![[Graphics:../Images/index_gr_1287.gif]](../Images/index_gr_1287.gif)
![[Graphics:../Images/index_gr_1289.gif]](../Images/index_gr_1289.gif)
![[Graphics:../Images/index_gr_1291.gif]](../Images/index_gr_1291.gif)
![[Graphics:../Images/index_gr_1293.gif]](../Images/index_gr_1293.gif)
![[Graphics:../Images/index_gr_1295.gif]](../Images/index_gr_1295.gif)
![[Graphics:../Images/index_gr_1297.gif]](../Images/index_gr_1297.gif)
![[Graphics:../Images/index_gr_1299.gif]](../Images/index_gr_1299.gif)
![[Graphics:../Images/index_gr_1301.gif]](../Images/index_gr_1301.gif)
![[Graphics:../Images/index_gr_1303.gif]](../Images/index_gr_1303.gif)
![[Graphics:../Images/index_gr_1305.gif]](../Images/index_gr_1305.gif)
![[Graphics:../Images/index_gr_1307.gif]](../Images/index_gr_1307.gif)
![[Graphics:../Images/index_gr_1309.gif]](../Images/index_gr_1309.gif)
![[Graphics:../Images/index_gr_1311.gif]](../Images/index_gr_1311.gif)
![[Graphics:../Images/index_gr_1313.gif]](../Images/index_gr_1313.gif)
![[Graphics:../Images/index_gr_1315.gif]](../Images/index_gr_1315.gif)
![[Graphics:../Images/index_gr_1317.gif]](../Images/index_gr_1317.gif)
![[Graphics:../Images/index_gr_1319.gif]](../Images/index_gr_1319.gif)
![[Graphics:../Images/index_gr_1321.gif]](../Images/index_gr_1321.gif)
![[Graphics:../Images/index_gr_1323.gif]](../Images/index_gr_1323.gif)
![[Graphics:../Images/index_gr_1325.gif]](../Images/index_gr_1325.gif)
![[Graphics:../Images/index_gr_1327.gif]](../Images/index_gr_1327.gif)
![[Graphics:../Images/index_gr_1329.gif]](../Images/index_gr_1329.gif)
![[Graphics:../Images/index_gr_1331.gif]](../Images/index_gr_1331.gif)
![[Graphics:../Images/index_gr_1333.gif]](../Images/index_gr_1333.gif)
![[Graphics:../Images/index_gr_1335.gif]](../Images/index_gr_1335.gif)
![[Graphics:../Images/index_gr_1337.gif]](../Images/index_gr_1337.gif)
![[Graphics:../Images/index_gr_1339.gif]](../Images/index_gr_1339.gif)
![[Graphics:../Images/index_gr_1341.gif]](../Images/index_gr_1341.gif)
![[Graphics:../Images/index_gr_1343.gif]](../Images/index_gr_1343.gif)
![[Graphics:../Images/index_gr_1345.gif]](../Images/index_gr_1345.gif)
zero terms
![[Graphics:../Images/index_gr_1346.gif]](../Images/index_gr_1346.gif)
![[Graphics:../Images/index_gr_1348.gif]](../Images/index_gr_1348.gif)
![[Graphics:../Images/index_gr_1350.gif]](../Images/index_gr_1350.gif)
A=
![[Graphics:../Images/index_gr_1353.gif]](../Images/index_gr_1353.gif)
![[Graphics:../Images/index_gr_1356.gif]](../Images/index_gr_1356.gif)
![[Graphics:../Images/index_gr_1358.gif]](../Images/index_gr_1358.gif)
foo130=
![[Graphics:../Images/index_gr_1360.gif]](../Images/index_gr_1360.gif)
foo131==the inverse of the metric=
.
![[Graphics:../Images/index_gr_1364.gif]](../Images/index_gr_1364.gif)
![[Graphics:../Images/index_gr_1367.gif]](../Images/index_gr_1367.gif)
substitutes
at the projection.
![[Graphics:../Images/index_gr_1370.gif]](../Images/index_gr_1370.gif)
![[Graphics:../Images/index_gr_1372.gif]](../Images/index_gr_1372.gif)
![[Graphics:../Images/index_gr_1374.gif]](../Images/index_gr_1374.gif)
Here we summarize the substitution rules for the projection for the derivatives. Here only discuss terms. This includes
.
![[Graphics:../Images/index_gr_1377.gif]](../Images/index_gr_1377.gif)