a key relation (see
(2.4) that is derived from (A4)) on estimation methods and distributional assumptions
(see (A2), (A3)) such that the robustness property holds. The previous results on the
robustness, which look different from one another, are shown to be a special case of the
general situation that satisfies the assumptions (A2)—(A4). Thus, the first contribution
of this article is to unify the three frameworks described above.

The property (2.4) on estimation methods is derived from Fisher consistency (FC)
which are met by almost all of the estimators in the literature. So, the results obtained
here are an extension from minimum discrepancy function estimators to FC estimators.
Furthermore, introduction of the notion of FC estimators simplifies the derivations of
the asymptotic results very much.

Another fruit of the present paper is to establish the asymptotic efficiency of the
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MLE even under the case where the fourth-order moments of observations may not be
finite. The property derived from the FC estimation makes it possible to discuss the
efficiency under such general cases.

In Section 2 we develop the asymptotic distribution of FC estimators under very
general distributional assumptions. Sections 3 and 4 provide many examples that satisfy
the assumptions on distributions and on estimation methods, respectively. Some specific
developments of the paper are described in Section 5.

At the Trento workshop we noticed that Satorra (1989) had presented part of the
results of Theorem 1 of this article at the Psychometric meeting. Our results are more
general, though the essential idea would be the same. These results were developed
independently, and we shall note how Satorra’s result is covered with our derivation in
Section 5.

2. MAIN RESULTS

Let ¥(0) be a p x p matrix-valued function defined on a subset © of R? such that
Y(0) is positive definite for each 8 € ©. We take 6y, an interior point in 0, as a true
value of §. We say that a (matrix-valued) function belongs to C*-class in a domain G if
the function is k£ times continuously differentiable in G, where k is any natural number.

(A1)  X(8) belongs to C*-class in a neighborhood of 8y, and the matrix of the deriva-
tives,

A O]
ol P

is of rank g.

Here v(A) denotes a p*-vector formed from the distinct elements of a p x p symmetric
matrix A, where p* = p(p 4 1)/2 (see Magnus and Neudecker 1988, page 49 (2)). We
shall summarize the vec operator and duplication matrices which will be used in this
paper. Define vec(A4) by a p*-vector obtained by stacking all column vectors of A in
order. The duplication matrix D, of p* x p* is defined as a linear operator such that
D,v(A) = vec(A) for any symmetric matrix A, and then we have D;'vec(A) = v(A)
with D;': (D;Dp)_lDJ’D.

Let x(M ... x(N) be independent random p-vectors that are not necessarily identi-
cally distributed, and define the sample covariance matrix S by

N

1
_ - (@) = (@) Y
S—n; 1(X —x)(x*Y —x)’,

where n = N — 1 and X is the sample mean vector.
Make the following assumptions on the underlined distribution:

(A2)  There exist a p* x p* positive definite matrix I', a p X p symmetric matrix D,
and a possibly random sequence of 8, converging to €y in probability such that

Vi(o(S) = v(Sn)) = Ny (0, T)
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with ©, = 2(6,) + —=D.

-

Under (A2) we have that S N Y(6p). This assumption is made so as to cover
the following three important cases. The first case is a typical situation when we take
6, = 0y and D = 0. Usually I' is the covariance matrix of v((x — p)(x — p)') with
p = E(x). In particular, if the observations are independently and identically distributed
according to the multivariate normal distribution, it is known that

T = 2D+ (S(6y) @ S(6)) D' (=T, say). (2.1)

The second one is where the data come from distributions under a sequence of local
alternatives. This set-up is employed to investigate the local power of test statistics. For
testing goodness-of-fit of a given covariance structure, a sequence of the true population
covariance matrices, 3, = X(6y) + %D, under the alternative hypothesis is employed,

where we have taken 6, = 6y3. The third is a quite interesting case developed by
Anderson-Amemiya in which 6,, is random. This case will be described in the next
section.

Another assumption is made.

(A3)  There exist a scalar n > 0 and a ¢ X ¢ symmetric matrix G such that I' =
nT'n + AGA'.

