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Optimization of SVM

min
wi,b,ξi

1

2

N∑
i,j=1

wiwjk(Xi, Xj) + C

N∑
i=1

ξi,

subj. to

{
Yi(
∑N

j=1k(Xi, Xj)wj + b) ≥ 1− ξi,
ξi ≥ 0.

Quadratic programming (QP). Special case of convex
optimization.

The QP for SVM can be solved in the above form, but the dual
form is easier.
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Convexity I
For the details on convex optimization, see [BV04].

• Convex set:
A set C in a vector space is convex if for every x, y ∈ C and
t ∈ [0, 1]

tx+ (1− t)y ∈ C.

• Convex function:
Let C be a convex set. f : C → R is called a convex
function if for every x, y ∈ C and t ∈ [0, 1]

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).

• Concave function:
Let C be a convex set. f : C → R is called a concave
function if for every x, y ∈ C and t ∈ [0, 1]

f(tx+ (1− t)y) ≥ tf(x) + (1− t)f(y).
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Convexity II

convex set non-convex set

convex function concave function
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Convexity III
• Fact: If f : C → R is a convex function, the set

{x ∈ C | f(x) ≤ α}

is a convex set for every α ∈ R.
• If ft(x) : C → R (t ∈ T ) are convex, then

f(x) = supt∈T ft(x)

is also convex.

α
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Convex Optimization I

• A general form of convex optimization
D: convex set in Rn. f(x), hi(x) (1 ≤ i ≤ `): D → R,
convex functions on D. ai ∈ Rn, bj ∈ R (1 ≤ j ≤ m).

min
x∈D

f(x) subject to

{
hi(x) ≤ 0 (1 ≤ i ≤ `),
aTj x+ bj = 0 (1 ≤ j ≤ m).

hi: inequality constraints,
rj(x) = aTj x+ bj : linear equality constraints.

• Feasible set:

F = {x ∈ D | hi(x) ≤ 0 (1 ≤ i ≤ `), rj(x) = 0 (1 ≤ j ≤ m)}.

The above optimization problem is called feasible if F 6= ∅.
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Convex Optimization II

• Fact 1. The feasible set is a convex set.

• Fact 2. The set of minimizers

Xopt =
{
x ∈ F | f(x) = inf{f(y) | y ∈ F}

}
is convex. No local minima for convex optimization.

proof. The intersection of convex sets is convex, which
leads (1).

Let
p∗ = infx∈Ff(x).

Then,
Xopt = {x ∈ D | f(x) ≤ p∗} ∩ F .

Both sets in r.h.s. are convex. This proves (2)
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Examples
• Linear program (LP)

min cTx subject to

{
Ax = b,

Gx � h.1

The objective function, the equality and inequality
constraints are all linear.

• Quadratic program (QP)

min
1

2
xTPx+ qtx+ r subject to

{
Ax = b,

Gx � h,

where P is a positive semidefinite matrix.
Objective function: quadratic.
Equality, inequality constraints: linear.

1Gx � h denotes gTj x ≤ hj for all j, where G = (g1, . . . , gm)T .
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Lagrange Dual
• Consider an optimization problem (which may not be

convex):

(primal) min
x∈D

f(x) subject to

{
hi(x) ≤ 0 (1 ≤ i ≤ `),
rj(x) = 0 (1 ≤ j ≤ m).

• Lagrange dual function: g : R` × Rm → [−∞,∞)

g(λ, ν) = inf
x∈D

L(x, λ, ν),

where

L(x, λ, µ) = f(x) +
∑̀
i=1

λihi(x) +

m∑
j=1

νjrj(x).

λi and νj are called Lagrange multipliers.
• g is a concave function.
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Dual Problem and Weak Duality I
• Dual problem

(dual) max g(λ, ν) subject to λ � 0.

• The dual and primal problems have close connection.

Theorem 1 (weak duality)
Let

p∗ = inf{f(x) | hi(x) ≤ 0 (1 ≤ i ≤ `), rj(x) = 0 (1 ≤ j ≤ m)}.
and

d∗ = sup{g(λ, ν) | λ � 0, ν ∈ Rm}.
Then,

d∗ ≤ p∗.

The weak duality does not require the convexity of the
primal optimization problem.
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Dual Problem and Weak Duality II

Proof. Let ∀λ � 0, ν ∈ Rm.
For any feasible point x,

L(x, λ, ν) = f(x) +
∑`

i=1λihi(x) +
∑m

j=1νjrj(x) ≤ f(x).

(The second term is non-positive, and the third term is zero.)

By taking infimum,

inf
x:feasible

L(x, λ, ν) ≤ p∗.

