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Abstract: We consider a new two-sample test for high-dimensional data under the

strongly spiked eigenvalue (SSE) model. We provide a general test statistic as a

function of positive-semidefinite matrices. We investigate the test statistic under

the SSE model by considering strongly spiked eigenstructures and create a new

effective test procedure for the SSE model.
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1. Introduction

A common feature of high-dimensional data is that the data dimension is

high, however, the sample size is relatively low. This is the so-called “HDLSS”

or “large p, small n” data, where p is the data dimension, n is the sample size

and p/n → ∞. Statistical inference on this type of data is becoming increasingly

relevant, especially in the areas of medical diagnostics, engineering and other big

data. Suppose we have independent samples of p-variate random variables from

two populations, πi, i = 1, 2, having an unknown mean vector µi and unknown

positive-definite covariance matrix Σi for each πi. We do not assume that the

population distributions are Gaussian. The eigen-decomposition of Σi (i = 1, 2)

is given by Σi = H iΛiH
T
i =

∑p
j=1 λijhijh

T
ij , where Λi = diag(λi1, ..., λip) is a

diagonal matrix of eigenvalues, λi1 ≥ · · · ≥ λip > 0, and H i = [hi1, ...,hip] is an

orthogonal matrix of the corresponding eigenvectors. Note that λi1 is the largest

eigenvalue of Σi for i = 1, 2. Having recorded i.i.d. samples, xij , j = 1, ..., ni,

from each πi, let xij = H iΛ
1/2
i zij + µi, where zij = (zi1j , ..., zipj)T is considered

as a sphered data vector having the zero mean vector and identity covariance

matrix. We assume that the fourth moments of each variable in zij are uniformly

bounded. When Σ1 = Σ2, we simply omit the population index from Σi, λijs
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and hijs. For example, we write the covariance matrix as Σ when Σ1 = Σ2.

In this paper, we consider the two-sample test:

H0 : µ1 = µ2 vs. H1 : µ1 ̸= µ2. (1.1)

Having recorded i.i.d. samples, xij , j = 1, ..., ni, from each πi, we define xini =∑ni
j=1 xij/ni and Sini =

∑ni
j=1(xij − xini)(xij − xini)

T /(ni − 1) for i = 1, 2. We

assume ni ≥ 4 for i = 1, 2. Hotelling’s T 2-statistic is defined by

T 2 =
n1n2

n1 + n2
(x1n1 − x2n2)

T S−1(x1n1 − x2n2),

where S = {(n1 − 1)S1n1 + (n2 − 1)S2n2}/(n1 + n2 − 2). However, S−1 does

not exist in the HDLSS context such as p/ni → ∞, i = 1, 2. In such situations,

Dempster (1958, 1960) and Srivastava (2007) considered the test when π1 and π2

are Gaussian. When π1 and π2 are non-Gaussian, Bai and Saranadasa (1996) and

Cai et al. (2014) considered the test under homoscedasticity, Σ1 = Σ2. On the

other hand, Chen and Qin (2010) and Aoshima and Yata (2011, 2015) considered

the “distance-based two-sample test” under heteroscedasticity, Σ1 ̸= Σ2. As

discussed in Section 2 of Aoshima and Yata (2015), the distance-based two-

sample test is quite flexible for high-dimension, non-Gaussian data. We note

that those two-sample tests were constructed under the eigenvalue condition as

follows:
λ2

i1

tr(Σ2
i )

→ 0 as p → ∞ for i = 1, 2. (1.2)

However, if (1.2) is not met, one cannot use those two-sample tests. See Aoshima

and Yata (2016) for the details. Aoshima and Yata (2016) called (1.2) the “non-

strongly spiked eigenvalue (NSSE) model”. On the hand, Aoshima and Yata

(2016) considered the “strongly spiked eigenvalue (SSE) model” as follows:

lim inf
p→∞

{ λ2
i1

tr(Σ2
i )

}
> 0 for i = 1 or 2. (1.3)

We emphasize that high-dimensional data often have the SSE model. See Fig.

1 in Yata and Aoshima (2013) and Section 8 in Aoshima and Yata (2016). For

the SSE model, Katayama et al. (2013) considered a one-sample test when the

population distribution is Gaussian. Ishii et al. (2016) considered the one-sample

test for non-Gaussian cases. Ma et al. (2015) considered a two-sample test for

the factor model when Σ1 = Σ2.
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In this paper, we propose a new effective test procedure for the SSE model. In

Section 2, we provide a general test statistic as a function of positive-semidefinite

matrices. We investigate the test statistic under the SSE model by considering

strongly spiked eigenstructures. In Section 3, we create a new test procedure by

estimating the eigenstructures for the SSE model.