We shall describe what kinds of distributions meet the above assumptions in the

next section. Notice that under a case of #,, = 6y, the normality assumption implies
that n =1 and G = 0. Thus, x(=n — 1) and G could be regarded as the degree of the
nonnormality or the departure from the normal distribution.
__ Now we shall describe a class of estimators that will be dealt with in this article. Let
0 = 8¢(S) be a g x 1 vector-valued function defined on the set of p x p positive definite
matrices, where ¢ is possibly random and converges to £ in probability. An example
of ¢ is a random weight matrix in the method of weighted least squares. When ¢ is
nonrandom or unrelated to the sample, as in unweighted least squares (see Section 4),
all assumptions about £ which follow should be ignored.

Assume that
(A4) {/9\5(5) satisfies

Ge(S(6)) = 0 (2.2)

in a neighborhood of 6y, and belongs to C'-class in a neighborhood of X(6y). The

derivative gi‘f(g,) is continuous in a neighborhood of (2(6p), £).

From the requirement of (2.2), the estimator {/9\5(5) will be called Fisher consistent
(FC) (see, e.g., Rao 1973, page 345). Almost all the estimators suggested in the litera-
ture are FC as will be noted in Section 4.
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Differentiating both sides of (2.2) in terms of 6 and evaluating it at 8 = 6y, we get

08¢(S) Ov((8))
ov(S) oo

=00 S=%(60)

From this consequence and the continuity assumption in (A4), it follows that

. 0B:(S)  98(9) 08
| = = — 2.3
ent Ou(S)Y  du(S) a0y Y (2:3)
S—X(80) S=%(8o)
and
96 . [ 98:(9)
A = lim Al =1, 2.4
0o}, e—e \ Ov(S) S—s(60) 4 (2:4)

which is a key relation of this paper.

o~

Notice that the first-order derivatives, %, depend only on estimation methods
o]
employed. The relation (2.4) is easily verified for particular estimators. For instance,
the MLE under the normality has the derivatives

aé\MLE
0o,

= (AT A)TTATY, (2.5)

from which (2.4) follows.

The properties in (2.3) and (2.4) greatly simplify the proof of the following theorem
which is an extension of the previous results on the asymptotic robustness in a covariance
structure model.

Theorem 1. Assume (Al) and (A2). Let {/9\5 be Fisher consistent, i.e., {/9\5
satisfies (A4). Then we have

(2.6)

o~ o~ ~ !
~ L 08 08 _ 08
Vn(fe —6,) — N, (@U(D)a 6?:6 do7 ) ;

98
80’6

matrix becomes

where is defined in (2.3). When (A3) is further assumed, the asymptotic covariance

o 08"
o0t N oo,

+G (2.7)

with 'y in (2.1).



o~

Proof. Noting that 8(X(6,)) = 6, and /n {v(Z,) — v(Z(6,))} = v(D), we have
from (2.3), (2.4) and (A2) that

Vil =6 = GGl VA (0(S) - o(S(6,)
= GV () = oS0} + SE i (S,) = o(S(8)} + 01
LN, (§7§<D> 5 ;f )

where ¥* lies between S and X(6,) and converges to X(6p) in probability. Under
assumption (A3), use of (2.4) shows (2.7). Q.E.D.

From now on we suppress & and ¢ for simplicity.

When a sequence of local alternatives is considered, the corresponding result for MDF
estimators (see Section 4) was obtained by Bentler and Dijkstra (1985) and Shapiro and
Browne (1989).

For the MLE, substitution of (2.5) into (2.7) in Theorem 1 shows

nATY A+ G (2.8)

This result has been obtained by many authors. In some situations, n = 1 and some
elements of G are equal to zero. No correction of the normal theory results is then
needed for estimators of the parameters with the corresponding elements of GG zero even
under the nonnormality. This has been pointed out by many researchers as well. The
result (2.8) is a fruit that was obtained by the recent robustness study. As seen in
Theorem 1 and its proof, (A3) and (A4) play an essential role in showing (2.8).