Thus,

g(λ, ν) = inf
x∈D

L(x, λ, ν) ≤ inf
x:feasible

L(x, λ, ν) ≤ p∗

for any λ � 0, ν ∈ Rm.
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Strong Duality
We need some conditions to obtain the strong duality d∗ = p∗.
• Convexity of the problem: f and hi are convex, rj are

linear.

• Slater’s condition

There is x̃ ∈ relintD such that

hi(x̃) < 0 (1 ≤ ∀i ≤ `), rj(x̃) = aTj x̃+bj = 0 (1 ≤ ∀j ≤ m).

Theorem 2 (Strong duality)
Suppose the primal problem is convex, and Slater’s condition
holds. Then, there is λ∗ ≥ 0 and ν∗ ∈ Rm such that

g(λ∗, ν∗) = d∗ = p∗.

Proof is omitted (see [BV04] Sec.5.3.2.).

There are also other conditions to guarantee the strong duality.
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Complementary Slackness I

• Consider the (not necessarily convex) optimization
problem:

min f(x) subject to

{
hi(x) ≤ 0 (1 ≤ i ≤ `),
rj(x) = 0 (1 ≤ j ≤ m).

• Assumption: the optimum of the primal/dual problems are
given by x∗ and (λ∗, ν∗) (λ∗ � 0), and they satisfy the
strong duality:

g(λ∗, ν∗) = f(x∗).
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Complementary Slackness II

• Observation:

f(x∗) = g(λ∗, ν∗) = infx∈DL(x, λ
∗, ν∗) [definition]

≤ L(x∗, λ∗, ν∗)

= f(x∗) +
∑`

i=1λ
∗
ihi(x

∗) +
∑m

j=1ν
∗
j rj(x

∗)

≤ f(x∗) [2nd ≤ 0 and 3rd = 0]

The two inequalities are in fact equalities.
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Complementary Slackness III
• Consequence 1:

x∗ minimizes L(x, λ∗, ν∗)

(Primal solution by unconstrained optimization)

• Consequence 2:

λ∗ihi(x
∗) = 0 for all i

The latter is called complementary slackness.

Equivalently,

λ∗i > 0 ⇒ hi(x
∗) = 0,

or
hi(x

∗) < 0 ⇒ λ∗i = 0.
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KKT Condition I
KKT conditions give useful relations between the primal and
dual solutions.

• Consider the convex optimization problem.
Assume D is open and f(x), hi(x) are differentiable.

min f(x) subject to

{
hi(x) ≤ 0 (1 ≤ i ≤ `),
rj(x) = 0 (1 ≤ j ≤ m).

• x∗ and (λ∗, ν∗): any optimal points of the primal and dual
problems.

• Assume strong duality: f(x∗) = g(λ∗, ν∗).

• From Consequence 1 (x∗ = argminL(x, λ∗, ν∗)),

∇f(x∗) +
∑`

i=1λ
∗
i∇gi(x∗) +

∑m
j=1ν

∗
j∇rj(x∗) = 0.
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KKT Condition II
The following are necessary conditions.

Karush-Kuhn-Tucker (KKT) conditions:

hi(x
∗) ≤ 0 (i = 1, . . . , `) [primal constraints]

rj(x
∗) = 0 (j = 1, . . . ,m) [primal constraints]

λ∗i ≥ 0 (i = 1, . . . , `) [dual constraints]

λ∗ihi(x
∗) = 0 (i = 1, . . . , `) [complementary slackness]

∇f(x∗) +
∑`

i=1λ
∗
i∇gi(x∗) +

∑m
j=1ν

∗
j∇rj(x∗) = 0.

Theorem 3 (KKT condition)
For a convex optimization problem with differentiable functions,
x∗ and (λ∗, ν∗) are the primal-dual solutions with strong duality
if and only if they satisfy KKT conditions.
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Example

• Quadratic minimization under equality constraints.

min
1

2
xTPx+ qTx+ r subject to Ax = b.

• KKT conditions:

Ax∗ = b, [primal constraint]

∇xL(x∗, ν∗) = 0 =⇒ Px∗ + q +AT ν∗ = 0

• The solution is given by(
P AT

A O

)(
x∗

ν∗

)
=

(
−q
b

)
.
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Primal Problem of SVM

SVM primal problem:

min
wi,b,ξi

1

2

N∑
i,j=1

wiwjk(Xi, Xj) + C

N∑
i=1

ξi,

subj. to

{
Yi(
∑N

j=1k(Xi, Xj)wj + b) ≥ 1− ξi,
ξi ≥ 0.