2. Test statistic using eigenstructures

In this paper, we consider the divergence condition such as p → ∞, n1 → ∞
and n2 → ∞, which is equivalent to

m → ∞, where m = min{p, nmin} with nmin = min{n1, n2}.

Let

Ψi(s) =
p∑

j=s

λ2
ij for i = 1, 2; s = 1, ..., p.

We consider the following model:

(A-i) For i = 1, 2, there exists a positive fixed integer ki such that λi1, ..., λiki

are distinct in the sense that lim infp→∞(λij/λij′ − 1) > 0 when 1 ≤ j <

j′ ≤ ki, and λiki
and λiki+1 satisfy

lim inf
p→∞

λ2
iki

Ψi(ki)
> 0 and

λ2
iki+1

Ψi(ki+1)
→ 0 as p → ∞.

Note that (A-i) implies (1.3), that is (A-i) is one of the SSE models. (A-i) is

also a power spiked model given by Yata and Aoshima (2013). We consider

the following test statistic with positive-semidefinite matrices, Ai, i = 1, 2, of

dimension p:

T (A1, A2) = 2
2∑

i=1

∑ni
j<j′ x

T
ijAixij′

ni(ni − 1)
− 2xT

1n1
A

1/2
1 A

1/2
2 x2n2 .

Let Ip denote the identity matrix of dimension p. Note that T (Ip, Ip) is equiva-

lent to the distance-based two-sample test. Let us write that µA12
= A

1/2
1 µ1 −

A
1/2
2 µ2 and Σi,Ai = A

1/2
i ΣiA

1/2
i , i = 1, 2. Let ∆(A1,A2) = ||µA12

||2 and

K(A1, A2) = K1(A1, A2) + K2(A1, A2), where

K1(A1, A2) = 2
2∑

i=1

tr(Σ2
i,Ai

)
ni(ni − 1)

+ 4
tr(Σ1,AiΣ2,Ai)

n1n2
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and K2(A1, A2) = 4
∑2

i=1 µT
A12

Σi,AµA12
/ni. Note that E{T (A1, A2)} = ∆(A1, A2)

and Var{T (A1, A2)} = K(A1, A2). Let λmax(B) denote the largest eigenvalue

of any positive-semidefinite matrix, B. We consider the following condition:

{λmax(Σi,Ai)}2

tr(Σ2
i,Ai

)
→ 0 as p → ∞ for i = 1, 2. (2.1)

Then, Aoshima and Yata (2016) showed that as m → ∞

T (A1, A2) − ∆(A1, A2)
{K(A1, A2)}1/2

⇒ N(0, 1) (2.2)

under (2.1), lim supm→∞{∆(A1,A2)}2/K1(A1, A2) < ∞ and some regularity

conditions. Here, “⇒” denotes the convergence in distribution and N(0, 1) de-

notes a random variable distributed as the standard normal distribution.

We consider Ais as

Ai(ki) = Ip −
ki∑

j=1

hijh
T
ij =

p∑
j=ki+1

hijh
T
ij for i = 1, 2.

Note that Ai(ki) = A
1/2
i(ki)

. Let Σi∗ = A
1/2
i(ki)

ΣiA
1/2
i(ki)

=
∑p

j=ki+1 λijhijh
T
ij for

i = 1, 2. Then, it holds that tr(Σ2
i∗) = Ψi(ki+1) and λmax(Σi∗) = λki+1 for

i = 1, 2, so that (2.1) is met when Ai = Ai(ki), i = 1, 2, under (A-i). Hence, for

Ai = Ai(ki), i = 1, 2, we can claim (2.2) under (A-i) instead of (2.1). Here-

after, we simply write T∗ = T (A1(k1), A2(k2)), µi∗ = Ai(ki)µi for i = 1, 2,

∆∗ = ∆(A1(k1), A2(k2)) = ||µ1∗ − µ2∗||2, K∗ = K(A1(k1), A2(k2)) and

K1∗ = K1(A1(k1), A2(k2)) = 2
2∑

i=1

tr(Σ2
i∗)

ni(ni − 1)
+ 4

tr(Σ1∗Σ2∗)
n1n2

.

Note that tr(Σ2
i∗) = Ψi(ki+1) for i = 1, 2. Let

xijl = hT
ijxil = λ

1/2
ij zijl + µi(j) for all i, j, l, where µi(j) = hT

ijµi.

Then, we write that

T∗ =2
2∑

i=1

∑ni
l<l′(x

T
ilxil′ −

∑ki
j=1 xijlxijl′)

ni(ni − 1)

− 2

∑n1
l=1

∑n2
l′=1(x1l −

∑k1
j=1 x1jlh1j)T (x2l′ −

∑k2
j=1 x2jl′h2j)

n1n2
.
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In order to use T∗, it is necessary to estimate xijls and hijs.