The result in (2.7) enjoys some interesting features. As pointed out before, only n and

a6
do,
suggests that the nonnormality and estimation methods independently affect asymptotic

G reflect the nonnormality, whereas depends only on the estimation method. This

distributions of 6. In general, the asymptotic covariance matrix of estimators based on
the normality assumption is not true any more for nonnormal distributions. But under
the assumption (A3), we can simply correct the normal theory covariance matrix with n
and G based on (2.7). One consequence of (2.7) is that one can make a simple correction
of the normal theory formula with  and G not only for the MLE but for any other FC
estimators as well and that the correction factors n and G in (2.7) is common to all
FC estimators. For instance, the n and G needed to correct for the MLE is exactly the
same as those to correct for the least squares estimator or noniterative estimators.

For another thing, we may just observe the quantity aaf, 'y aaf, when studying effect
o] o]
of estimation methods. For instance, for a given underlined distribution, i.e., given n

~ ~1
and G, an estimator € minimizing aaa' I'n aaf, minimizes the asymptotic covariance
o] o]

o~

~ ~1
a8 a8
do, r do,

matrix of 6. As a consequence, asymptotically efficient estimators under the
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normality assumption are still asymptotically efficient under nonnormal distributions
meeting (A2) and (A3).

Now, let us investigate efficiency of FC estimators in more details. Solving the

equation in (2.4) for %, we have
aé\ =1 —1 A/m—1 c
ag,:(AT A)YTATT + A° (2.9)
0

where A€ is a ¢ X p* matrix satisfying A°A = 0, and the first term of the right side in
(2.9) is a particular solution of the equation (2.4). Using (2.9), the asymptotic covariance
matrix in (2.6) has the following lower bound:

o6 96
o, 0o,

— (A/P—lA)—l + ACP(AC)/
> (A'TTA) (2.10)

The derivation has been very often used to explore a lower bound of the variances of
estimators for structural models, e.g., de Leeuw (1986, page 128) and Dijkstra (1984).
It should be noted that the use of the derivation enables us to establish the efficiency
property when the fourth-order moments may not be finite.

First, we consider a case when #,, is nonrandom. In this case, I is unrelated to 4,, and
the next definition is well-defined. An FC estimator of 8y will be called asymptotically
efficient within the class of all FC estimators, if the asymptotic covariance matrix of the
estimator attains its minimum (A'T7'A)~

Assuming (A3), the lower bound in (2.10) becomes n(A'TH'A)™! + G, which is
identical with (2.8). Thus, the MLE is asymptotically efficient under (A1)—(A4) and
the assumption that €,, be nonrandom.

When 6, is random, the situation is rather complicated because the lower bound may
depend on the random sequence 6,,. Here we only consider a case when 6,, = [60],,,65,.]

with 61, (r x 1) nonrandom and 6,,, random, and investigate efficiency of #y. Let A4
and Al be r x r principal submatrices of A and A1 respectlvely Under assumptions

(A2) and (A3), the asymptotic covariance matrix of 8, with 6 = [93, 9’] is expressed

from (2.7) as
o~ ~ 1
00 08
g (806 PNaU(/) )11 " Gll' (211)

Notice that for a given population distribution, (2.11) should not depend on the par-

ticular sequence of 6,,, since neither should \/ﬁ(é\l — 01,,), and this is true for any FC
estimators. Thus we conclude that n and G1; do not depend on the sequence 65,,.

Under (A2) and (A3), the lower bound in (2.10) becomes
(AT A + Gy, (2.12)

which is unrelated to the particular choice of 6,,, since so are  and Gy;. Thus, there
is no ambiguity when an FC estimator whose asymptotic covariance is given by (2.12)
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is called asymptotically efficient within the class of all FC estimators. Again, the lower

bound in (2.12) is attained when 6 is the MLE.

Here we shall summarize the results on efficiency.

Theorem 2. Assume (Al) and (A2). Let 8 be Fisher consistent, i.e., 8 satisfies
(A4). Then, (i) when 6, is nonrandom, the lower bound of the asymptotic covariance

matrix of @ within the class of FC estimators is given by (2.10); (ii) when (A3) is met and

01, with 6, = [0, 0},]' is nonrandom, the lower bound of the asymptotic covariance

matrix of 8, is given by (2.12), where 6 = [{/9\1, {/9\;]’ For either case, the MLE ((/9\ or (/9\1)
is asymptotically efficient within the class of FC estimators, provided that (A3) is met.