The QP for SVM can be solved in the primal form, but the dual
form is easier.
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Dual Problem of SVM
SVM Dual problem:

max
α

N∑
i=1

αi −
1

2

N∑
i,j=1

αiαjYiYjKij subj. to

{
0 ≤ αi ≤ C,∑N

i=1αiYi = 0

where Kij = k(Xi, Xi).

Solve it by a QP solver.
Note: the constraints are simpler than the primal problem.

Derivation [Exercise].

Hint: Compute the Lagrange dual function g(α, β) from

L(w, b, ξ, α, β) = 1
2

∑N
i,j=1wiwjk(Xi, Xj) + C

∑N
i=1ξi

+
∑N

i=1αi{1− Yi(
∑N

j=1wjk(Xi, Xj) + b)− ξi}+
∑N

i=1βi(−ξi).
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KKT Conditions of SVM

KKT conditions

(1) 1− Yif∗(Xi)− ξ∗i ≤ 0 (∀i), [primal constraints]

(2) −ξ∗i ≤ 0 (∀i), [primal constraints]

(3) α∗i ≥ 0, (∀i), [dual constraints]

(4) β∗i ≥ 0, (∀i), [dual constraints]

(5) α∗i (1− Yif∗(Xi)− ξ∗i ) = 0 (∀i), [complementary
slackness]

(6) β∗i ξ
∗
i = 0 (∀i), [complementary slackness]

(7) ∇w :
∑n

j=1Kijw
∗
j −

∑n
j=1α

∗
jYjKij ,

∇b :
∑n

j=1α
∗
jYj = 0,

∇ξ : C − α∗i − β∗i = 0 (∀i).
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Solution of SVM

SVM solution in dual form

f(x) =

N∑
i=1

α∗iYik(x,Xi) + b∗.

(Use KKT condition (7)).

How to solve b? −→ shown later.
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Support Vectors I
• Complementary slackness

α∗i (1− Yif∗(Xi)− ξ∗i ) = 0 (∀i),

(C − α∗i )ξ∗i = 0 (∀i).

• If α∗i = 0, then ξ∗i = 0, and

Yif
∗(Xi) ≥ 1. [well separated]

• Support vectors
• If 0 < α∗

i < C, then ξ∗i = 0 and

Yif
∗(Xi) = 1. [on the margin border]

• If α∗
i = C,

Yif
∗(Xi) ≤ 1. [within the margin]
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Support Vectors II
Sparse representation: the optimum classifier is expressed only
with the support vectors.

f(x) =
∑

i:support vector

α∗iYik(x,Xi) + b∗

-8 -6 -4 -2 0 2 4 6 8
-8

-6

-4

-2

0

2

4

6

8

w

support vectors
0 < αi < C
(Yif(Xi) = 1)

support vectors
αi =  C

(Yif(Xi) 1)≤
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How to Solve b

• The optimum value of b is given by the complementary
slackness.

• For any i with 0 < α∗i < C,

Yi
(∑

jk(Xi, Xj)Yjα
∗
j + b

)
= 1.

• Use the above relation for any of such i, or take the
average over all of such i.
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Computational Problem in Solving SVM

• The dual QP problem of SVM has N variables, where N is
the sample size.

• If N is very large, say N = 100000, the optimization is very
hard.

• Some approaches have been proposed for optimizing
subsets of the variables sequentially.

• Chunking [Vap82]
• Osuna’s method [OFG]
• Sequential minimal optimization (SMO) [Pla99]
• SVMlight (http://svmlight.joachims.org/)
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Sequential Minimal Optimization (SMO) I

• Solve small QP problems sequentially for a pair of
variables (αi, αj).

• How to choose the pair? – Intuition from the KKT
conditions is used.

• After removing w, ξ, and β, the KKT conditions of SVM are
equivalent to (see Appendix)

N∑
i=1

Yiα
∗
i = 0 and (∗)


α∗
i = 0 and Yif

∗(Xi) ≥ 1,

0 < α∗
i < C and Yif

∗(Xi) = 1,

α∗
i = C and Yif

∗(Xi) ≤ 1.

• The conditions (*) can be checked for each data point.
• Choose such (i, j) that at least one of them breaks (*).
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Sequential Minimal Optimization (SMO) II
The QP problem for (αi, αj) is analytically solvable!

• For simplicity, assume (i, j) = (1, 2).

• Constraint of α1 and α2:

α1 + s12α2 = γ, 0 ≤ α1, α2 ≤ C,

where s12 = Y1Y2 and γ = ±
∑

`≥3 Y`α` is constat.

