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Abstract

We investigate the statistical efficiency and computational complexity of some nonparametric
estimators for a nonlinear tensor estimation problem. Low-rank tensor estimation has been used as
a method to learn higher order relations among several data sources in a wide range of applications,
such as multi-task learning, recommendation systems, and spatiotemporal analysis. We consider a
general setting where a common linear tensor learning is extended to a nonlinear learning problem
in reproducing kernel Hilbert space and propose two nonparametric estimators such as a Bayes
estimator [16] and an alternating minimization procedure [30]. It is shown that the Bayes estimator
achieves a near minimax optimal convergence rate without any strong convexity assumption, such
as restricted strong convexity. We also show that the alternating minimization method achieves
linear convergence as an optimization algorithm and that the generalization error of the resultant
estimator yields the minimax optimality.

1 Problem formulation
Suppose that we are given n input-output samples {(xi, yi)}ni=1. The input xi is a concatenation of K

variables, i.e., xi = (x
(1)
i , · · · , x(K)

i ) ∈ X1 × · · · × XK = X , where each x
(k)
i is an element of a set Xk.

We consider the regression problem where these samples are generated according to the non-parametric
model [25]:

yi =

d∗∑
r=1

K∏
k=1

f∗(r,k)(x
(k)
i ) + ϵi, (1)

where {ϵi}ni=1 represents an i.i.d. zero-mean noise. In this regression problem, our objective is to estimate

the true function f∗(x(1), . . . , x(K)) =
∑d∗

r=1

∏K
k=1 f

∗
(r,k)(x

(k)).

This model captures the effect of non-linear higher order interactions among the input components
{x(k)}Kk=1 to the output y, and thus, is useful for a regression problem where the output is determined
by complex relations between the input components. This type of regression problem appears in several
applications, such as multi-task learning, recommendation systems and spatiotemporal data analysis
[17, 23, 3].
To understand the model in Eq. (1), it is helpful to consider a linear case as a special case [10, 31]. In

general, the linear tensor model is formulated as

Yi = ⟨A∗, Xi⟩+ ϵi. (2)

Here, Xi, A∗ are tensors in RM1×···×MK and the inner product ⟨·, ·⟩ is defined by ⟨A,X⟩ =∑M1,...,MK

i1,...,iK=1Ai1...iKXi1...iK . A∗ is assumed to be low rank in the sense of CP-rank [13, 14], i.e., A∗ is

decomposed as
∑d∗

r=1 u
∗(1)
r ◦ · · · ◦ u∗(K)

r , where the vector u
∗(k)
r ∈ RMk and the symbol ◦ represents the

vector outer product. If we also assume Xi is rank-1, i.e., Xi = x
(1)
i ◦ · · · ◦x

(K)
i , then the inner product in

Eq.(2) is written as: ⟨A∗, Xi⟩ =
⟨∑d

r=1 u
∗(1)
r ◦ · · · ◦ u∗(K)

r , x
(1)
i ◦ · · · ◦ x

(K)
i

⟩
=
∑d∗

r=1

∏K
k=1

⟨
u
∗(k)
r , x

(k)
i

⟩
.

This is equivalent to the case where we limit f∗(r,k) in Eq. (1) to the linear function
⟨
u
∗(k)
r , x(k)

⟩
. Hence,

the linear model based on CP-decomposition can be understood as a special case of our proposed model.
We propose two estimators for the nonlinear tensor model: a Bayes estimator [16] and an alternating

least squares estimator [30].

