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In this talk, we consider statistical inference from high frequency data

{Y jh; j = 0, 1, . . . ,n}, h = 1/n (1)

under a second-order continuous Itô semimartingale model

dYt = Xtdt,

dXt = V0
t dt +

√
VtdWt,

(2)

where V0 and V are (unknown, unobservable) adapted processes and W is a
standard Brownian motion. First we consider to estimate

V̄[g] :=
∫ 1

0
g(Xt,Yt, t)Vtdt

nonparametrically for a given continuous function g, and then, consider para-
metric estimation of θwhen

Vt = σ(Xt,Yt, t, θ) (3)

with a known function σ under the high frequency asymptotics n→∞.

Such a second-order model as (2) appeared at the very beginning of the history
of stochastic differential equations; in the so-called Langevin dynamics, the
equation of motion of small particles, introduced in 1907, is given by

Ÿt = −∇q(Yt) − γẎt + σẆt,

where q is the potential of the system, γ is the coefficient of resistance and σ
is a constant determined by γ, the temperature of the system and Boltzmann’s
constant. This is a special case of (2), with X = Ẏ, V0 = −∇q(Y) − γX and
V = σ2. The Langevin model is a reformulation of Einstein’s explanation for the
Brownian motion of small particles in terms of atoms (or molecules) appeared in
1905. Note that the atomic theory was still not fully accepted at that time due to
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the lack of direct, experimental evidence. Perrin’s experimental work in 1908-
1913, which brought him the Nobel prize, was to test the model by estimating
the parameter σ2 from the trajectory of Y sampled at every 30 seconds. The
estimate was consistent to the model and eventually, it was regarded as the first
decisive evidence of the atomic nature of matter. See Bigg [2] and Newburgh
et al. [13] for more details. Tracking the movement of one particle has been
an effective experimental approach, especially in molecular biology. See e.g.,
Gittes and Schmidt [6].

If V0 = a(X,Y) with an affine function a and V is constant in (2), then Y is a Gaus-
sian process. In such a framework, often under the name CAR (continuous-time
auto-regressive) model, Bartlett [1], Brockwell et al. [3], Pandit and Wu [15] and
Gloter [8] among others studied parametric estimation from low frequency
data, that is,

{Y jh; j = 0, 1, 2, . . . , n}, h > 0; fixed, n→∞.
An extension to a model driven by a fractional Brownian motion is given by
Tsai and Chan [19]. Ditlevsen and Sørensen [4] studied a case where X is a dif-
fusion process under the low frequency asymptotics. Under the high frequency
asymptotics (1) with n → ∞, Gloter [7] studied parametric estimation of the
diffusion coefficient (3). Gloter and Gobet [10] proved the LAMN property of
the model. Gloter [9] and Nicolau [14] studied, respectively, parametric and
nonparametric estimation problems under the mixed asymptotics

{Y jh; j = 0, 1, 2, . . . ,n}, h→ 0, nh→∞.

Pokern et al. [18] proposed a Bayesian approach. Papavasiliou et al. [16] and
Pavliotis and Stuart [17] studied a case where (X,Y) is a diffusion with a ho-
mogenization structure under the mixed asymptotics.

There is a vast amount of literature for high frequency data analysis of first-
order models, where

{X jh, j = 0, 1, . . . , n}, h = 1/n

are given as data instead of (1). The pioneering work is Genon-Catalot and
Jacod [5]. What play fundamental roles in studying first order models are that

n−1∑
j=0

(X( j+1)h − X jh)2 → V̄[1] =
∫ 1

0
Vtdt (4)

in probability (Law of Large Numbers) and that

√
n

n−1∑
j=0

(X( j+1)h − X jh)2 − V̄[1]

→MN
(
0, 2

∫ 1

0
V2

t dt
)
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stably in law (Central Limit Theorem) as n = 1/h → ∞, whereMN refers to a
mixed normal distribution. In a second-order model where X jh is not observed,
the most natural proxy for X jh would be the numerical derivative

Xh
j =

1
h

∫ jh

( j−1)h
Xtdt =

1
h

(Y jh − Y( j−1)h).

An interesting finding by Gloter [7] was that the approximation errors in the
numerical derivatives are not negligible in the sense that

n−1∑
j=0

(Xh
j+1 − Xh

j )
2 → 2

3
V̄[1]

in probability. What makes this difference from (4) is the serial correlation of
Xh

j+1 − Xh
j induced by the numerical differentiation. Gloter [7] showed that

√
n

3
2

n−1∑
j=0

(Xh
j+1 − Xh

j )
2 − V̄[1]

→MN
(
0,

9
4

∫ 1

0
V2

t dt
)

and based on this, constructed a
√

n consistent estimator of θ. This estimator
is however not asymptotically efficient in light of the LAMN result by Gloter
and Gobet [10].

In this paper, we consider statistics of the form

V̂κn[1] :=
n−1∑
i, j=1

κ(i − j)(Xh
i+1 − Xh

i )(Xh
j+1 − Xh

j )

or more generally,

V̂κn[g] :=
n−1∑
i, j=1

κ(i − j)g(Xh
i∧ j,Y(i∧ j)h, (i ∧ j)h)(Xh

i+1 − Xh
i )(Xh

j+1 − Xh
j ) (5)

for a given function g, where κ is a deterministic function on Z. It is natural to
expect that with a suitable choice of κ, the quadratic form V̂κn[g] outperforms
the diagonal forms used by Gloter [7] because it utilizes information of the
serial correlation. In fact, when V0 = 0 and V is constant, an asymptotically
efficient estimator of V̄[1] = V turns out to be of the form. We show that the
necessary and sufficient condition on κ for

V̂κn[g]→ V̄[g]

to hold in probability as n→∞ is

2
3
κ(0) +

1
3
κ(1) = 1.
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Our main result is that

√
n(V̂κn[g] − V̄[g])→MN

(
0, 2

∫ 1

0
g(Xt,Yy, t)2V2

t dt
)

stably in law as n→∞, where

κ(k) =
√

3(
√

3 − 2)|k| (6)

and that this choice of κ is optimal in the sense that it minimizes the asymptotic
variance among the quadratic forms. We then apply this result to construct an
asymptotically efficient estimator under parametric models.

The specification of κ as (6) is motivated by Whittle [20]’s approximation of
covariance matrix, which has played an important role in the study of stationary
time series. Our asymptotically efficient estimator is defined as the maximizer
of

Ln(θ) := − 1
2n

n−1∑
j=0

logσ(Xh
j ,Y jh, jh) − 1

2
V̂κn[σ(·, θ)−2] (7)

with κdefined by (6). This estimating function can be understood as the Whittle
likelihood for high frequency data of the second-order model. Our data are not
stationary, not Gaussian, and the model does not have the LAN property. This
is seemingly the first study that shows the Whittle approximation can work
beyond such classical frameworks.
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