• Objective function:

α1 + α2 −
1

2
α2
1K11 −

1

2
α2
2K22 − s12α1α2K12

− Y1α1
∑

j≥3YjαjK1j − Y2α2
∑

j≥3YjαjK2j + const.

• This optimization is a quadratic optimization of one variable
on an interval. Directly solved.
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Other Approaches to Optimization of SVM

Recent studies (not a compete list).

• Solution in primal.
• O. Chapelle [Cha07], T. Joachims, SVMperf [Joa06], S.

Shalev-Shwartz et al. [SSSS07], etc.

• Online SVM.
• Tax and Laskov [TL03]
• LaSVM [BEWB05]
http://leon.bottou.org/projects/lasvm/

• Parallel computation
• Cascade SVM [GCB+05]
• Zanni et al [ZSZ06]

• Geometric approach
• Mafrovorakis and Theodoridis [MT06].
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Overview of Multiclass Classification I

• Multiclass classification:
(X1, Y1), . . . , (XN , YN ): data

• Xi: explanatory variable
• Yi ∈ {C1, . . . , CL}: labels for L classes.

e.g. Digit classification→ L = 10.

Make a classifier: h : X → {1, 2, . . . , L}.

• The original SVM is applicable only to binary classification
problems.

• There are some approaches to extending SVM to
multiclass classification.

• Direct construction of a large margin multiclass classifier.
• Combination of binary classifiers.
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Overview of Multiclass Classification II

Various methods (incomplete list).

• Direct approach:
• Multiclass SVM ([CS01],[WW98], [BB99], [LLW] etc.)
• Kernel logistic regression ([ZH02], K.Tanabe, [KDSP05])
• and others

• Combination approach:
• How to divide the problem

- one-vs-rest (one-vs-all)
- one-vs-one
- Error correcting output code (ECOC) [DB95]

• How to combine the binary classifiers
- Hamming decoding
- Bradly-Terry model ([HT98], [HWL06])
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Multiclass SVM I

Multiclass SVM (Crammer & Singer 2001)

• Large margin criterion is generalized to multiclass cases.

• Efficient optimization.

• Implemented in SVMlight.

• Linear classifier for L-class classification
• Data: (X1, Yi), . . . , (XN , YN ), Xi ∈ Rm, Yi ∈ {1, . . . , L}.
• Classifier:

h(x) = arg max
`=1,...,L

wT
` x.

L linear classifiers are used.
(The bias term b` is omitted for simplicity.)

• wT
` x (` = 1, . . . , L) is the similarity score for the class `. The

class of the largest similarity is the answer of the classifier.
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Multiclass SVM II
• Margin for multiclass problem:

Margini = wTYiXi −max
` 6=Yi

wT` Xi.

• W = (w1, . . . , wL) correctly classifies the data (Xi, Yi), if
and only if Margini ≥ 0.

• The scale of the margin must be fixed.

• Primal problem of multiclass SVM:

min
W,ξ

β

2
‖W‖2+

N∑
i=1

ξi subj. to wTYiXi+δ`Yi−w
T
` Xi ≥ 1−ξi (∀`, i).

Note: ξi represents the break of separability.

• # dual variable = NL. Computational cost must be reduced
by some methods.
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Multiclass SVM III

Meaning of margin

class

sc
or

e

class

sc
or

e ξi

sc
or

e ξi

class
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Combination of Binary Classifiers
• Base classifiers: make use of strong binary classifiers. e.g.

SVM, AdaBoost, etc.
• Decomposition of a multiclass classification into binary

classifications
• 1-vs-rest

i-class vs the other classes : L problems
• 1-vs-1

i-class vs j-class (∀i, j) : L(L− 1)/2 problems
• More general approach = Error correcting output code

(ECOC).
ECOC attributes a code for each class.

class f1 f2 f3 f4 f5 f6

C1 -1 -1 -1 1 1 1
C2 -1 1 1 -1 -1 1
C3 1 -1 1 -1 1 -1
C4 1 1 -1 -1 1 1
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class f1 f2 f3 f4

C1 1 -1 -1 -1
C2 -1 1 -1 -1
C3 -1 -1 1 -1
C4 -1 -1 -1 1

1-vs-rest

class f1 f2 f3 f4 f5 f6

C1 1 1 1 0 0 0
C2 -1 0 0 1 1 0
C3 0 -1 0 -1 0 1
C4 0 0 -1 0 -1 -1

1-vs-1
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Combining Base Classifiers
• Hamming decoding for ECOC:

Let W`a be the code of ECOC for the class ` and classifier
fa (1 ≤ ` ≤ L, 1 ≤ a ≤M ).

h(x) = argmin
`
‖w` − f(x)‖Hamming,

where f(x) = (f1(x), . . . , fM (x)) ∈ {±1}M .
This is equivalent to

h(x) = argmax
`

∑M
a=1W`afa(x).