2 Bayes estimator based on Gaussian process priors
Here we describe the Bayes estimator [16] for the nonparametric tensor estimation problem.
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2.1 Gaussian process prior and corresponding reproducing kernel Hilbert space

We place a zero-mean Gaussian process prior GPr,k with a kernel k(r,k) to estimate the function f∗(r,k)
on Xk. A zero-mean Gaussian process f = (f(x) : x ∈ X ) on some input space X is a set of random
variables (f(x))x∈X indexed by X such that each finite subset (f(x1), . . . , f(xj)) (j = 1, 2, . . . ) obeys a
zero-mean multivariate normal distribution, where (x1, . . . , xj) ⊆ X is an arbitrary finite subset of X .
The kernel function k : X × X → R corresponding to the Gaussian process is the covariance function
defined by k(x, x′) = E[f(x)f(x′)]. Since the kernel function is symmetric and positive definite, we can
define its corresponding RKHS in the usual manner [1].
We denote by Hr,k the RKHS corresponding to the kernel k(r,k). It is known that the RKHS is usually

much “smaller” than the support of the Gaussian process in an infinite dimensional setting. In fact,
typically the prior has probability mass 0 on the infinite dimensional RKHS [33]. This leads to the fact
that, under the assumption f∗(r,k) ∈ Hr,k, estimating the function f∗(r,k) through the standard Bayesian

procedure with a Gaussian process prior never achieves the optimal rate in some important examples
[33]. To overcome this issue, we scale the process by the factor of λ(r,k) and make the estimator close to
the small space Hr,k.

2.2 The posterior distribution and the corresponding estimator

Given a rank d, let F = (f(r,k))r=1,...,d, k=1,...,K be a concatenation of functions {f(r,k)}r=1,...,d, k=1,...,K .
Let the Gaussian process prior GPr,k(·|λ(r,k)) with a parameter λ(r,k) > 0 be the process associated with
a “scaled” kernel function k(r,k)/λ(r,k). We consider the following prior distribution on the product space
dF = (df(r,k))r=1,...,d, k=1,...,K :

Π(dF|d)=
d∏

r=1

K∏
k=1

∫
λ(r,k)>0

GPr,k(df(r,k)|λ(r,k))G(dλ(r,k)),

where G denotes the exponential distribution, G(dλ(r,k)) = exp(−λ(r,k))dλ(r,k), which is a conjugate prior
for the scale of the Gaussian process priors. It will be shown that, by involving the scaling parameter
λ(r,k), the estimator is able to achieve the optimal convergence rate while it can not without scaling as
described above. Putting a prior distribution on λ(r,k) rather than fixing it to some optimally chosen
value is rather for theoretical purpose, but by doing so, the estimator possesses an adaptivity against a
property of f∗. Finally, we place a prior distribution on the rank 1 ≤ d ≤ dmax as

π(d) =
ξd∑dmax

d′=1 ξ
d′
, (3)

where 0 < ξ < 1 is some positive real number and dmax is a sufficiently larger number than the supposed
true rank d.
We now provide the posterior distribution and the corresponding Bayesian estimator. For some β > 0,

the posterior measure is constructed as

Π(dF|Dn) =

∑dmax

d=1 Π(Dn|F)∑dmax
d=1

∫
Π(Dn|F̃)Π(dF̃|d)π(d)

Π(dF|d)π(d),

where Π(Dn|F) is a quasi likelihood defined by

Π(Dn|F)=exp

− 1

β

n∑
i=1

(
yi −

d∑
r=1

K∏
k=1

f(r,k)(x
(k)
i )

)2


with a temperature parameter β > 0. Although the noise ϵi is not necessarily Gaussian, we suggest using
the Gaussian likelihood as above. It will be shown that even with this quasi likelihood, we obtain a nice

convergence property. Corresponding to the posterior, we have the postierior mean estimator f̂ :

f̂ =

∫
fΠ(dF|Dn).
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Algorithm 1 Alternating minimization procedure for nonlinear tensor estimation

Require: Training data Dn = {(xi, yi)}ni=1, the regularization parameter λ(n), iteration number T .