Notice that the theorem covers the case treated by Anderson-Amemiya where the
fourth-order moments of observations may not be finite (see Sections 3 and 4). Theorem
2 states that the MLE, for whole or part of 8 with the corresponding 6,, nonrandom, is
asymptotically efficient as long as (A1)—(A4) are met. This is also true for FC estimators
of which the derivatives are equal to (2.5). An example of such estimators is the GLSE

with a weight matrix 2(90) (see (4.2)).

3. ON DISTRIBUTIONAL ASSUMPTIONS

In this section, we shall describe underlined distributions meeting assumptions (A2)
and (A3). Basically, the results stated here are due to Anderson (1987, 1989), Browne
and Shapiro (1988), Kano (1990b), and Shapiro and Browne (1987). Throughout this

section, we suppress the subscript ¢, denoting the true value of parameters, for simplicity.

The first distribution introduced here is the elliptical distribution (see, e.g., Muirhead

1982). When the observations x( .o x(NV) are independent and identically distributed
according to the elliptical distribution, the covariance matrix of v(S) is represented as

n - Cov(v(S),v(5)) =nl'n + (n — 1)o(S(6))0(S(8)) + o(1),

where 7 is the rescaled multivariate kurtosis parameter (Mardia 1970). Assuming in-
variance under a constant scaling factor, we have

v(X(8)) = Ac

for some c. See Shapiro and Browne (1987). Thus, it is seen that the elliptical population
meets our requirements (A2) and (A3) with 6, = 6,G = (n — 1)cc’ and D = 0. Here
this model will be denoted by (I). Some generalizations of elliptical distribution theory
were given by Kano, Berkane, and Bentler (1990, in press).

The next example is a general linear latent variate model which was originally defined

by Browne and Shapiro (1988) and slightly modified by Anderson (1987, 1989). The
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model is described as

G+1
X(Q)ZM—I_ZA!I(/\)ZE]Q) (a=1,---,N),
g=0

where p is the general mean, A () is of p X ky; with r x 1 parameter vector A, and

where z;a) (9=0,---,G+1) are latent variates of k; x 1 such that z(()a) is a fixed-effect
parameter vector satisfying

N
1 Z &) (o) -
CI)OO(n) = g (Z(() ) — Zo)(Z(() ) — Zo)/ — CI)O

(a) (o)

as N — oo for some pi, and ®¢ and that z, ’,--- 25/, are random-effect variates with
means zero satisfying

Cov(z(ga), zgla)) =0 for g #h
Cov(z(ga),z;a)) =9, for g=1,--- .G (3.1)

Cov(ze1,2601) = e (7).
Then it is seen that

S =5 lim B(S) =Y A, (NP A, (V) + Mg (N Para (T)Agi1 (V) (= (8), say)

N —co
9=0

with 8 = [N, 7/, 0(®g), -+ ,v(®g)].
Browne (1987) and Browne and Shapiro (1988) showed that when z;a) (g=1,---,G

+1) are independent and have finite fourth-order moments, and the fourth-order cumu-

(@)

lants of z | are equal to zero, then

Vi{o(S) = v(S(0))} - Ny (0, Ty + AGAY),

where
-0 1 A
0 } T
—2D; (®o @ o) Dy b @
G = Cr [
L cgld b @c

with € = D;’g C'gD,;:’ and Cy being the fourth-order cumulant matrix of z;a). This
example will be labeled as (II).
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The next model, denoted by (II)’, is a slight generalization due to Kano (1990b).

