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Introduction

• Kernel methods for statistical inference
– We have seen that positive definite kernels are used for 

capturing ‘nonlinearity’ or ‘high-order moments’ of original 
data.     

e.g. Support vector machine, kernel PCA, kernel CCA, etc. 
– Kernelization:  mapping data into a RKHS and apply linear 

methods on the RKHS.
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Ω (original space)
Φ 

mapping to 
a Hilbert space

H (RKHS)

X
Φ (X) = k(  , X)



• Consider more basic statistics!
– Consider basic statistics (mean, variance, …) on RKHS, 

and their meaning on the original space. 

– Basic statistics Basic statistics
on Euclidean space on RKHS

Mean Mean
Covariance Cross-covariance operator
Conditional covariance Conditional-covariance operator
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Mean on RKHS I

(X, B): measurable space.
X: random variable taking value on X .
k: measurable positive definite kernel on X .       
H: RKHS defined by k.

: random variable on RKHS.

– Assume 

– We want to define the mean                of Φ(X) on H.

It can be defined as the integral of a Hilbert-valued function. 
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Mean on RKHS II
– Alternative definition:

Define the mean of X on H by that satisfies 

– Intuition:
Sample mean

– Explicit form:

We call mX(u) kernel mean. 
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Mean on RKHS III

– Fact:

– The kernel mean does exists uniquely. 
Existence and uniqueness:
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Mean on RKHS IV

– Intuition: the mean contains the information of the high-order 
moments.

X: R-valued random variable.     k: pos.def. kernel on R.        
Suppose pos. def. kernel k admits a power-series

expansion on R.

The mean mX works as a moment generating function:
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Characteristic Kernel I

P :  family of all the probabilities on a measurable space (Ω, B).
H:  RKHS on Ω with a bounded measurable kernel k. 
mP: mean on H for a probability 

Def.  The kernel k is called characteristic (w.r.t. P) if the mapping

is one-to-one.

– The kernel mean by a characteristic kernel uniquely 
determines a probability. 
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Characteristic Kernel II

– Generalization of characteristic function
With Fourier kernel

• The characteristic function uniquely determines a Borel
probability on Rm. 

• The kernel mean                                by a characteristic kernel 
uniquely determines a probability on (Ω, B).
Note: Ω may not be Euclidean. 
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Characteristic Kernel III
– The characteristic RKHS must be large enough!

Examples for Rm (proved later)
• Gaussian RBF kernel

• Laplacian kernel

• Polynomial kernels are not characteristic.   
– The RKHS for (xTy + c)d is the space of polynomials of 

degree not greater than d. 
– The moments larger than d cannot be considered. 
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Empirical Estimation of Kernel Mean

• Empirical mean on RKHS
– An advantage of RKHS approach is its easy empirical 

estimation.

– : i.i.d. sample  
 : i.i.d. sample on RKHS 

Empirical kernel mean:

The empirical kernel mean gives empirical average
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Asymptotic Properties I

Theorem (strong      -consistency)
Assume                             For i.i.d. sample X1, …, XN,  
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Asymptotic Properties II

Corollary (Uniform law of large numbers)
Assume                              For i.i.d. sample X1, …, XN, 
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Asymptotic Properties III

Theorem (Convergence to Gaussian process)
Assume  

where G is a centered Gaussian process on H with the 
covariance function 
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Application: Two-sample Problem

– Tow-sample homogeneity test
Two  i.i.d. samples are given;

Q:  Are they sampled from the same distribution? 

– Practically important.  
We often wish to distinguish two things:

– Are the experimental results of treatment and control 
significantly different? 

– Were the plays “Henry VI” and “Henry II” written by the 
same author? 

– Approach by kernel method:  
Use the difference of means with a characteristic kernel.
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– Example: do they have the same distribution?
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– Example: do they have the same distribution?
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Kernel Method for Two-sample Problem

• Maximum Mean Discrepancy (Gretton et al 2007, NIPS19)

– In population

– Empirically

– With characteristic kernel,  MMD = 0  if and only if  PX = PY. 
– Asymptotic distribution of              is known.