Ensure: f̂ =
∑d

r=1 v̂
(T )
r
∏K

k=1 f̂
(T )
(r,k) as the estimator

for t = 1, . . . , T do

Set f̃(r,k) = f̂
(t−1)
(r,k) (∀(r, k)), and ṽr = v̂

(t−1)
r (∀r).

for (r, k) ∈ {1, . . . , d} × {1, . . . ,K} do
The (r, k)-element of f̃ is updated as

f̃ ′
(r,k)= argmin

f(r,k)∈Hr,k

{
1

n

n∑
i=1

[
yi−

(
f(r,k)

∏
k′ ̸=k

f̃(r,k′)+
∑
r′ ̸=r

ṽr′
K∏

k′=1

f̃(r′,k′)

)
(xi)

]2
+ Cn∥f∥2Hr,k

}
. (5)

ṽr ← ∥f̃ ′(r,k)∥n, f̃(r,k) ← f̃ ′(r,k)/ṽr.

end for
Set f̂

(t)
(r,k) = f̃(r,k) (∀(r, k)) and v̂

(t)
r = ṽr (∀r).

end for

The posterior sampling can be easily executed by the Gibbs sampling procedure. See [16] for more
details.

3 Alternating regularized least squares procedure
Here, we present the alternating minimization procedure that optimizes the regularized empirical risk
in an alternating way [30]. In that procedure, we optimize each component f(r,k) with the other fixed
components {f(r′,k′)}(r′,k′) ̸=(r,k). Basically, we want to execute the following optimization problem:

min
{f(r,k)}(r,k):f(r,k)∈Hr,k

1

n

n∑
i=1

(
yi −

d∑
r=1

K∏
k=1

f(r,k)(x
(k)
i )

)2

+ Cn

d∑
r=1

d∑
k=1

∥f(r,k)∥2Hr,k
, (4)

where the first term is the loss function for measuring how our guess
∑d

r=1

∏K
k=1 f(r,k) fits the data and

the second term is a regularization term for controlling the complexity of the learning function. However,
this optimization problem is not convex. Thus, it is difficult to exactly compute the optimal. In fact, it
is known that this optimization problem includes an NP-hard problem even for the linear model.
We found that this computational difficulty could be overcome if we assume some additional assump-

tions and aim to achieve a better generalization error instead of exactly minimizing the training error.
The optimization procedure we discuss to obtain such an estimator is the alternating minimization pro-
cedure, which minimizes the objective function (4) alternately with respect to each component f(r,k). For
each component f(r,k), the objective function (4) is a convex function, and thus, it is easy to obtain the
optimal solution. Actually, the subproblem is reduced to a variant of the kernel ridge regression, and the
solution can be analytically obtained.
The algorithm we call alternating minimization procedure (AMP) is summarized in Algorithm 1. After

minimizing the objective (Eq. (5)), the obtained solution is normalized so that its empirical L2-norm
becomes 1 to adjust the scaling factor freedom. The parameter Cn in Eq. (5) is a regularization parameter
that is appropriately chosen.
For theoretical simplicity, we consider the following equivalent constraint formula instead of the penal-

ization one (5):

f̃ ′
(r,k) ∈ argmin

f(r,k)∈Hr,k

∥f(r,k)∥Hr,k
≤R̃

{
1

n

n∑
i=1

(
yi − f(r,k)(x

(k)
i )

∏
k′ ̸=k

f̃(r,k′)(x
(k′)
i )−

∑
r′ ̸=r

ṽr′
K∏

k′=1

f̃(r′,k′)(x
(k′)
i )

)2}
(6)

where the parameter R̃ is a regularization parameter for controlling the complexity of the estimated
function.
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4 Convergence rate analysis of the Bayes estimator
In this section, we provide the statistical convergence rate of the Bayes estimator, and show that the
derived convergence rate is actually minimax optimal (up to constants).

First, we assume a condition on the noise ϵi as follows.

Assumption 1 E[ϵ21] < ∞ and E[ϵ1] = 0. Let mϵ(z) :=
∫∞
z
ydFϵ(y) where Fϵ(z) = P (ϵ1 ≤ z) is the

cumulative distribution function of the noise ϵi. The measure mϵ(z)dz is absolutely continuous with
respect to the distribution function Fϵ(z) with a bounded Radon-Nikodym derivative, i.e., there exists a
bounded function gϵ : R→ R+ such that∫ b

a
mϵ(z)dz =

∫ b

a
gϵ(z)dFϵ(z), ∀a, b ∈ R.