3. Test procedure using eigenstructures for the SSE model

In this section, we assume (A-i) and the following assumption for πi, i = 1, 2:

(A-ii) E(z2
isjz

2
itj) = E(z2

isj)E(z2
itj), E(zisjzitjziuj) = 0 and

E(zisjzitjziujzivj) = 0 for all s ̸= t, u, v, with zijls defined in Section 1.

When the πis are Gaussian, (A-ii) naturally holds. First, we discuss estimation

of the eigenvalues and eigenvectors in the SSE model.

3.1. Estimation of eigenvalues and eigenvectors

Throughout this section, we omit the subscript with regard to the population

for the sake of simplicity. Let λ̂1 ≥ · · · ≥ λ̂p ≥ 0 be the eigenvalues of Sn. Let

us write the eigen-decomposition of Sn as Sn =
∑p

j=1 λ̂jĥjĥ
T

j , where ĥj denotes

a unit eigenvector corresponding to λ̂j . We assume hT
j ĥj ≥ 0 w.p.1 for all j

without loss of generality. Let X = [x1, ...,xn] and X = [xn, ...,xn]. Then, we

define the n × n dual sample covariance matrix by

SD = (n − 1)−1(X − X)T (X − X).

Note that Sn and SD share non-zero eigenvalues. Let us write the eigen-

decomposition of SD as SD =
∑n−1

j=1 λ̂jûjû
T
j , where ûj = (ûj1, ..., ûjn)T denotes

a unit eigenvector corresponding to λ̂j . Note that ĥj can be calculated by ĥj =

{(n − 1)λ̂j}−1/2(X − X)ûj . Let δ =
∑p

j=k+1 λj/(n − 1). Let m0 = min{p, n}.
First, we have the following result.

Proposition 1 (Aoshima and Yata, 2016). Assume (A-i) and (A-ii). It holds

for j = 1, ..., k, that as m0 → ∞

λ̂j

λj
= 1 +

δ

λj
+ OP (n−1/2) and (ĥ

T

j hj)2 =
(
1 +

δ

λj

)−1
+ OP (n−1/2).

If δ/λj → ∞ as m0 → ∞, λ̂j and ĥj are strongly inconsistent in the sense

that λj/λ̂j = oP (1) and (ĥ
T

j hj)2 = oP (1). In order to overcome the curse

of dimensionality, Yata and Aoshima (2012) proposed an eigenvalue estimation
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called the noise-reduction (NR) methodology, which was brought about by a

geometric representation of SD. If one applies the NR methodology, the λjs are

estimated by

λ̃j = λ̂j −
tr(SD) −

∑j
l=1 λ̂l

n − 1 − j
(j = 1, ..., n − 2). (3.1)

Note that λ̃j ≥ 0 w.p.1 for j = 1, ..., n − 2, and the second term in (3.1) is an

estimator of δ. When applying the NR methodology to the PC direction vector,

one obtains

h̃j = {(n − 1)λ̃j}−1/2(X − X)ûj (3.2)

for j = 1, ..., n − 2. Then, we have the following result.

Proposition 2 (Aoshima and Yata, 2016). Assume (A-i) and (A-ii). It holds

for j = 1, ..., k, that as m0 → ∞

λ̃j

λj
= 1 + OP (n−1/2) and (h̃

T
j hj)2 = 1 + OP (n−1).

We note that h̃j is a consistent estimator of hj in terms of the inner product

even when δ/λj → ∞ as m0 → ∞.

On the other hand, we note that hT
j (xl −µ) = λ

1/2
j zjl for all j, l. For ĥj and

h̃j , we have the following result.

Proposition 3 (Aoshima and Yata, 2016). Assume (A-i) and (A-ii). It holds

for j = 1, ..., k (l = 1, ..., n) that as m0 → ∞

λ
−1/2
j ĥ

T

j (xl − µ) =
zjl + (n − 1)1/2ûjlλ

−1
j δ{1 + oP (1)}

(1 + λ−1
j δ)1/2

+ OP (n−1/2);

λ
−1/2
j h̃

T
j (xl − µ) = zjl + (n − 1)1/2ûjlλ

−1
j δ{1 + oP (1)} + OP (n−1/2).

Let us consider the standard deviation of the above quantities. Note that

[
∑n

l=1{(n − 1)1/2ûjlδ/λj}2/n]1/2 = O(δ/λj) and δ = O(p/n) for λk+1 = O(1).

Hence, in Proposition 3, the inner products are very biased when p is large.