Let y;a) (9g=1,--- ,G+1) be latent variates satisfying the above requirements on z;a)

(i.e., (3.1), independence, finite fourth-order moments, and zero fourth-order cumulants

of z((?_i)_l), and define
Z;a) — y;a)/e(a) (g=1,--- ,G+1),

where €@ is a random variable independent of yga)’s such that E { (e(a)>_2} =1 and
E { (e(a)>_4} = 1. Form a linear latent variate model

G+1
X(Q)ZM‘|‘ZA!](/\)Z§]Q) (Oé::[,--- 7N)
g=1

Here, z;a)’s are permitted to be dependent through e(® (but uncorrelated) and the

fixed-eflect latent variate z(()a) 1s not included in the model. Notice that this model
includes elliptical distributions. Assume further that ®g41(7) is invariant under a
constant scaling factor, and then we get

6U(CI>G+1(T))C

v(@a41(7)) = 577

for some ¢. Under this model,

Vi{v(S) = v(S(8))} = Npw (0, nTy + AGA),

where G = nG;y + (n — 1)G5 and

0 oA
0 }ooor
Gy = CY Poo®
cEl b @q
and
0 0 1"} A
¢ ¢ }ooor
Gy = | (1) | | o(®1) | } @1

v(®g) v(®g)d } g
Here (7 is the matrix of the fourth-order cumulants of y;a) defined in the same manner
as in the model (II).
In the model (II), Anderson (1987, 1989) relaxed the condition for the fourth-order
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moments of z;a) (g = 1,---,G) to be finite, in other words, he only assumed that

z;a) (9 =1,--- G+ 1) are independent and the fourth-order cumulants of z((?_i)_l are

equal to zero. This model will be labeled as (III). Let

1 Q) _
Dgn(n) = D (") —2)(z —zn) (9,7 =01, .G +1),

and define
0, =[\,7, v(@oo(n))’, e ,v(@Gg(n))’]'.

Notice that 6,, 1s random. Then we can show that

Vi{v(S) = v(S(6))} = Ny (0, Ty + AGA'),

where
[0 1} A
0 } T
G = —2D] (%o © o) D }o®o. (3.2

—2D} (2 @ ®q)Df’ |} ®a

A variant of this model similar to (II)’ can be defined in the same manner.

4. FISHER CONSISTENCY

In this section, we shall show that almost all the estimators suggested in the literature
are Fisher consistent (FC).

In the analysis of covariance structures, methods of the maximum likelihood (ML)
(Lawley 1940) and the generalized least squares (GLS) (Browne 1974) are typical and
most frequently used. The estimators, MLE and GLSE, are obtained, respectively, by

min {log |X(8)] — log |S] + tr(3(6) ' S) — p} (4.1)
and
1 —142
1{9%1(1_;1 §tr[{(5— S0V, (4.2)

where S is the sample covariance matrix and V' is a p X p possibly random weight matrix
converging in probability to some positive definite matrix V. Jéreskog and Goldberger
(1972) took V = S to result in an estimator that is called the weighted least squares
estimator (WLSE), whereas V' = I, and V' = Diag(S) are used for the unweighted and
simple least squares estimators (ULSE, SLSE)(see, e.g., Krane and McDonald 1978).
Browne (1982, 1984) and Shapiro (1985) treated the extended generalized least squares
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estimator obtained via

min{o(S) —v(3(0))}'W™Ho(S) - v(3(8))} (4.3)

with W a p* x p* weight matrix converging to W. Browne (1982) called these functions
to be minimized a discrepancy function and estimators formed through a discrepancy
function a minimum discrepancy function (MDF) estimator. Discrepancy functions may
depend on random weight matrices such as V and W in (4.2) and (4.3). Here we write
them as ¢, and assume that ¢ converges to ¢ in probability. A general discrepancy
function will be denoted by F¢(S, X), which must satisfy

1) Fe(S, 2) >0,
i) Fe(S,¥)=0 ifand only if § = £, (4.4)
i) Fe(S, ¥) is continuous in S and X.
To obtain asymptotic distributions of MDF estimators, we assume
(A5-1)  F¢(S, ¥) belongs to C*-class in a neighborhood of (X(6p),X(6o)).
Under (4.4) and (A5-1), Shapiro (1985) showed that
Fe(S. B) = {o(S) —v(2)}U{v(S) = v(D)} + o(||S = Z|I*)

in a neighborhood of (X(6y), ¥(6p)) for some nonnegative definite matrix U. As a
consequence,

0
Fe(S, X) =0
() ¢ S=X=%(60)
and
92
U= O R(S.T)
dv(Z)9v(Z) S=%=%(6o)
92
=— ————F(5, X) :
u($)0u(S) 7 ™ s_umvia)
Now we further assume
(A5-2) %Fg(ﬁ”, Y) belongs to C'-class in a neighborhood of (2(6y), Z(6p), €),
and the two equal matrices
o? o?
—————F¢(S, X)) and — ————F¢(S, X)
dv(Z)dv(T) ¢ S=%=%(60) dv(S5)ov(T) ¢ S=%=%(60)

are positive definite. We write the matrices as H~!.