• In the case of one-vs-one, Hamming decoding coincides
with majority vote.

• Bradly-Terry model:
A probabilistic model for paired comparison. It can be
applied when the output of fi(x) is continuous.
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Structured Output

• The output of prediction may be structured object, such as
label sequences (strings), trees, and graphs.
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Large Margin Approach to Structured Output I
References
• Application to natural language processing [Col02].
• Max-Margin Markov Network (M3N) [TGK04].
• Hidden Markov support vector machine [ATH03].

Approach
• (X1, Y1), . . . , (XN , YN ): data

• Xi: input variable,
• Yi ∈ Y: structured object.

• Feature vector

F (x, y) = (f1(x, y), . . . , fM (x, y))

Make a classifier: h : X → Y

h(x) = argmax
y∈Y

wTF (x, y).
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Large Margin Approach to Structured Output II
Formulate the problem as a multiclass classification.
Each y ∈ Y is regarded as a class.

• Multiclass SVM gives

min
W,ξ

β

2
‖w‖2 +

∑N
i=1ξi

subj. to wTF (Xi, Yi) + δyYi − wTF (Xi, y) ≥ 1− ξi (∀i, y ∈ Y).

• Problem:
# constrains (= # dual variables) = |Y|. Prohibitive in
many cases!
E.g. for label sequence, |Y| = |Alphabet|length.

• The computational cost must be reduced by some
methods (e.g. [TGK04, ATH03]).
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Other Topics

• Support vector regression. [MM00]

• ν-SVM: Another formulation of soft margin. [SSWB00]
• ν = an upper bound on the fraction of margin errors.
• ν = the lower bound on the fraction of support vectors.

• One-class SVM: (similar to estimating a level set of density
function.)

• Large margin approach to ranking.
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Appendix: Proof of KKT condition
Proof.

• x∗ is primal-feasible by the first two conditions.

• From λ∗i ≥ 0, L(x, λ∗, ν∗) is convex (and differentiable).

• The last condition ∇xL(x∗, λ∗, ν∗) = 0 implies x∗ is a
minimizer.

• It follows

g(λ∗, ν∗) = inf
x∈D

L(x, λ∗, ν∗) [by definition]

= L(x∗, λ∗, ν∗) [x∗: minimizer]

= f(x∗) +
∑`

i=1λ
∗
ihi(x

∗) +
∑m

j=1ν
∗
j rj(x

∗)

= f(x∗) [complementary slackness and rj(x∗) = 0].

• Strong duality holds, and x∗ and (λ∗, ν∗) must be the
optimizers.
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Appendix: KKT conditions revisited I
• β and w can be removed by

∇ξ : β∗i = C − α∗i (∀i),
∇w :

∑n
j=1Kijw

∗
j =

∑n
j=1α

∗
jYjKij (∀i).

• From KKT (4) and (6),

α∗i ≤ C, ξ∗i (C − α∗i ) = 0 (∀i).

• The KKT conditions are equivalent to
(a) 1− Yif∗(Xi)− ξ∗i ≤ 0 (∀i),
(b) ξ∗i ≥ 0 (∀i),
(c) 0 ≤ α∗

i ≤ C (∀i),
(d) α∗

i (1− Yif∗(Xi)− ξ∗i ) = 0 (∀i),
(e) ξ∗i (C − α∗

i ) = 0 (∀i),
(f)
∑N

i=1 Yiα
∗
i = 0.

and βi = C − α∗
i ,
∑n

j=1Kijw
∗
j =

∑n
j=1 α

∗
jYjKij .
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Appendix: KKT conditions revisited II
• We can further remove ξ.

• Case α∗
i = 0:

From (e), ξ∗i = 0. Then, from (a), Yif∗(Xi) ≥ 1.
• Case 0 < α∗

i < C:
From (e), ξ∗i = 0. From (d), Yif∗(Xi) = 1.

• Case α∗
i = C:

From (d) and (b), ξ∗i = 1− Yif∗(Xi) ≥ 0.

Note in all cases, (a) and (b) are satisfied.

• The KKT conditions are equivalent to∑N
i=1Yiα

∗
i = 0, and

α∗i = 0 ⇒ Yif
∗(Xi) ≥ 1, (ξ∗i = 0)

0 < α∗i < C ⇒ Yif
∗(Xi) = 1, (ξ∗i = 0)

α∗i = C ⇒ Yif
∗(Xi) ≤ 1, (ξ∗i = 1− Yif∗(Xi)).
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