After debias, it is U-statistics. 
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Example
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– Two sample test
P:    N(0,1/3)                    Qa: 

Null hypothesis H0:  P = Qa

Alternative H1:  P ≠ Qa

– Results
• Comparison with Kolmogorov-Smirnov test
• Significance level = 5%.  The asymptotic distribution is used.

).(
2
1)1()3/1,0;( ]2,1[ xIaxa −−+φ

MMD Kolmogorov-Smirnov
N  |  a 1 0.75 0.5 0.25 0 1 0.75 0.5 0.25 0

200 0.966 0.898 0.788 0.964 0.882 0.962 0.910 0.730 0.956 0.940
500 0.990 0.868 0.544 0.118 0.038 0.990 0.752 0.382 0.112 0.124

1000 0.986 0.976 0.704 0.088 0 0.954 0.950 0.796 0.316 0.002
Percentage of accepting homogeneity in 500 simulations
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Conditions on Characteristic Kernels I

Theorem (FBJ08+)
k: bounded measurable positive definite kernel on a 
measurable space (Ω, B).  H: associated RKHS.  Then, 

k is characteristic if and only if H + R is dense in L2(P) for any 
probability P on (Ω, B).

Proof. See Appendix 1.

– The characteristic kernel must be large enough. 

Def. A positive definite kernel on a compact space D is called 
universal if its RKHS is dense in C(D).*

Proposition.   A universal kernel is characteristic. 

*  C(D) is the Banach space of the continuous function on D with sup norm. 24



Shift-invariant Characteristic Kernels II
– φ (x-y): continuous shift-invariant kernels on Rm. 

By Bochner’s theorem, Fourier transform of φ is non-negative.
The characteristic kernels in this class are completely 
determined. 

– Intuition:
• For a shift-invariant kernel, the kernel mean is convolution:

• The characteristic property is equivalent to 

or by Fourier transform,

• It is expected that if                  at any ω, then the above 
condition holds. 
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Shift-invariant Characteristic Kernels II
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Theorem (Sriperumbudur et al. 2008)
Let k(x,y) = φ(x-y) be a R-valued continuous shift-invariant 
positive definite kernel on Rm such that 

Then, k is characteristic if and only if supp(Λ) = Rm.
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– if                on an interval of some frequency, then k must not 
be characteristic. 

E.g. 

– B2n+1-spline kernel is characteristic.

– Bochner’s theorem and the previous theorem can be 
extended to locally compact Abelian group. 
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Summary

• Mean on RKHS
– A random variable X can be transformed into a RKHS by 

Its mean mX = E[Φ(X)] contains the information of the higher-
order moments of X.

– If the positive definite kernel is characteristic, the kernel 
mean element uniquely determines a probability. 

– The kernel mean by characteristic kernel can be applied for 
two sample tests.

– The shift-invariant characteristic kernels on Rm (and locally 
compact Abelian groups) is completely determined. 
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Appendix 1: proof on the characteristic kernel 

Assume mP = mQ.   
: the total variation of P - Q.

Since H + R is dense in                      for any ε > 0 and
there exists                 and such that 

Thus, 

From mP = mQ,  EP[f(X)] = EQ[f(X)], thus |P(A) - Q(A)| < ε. 
This means P = Q.
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Suppose H + R is not dense in L2(P).
There is                                  such that  

Let  

Define probabilities Q1 and Q2 by

from 

But, 

which means k is not characteristic. 

31

)⇒
)0()(2 ≠∈ fPLf

21 QQ ≠ .0≠f

),(0)()()( HxdPxxf ∈∀=∫ ϕϕ .0)()(∫ =xdPxf

.||||1
)(1 PLfc =

( )∫ −=
E

xdPxfxfcEQ ),()(|)(|)(1 .)(|)(|)(2 ∫=
E

xdPxfcEQ

)(0)(),()()],([)],([
12

uxdPxukxfcXukEXukE QQ ∀==− ∫



Appendix 2: Review of Fourier analysis

– Fourier transform of 

– Fourier inverse transform

– Fourier transform of a bounded C-valued Borel measure µ

– Convolution

– Fourier transform of convolution：
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– Re: convolution
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