These assumptions (A5-1) and (A5-2) are regularity conditions which are satisfied
by most discrepancy functions, of course, including (4.1)—(4.3) with H = ZD;'(Z(GO) ®
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2(90))1)2", ZD;'(V ® V)D;”, and W, respectively. We simply write (A5-1) and (A5-2)
as (AD).
Shapiro (1983) and Kano (1983, 1986) have shown that MDF estimators are consis-

tent under mild regularity conditions including

(A6) 6y is strongly identifiable, i.e., for any € > 0, there exists § > 0 such that if
|12(0) — X(6p)|| < 0 and 0 € O, then || — by|| < e.

Thus, for large sample sizes, the estimator 8 is a solution of

SLE(S, 5(68)) =0,
or / a
A(O)' oy Fe(S, () = 0. (4.5)

where A(6) = avg;(,e)). Under (A1) and (A5), the left side in (4.5) is a C'-class

function of (S, £, #) in a neighborhood of (3(6y), &, 6), and takes zero at (3(6y), &, 6o).
Furthermore, from (A5-2) and (4.5), the Jacobian matrix of its derivatives in terms of ¢
evaluated at (2(6g), &, o) is A’H 1A, which is nonsingular. Thus, the implicit function

theorem shows that the solution é of (4.5) belongs to C'-class in a neighborhood of

~

(2(6o), €), and that the derivatives of § are given as

~

;f, = (AH'AYIA'H (4.6)
0

Fisher consistency of 8 follows from the identifiability in (A.6) and the property ii)
n (4.4). Thus, the MDF estimators meeting (Al) and (Ab) satisfy (A4).

Let 6 be decomposed into [0, 65]', and assume that an FC estimator 6, is given.

Let an estimator 8; be determined by a solution to

win F(S, S(6). 6:)). (4.7)

This estimation method is also shown to lead to an FC estimator § = [{/9\3, {/9\5]’ under
the same assumptions. A useful formula of the asymptotic covariance matrix of such
estimators was given by Parke (1986).

An alternative approach to estimation is to use an inverse function ¢g(X) of ¥ = (),
which may not, of course, be unique. Under (A1), the inverse function, defined on the
set of p x p positive definite matrices, belongs to C''-class and satisfies g(3) = 6 on the
image of 3(6), i.e., g(X(6)) = 6. Thus, the estimator ¢(.5) of 6 is obviously FC.

5. SPECIFIC CONSEQUENCES

Here we shall describe more specifically what we have developed in this article. To
make derivations more comprehensive, we take a factor analysis model. But the results

13-



will be easily extended to a general linear latent variate model.

The factor analysis model is defined as
x(® = ;4 A(/\)f(a) +ul®,

where A(\) is a p x k matrix of factor loadings (k < p) and where £(®) and u®) are
latent random k- and p-vectors of the common and unique factors such that

E(f(®) =0, E(u®)=0
Cov(f@ £®) =&, Cov(u®,ul®) =T, and Cov(f(®, ul®) =0

with U = diag(, -+ ,%,) a diagonal matrix (see, e.g., Lawley and Maxwell 1971).
Here A is an r x 1 parameter vector. Then we have

Cov(x® x(@) = AN)BAN) + T = 2(4).