Now, we explain the main reason why the inner products involve the large biased

terms. Let P n = In − 1n1T
n/n, where 1n = (1, ..., 1)T . Note that 1T

n ûj = 0 and

P nûj = ûj when λ̂j > 0 since 1T
nSD1n = 0. Also, when λ̂j > 0, note that

{(n − 1)λ̃j}1/2h̃j = (X − X)ûj = (X − M)P nûj = (X − M)ûj ,
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where M = [µ, ...,µ]. Thus it holds that {(n − 1)λ̃j}1/2h̃
T
j (xl − µ) = ûT

j (X −
M)T (xl−µ) = ûjl||xl−µ||2+

∑n
s=1( ̸=l) ûjs(xs−µ)T (xl−µ), so that ûjl||xl−µ||2

is very biased since E(||xl − µ||2)/{(n − 1)1/2λj} ≥ (n − 1)1/2δ/λj . Hence, one

should not apply the ĥjs or the h̃js to the estimation of the inner product.

Here, we consider a bias-reduced estimation of the inner product. Let us

write that

ûjl = (ûj1, ..., ûjl−1,−ûjl/(n − 1), ûjl+1, ..., ûjn)T

whose l-th element is −ûjl/(n−1) for all j, l. Note that ûjl = ûj−(0, ..., 0, ûjln/(n−
1), 0, ..., 0)T . Let

h̃jl = {(n − 1)λ̃j}−1/2(X − X)ûjl (3.3)

for all j, l. When λ̂j > 0, we note that {(n − 1)λ̃j}1/2h̃jl = (X − M)P nûjl =

(X − M)ûj(l) since 1T
n ûj =

∑n
l=1 ûjl = 0, where

ûj(l) = (ûj1, ..., ûjl−1, 0, ûjl+1, ..., ûjn)T + (n − 1)−1ûjl1n(l) for l = 1, ..., n.

Here, 1n(l) = (1, ..., 1, 0, 1, ..., 1)T whose l-th element is 0. Thus it holds that

{(n − 1)λ̃j}1/2h̃
T
jl(xl − µ) = ûT

j(l)(X − M)T (xl − µ)

=
n∑

s=1( ̸=l)

{ûjs + (n − 1)−1ûjl}(xs − µ)T (xl − µ),

so that the large biased term, ||xl − µ||2, has vanished. Then, we have the

following result.

Proposition 4 (Aoshima and Yata, 2016). Assume (A-i) and (A-ii). It holds

for j = 1, ..., k (l = 1, ..., n) that as m0 → ∞

λ
−1/2
j h̃

T
jl(xl − µ) = zjl + ûjl × OP {(n1/2λj)−1λ1} + OP (n−1/2).

Note that [
∑n

l=1{ûjlλ1/(n1/2λj)}2/n]1/2 = λ1/(λjn). The bias term is small

when λ1/λj is not large.

3.2. Test procedure using eigenstructures

Let x̃ijl = h̃
T
ijlxil for all i, j, l, where h̃ijls are defined by (3.3). From Propo-
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sitions 2 and 4, we consider the following test statistic for (1.1):

T̂∗ =2
2∑

i=1

∑ni
l<l′(x

T
ilxil′ −

∑ki
j=1 x̃ijlx̃ijl′)

ni(ni − 1)

− 2

∑n1
l=1

∑n2
l′=1(x1l −

∑k1
j=1 x̃1jlh̃1j)T (x2l′ −

∑k2
j=1 x̃2jl′h̃2j)

n1n2
,

where h̃ijs are defined by (3.2). Then, we have the following result.

Theorem 1 (Aoshima and Yata, 2016). Assume (A-i) and (A-ii). Assume also

lim sup
m→∞

∆2
∗

K1∗
< ∞.

Then, it holds that as m → ∞

T̂∗ − ∆∗

K
1/2
∗

⇒ N(0, 1)

under some regularity conditions.

Let zc be a constant such that P{N(0, 1) > zc} = c for c ∈ (0, 1). We note

that K1∗/K∗ = 1 + o(1) as m → ∞ under (A-i) and lim supm→∞ ∆2
∗/K1∗ < ∞.

Then, for given α ∈ (0, 1/2), we consider testing the hypothesis in (1.1) by

rejecting H0 ⇐⇒ T̂∗

K̂
1/2
1∗

> zα, (3.4)

where K̂1∗ is defined in Section 5.2 of Aoshima and Yata (2016). Let power(∆∗)

denote the power of the test (3.4). Then, we have the following result.

Theorem 2 (Aoshima and Yata, 2016). Assume (A-i) and (A-ii). Then, the

test (3.4) has as m → ∞

size = α + o(1) and power(∆∗) − Φ
(

∆∗

K
1/2
∗

− zα

(K1∗
K∗

)1/2
)

= o(1)

under some regularity conditions, where Φ(·) denotes the cumulative distribution

function of N(0, 1).

In general, kis are unknown in T̂∗. See Section 6.2 in Aoshima and Yata

(2016) for estimation of kis.
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