The parameter vector to be estimated is 8 = [\, v(®)’, ¢y, ,¢,] and ¢ = r + %k(k +
1)+ p.
Assume first that () and Ul(a), e ,UJS‘”), the components of ul®, are mutually

independent of one another. This is the case labeled as (III) in Section 3, since (A2)
and (A3) are satisfied with D = 0, n = 1, and 6,, = [N, v(®(n)), ¥1(n), - ,¢¥,(n)],

where

1 N
®(n) = Y (£ —£)(£ ) —£)
and
1 _
bi(n) == (U =T (=1, ,p).

Thus, it is seen that Gi; = 0 in view of (3.2), and it follows from Theorem 1 that for
any FC estimators satisfying (A4),

o~ o~
~ L 06 06
i o, (E0. 25 ) -

The asymptotic distribution of any FC estimator \ under the general distributions is

exactly the same as that under the normal, indicating robustness of \. Satorra (1989)
stated, without proofs, that (5.1) holds when the fourth-order moments are finite.

For MDF estimators, (5.1) becomes
N L iT—1 AN—1 A7 F—1 ir—1 ir—1 Ay—1
Vn(Aupr = A) = N (0, (AHT'A)T'AHT'TNETIANHETIA)TY),)

—14—



in view of (4.6). For the MLE defined by (4.1) and its equivalences,
Ve — A) =5 N (0, (AT A (5.2)

since H = I'y. The result in (5.2) was obtained by Anderson (1987) and Anderson and
Amemiya (1988).

Thara and Kano (1986) proposed an estimator of ¥ that is an explicit function of S.
Let S be partitioned into

S11 S12 813 S14 } 1
g — S91 Sz Sas Soa } m
531 S32 S33 S } m

S41 542 543 544 } p—2m—1

Thara and Kano then constituted an closed form estimator as follows:
Y1 = s11 — 81253_21831-

Interchanging observed variables approprlately, we get ;/)Z for ¢ = 2,---, p in the same
manner, and define U = d1ag(¢1, e ,;/)p) Take m = k, and then this estimator is

0bv1ous1y FC. The rest of the parameters, A and ®, are estimated by such methods
that the resulting estimators are FC, e.g., by the method in (4.7). Notice that the

(asymptotic) distribution of T can not be obtained because the fourth-order moments
of the observations do not exist. Since the estimator is FC and the distributional
assumptions (A2) and (A3) are met, Theorem 1 applies. Therefore, the estimator N is

asymptotically normal, and (5.1) remains true, though X and ¥ do correlate and the

distribution of ¥ is not_known.

If we take m > k, 0 is not FC any more (but weakly consistent, see Kano 1990a).
Hence, none of the results developed here is true. Indeed, the asymptotic normality
does not hold (see Kano 1991).

Hégglund (1982) developed FABIN methods in which three noniterative estimators
were formed for a certain linear structure A(A). These estimators are verified to be

FC. Hence, the formula for the asymptotic covariance matrix of \ given by Hagglund
remains valid not only for the normal case but for the case treated in this section as
well. Satorra and Bentler (1991) studied robustness of goodness-of-fit statistics with
the FABIN estimators. R

We have shown that most estimators A are asymptotically normal. The next ques-
tion to be raised is which estimator is the best of them, in other words, efficiency of
estimators. This issue has been discussed only when the fourth-order moments of the
observations are finite.

Recall that in the factor analysis model, (Al)- (A3) are satisfied and A\ in 6, is

nonrandom. Thus Theorem 2 applies, so that the MLE /\MLE is asymptotically efficient.
It should be emphasized that the fourth-order moments of the observations may not exist
here. We would mention that the introduction of the notion of FC estimators as well as
assumptions (A2) and (A3) enables us to observe the efficiency of FC estimators even
though the fourth-order moments of the observations are infinite.

Assuming further that the fourth-order moments of the latent variates exist, we can
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obtain the asymptotic normality of ® and ¥ as well as \. This is the case labeled as
(IT) in Section 3. We have from Theorem 1 that

— /A:\ —_ A

v(P) v(®) 56 8{/9\/

N L
L ¥y ¥

with
0
D Ce D}’
G = Cy,
pr

for any FC estimators, where C is the fourth-order cumulant matrix of £(®, and so
on.
By (4.6), the asymptotic covariance matrix of MDF estimators is

(AH'A)TIANH I TNEIANHIA) ™ 4+ G,
which was first obtained by Satorra and Bentler (1990), whereas that of the MLE is
(AT A + @

in view of (2.5). This is the result due to Browne and Shapiro (1988) and Mooijaart
and Bentler (1991).
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