Roughly speaking, this assumption indicates the noise has a light tail probability. In fact, the Gaussian
noise N(0, 1) satisfies this assumption with gϵ(z) = σ2. See [11] for more details.
Next, we introduce a quantity that measures the complexity of the RKHSs. More specifically, we

assume that the RKHSs defined by the kernels have a polynomial order complexity of the metric entropy
of their unit balls. Let N(B, ϵ, d) denote the ϵ-covering number of the space B with respect to the metric
d [34], that is, the smallest number of ϵ-balls that are required to cover B, where the radius ϵ of the
ϵ-balls is measured by the metric d. The metric entropy is the logarithm of the covering number. Let
BH(r,k)

be the unit ball of the RKHS H(r,k).

Assumption 2 There exists a real value 0 < s(r,k) < 1 and C0 > 0 such that

logN(BH(r,k)
, ϵ, ∥ · ∥n) ≤ C0ϵ

−2s(r,k) (ϵ > 0). (7)

Moreover, the kernel function is bounded as supx kr,k(x, x) ≤ 1.

An interesting fact is that the metric entropy condition in Eq. (7) controls the small ball probability of the
corresponding Gaussian process as − log(GPr,k({f : ∥f∥n ≤ ϵ})) = O

(
ϵ−2s(r,k)/(1−s(r,k))

)
[18, 20]. This

assumption is usually satisfied by practically used kernels. For example, the Gaussian kernel satisfies this
condition with an arbitrary s(r,k) with a different constant C0 with high probability.
Next, we assume that the prior has a sufficient mass on bounded functions. This is a technical assump-

tion and practically used kernels usually satisfy this assumption.

Assumption 3 There exists c1 > 0 such that

− log(GPr,k({f : ∥f∥∞ ≤ 1})) ≤ c1 (∀r, k).

Moreover, we assume the following condition on the true function f∗.

Assumption 4 f∗(r,k) is included in Hr,k for all 1 ≤ r ≤ dmax and 1 ≤ k ≤ K. There exists R such that

max(r,k) ∥f∗(r,k)∥H(r,k)
≤ R. The true tensor is low rank, that is, there exists d such that f∗(r,k) = 0 for all

r > d and 1 ≤ k ≤ K.

Under these assumptions, we have the following estimation error bound.

Theorem 1 Suppose that Assumptions 1, 2, 3, and 4 are satisfied, and β ≥ 4∥gϵ∥∞. Then, there exists
a constant C > 0 depending on β, C0, c1 and s(r,k) such that

EY1:n|x1:n

[
∥f̂ − f∗∥2n

]
≤ C

{
(3R ∨ 1)2(K−1)

d∑
r=1

K∑
k=1

n
− 1

1+s(r,k) +
d

n
log

(
1

κ

)}
,

where EY1:n|x1:n
indicates the expectation with respect to the outputs Y1, . . . , Yn conditioned by the inputs

x1, . . . , xn, and κ = ξ(1− ξ).

Basically, the proof is obtained by using the PAC-Bayes bound [21, 22, 9] (the version we used was
developed by [11]), and applying the small ball probability theorems of Gaussian processes [18, 20].
If K = 1, the convergence rate coincides with the usual one of the ordinary kernel ridge regression [26].

Note that we do not assume any (restricted) strong convexity on the design. Remarkably, the convergence
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rate is determined by the true rank d (not dmax). This implies that the posterior of the rank based on
the prior in Eq. (3) properly concentrates around the true rank. The second term d

n log
(
1
κ

)
represents

the complexity of the model selection. This term is almost negligible as n → ∞. Moreover, if we know
d beforehand and fix d = dmax, then this term disappears. It will be shown that this convergence rate is
actually minimax optimal (see Theorem 5 below).
We analyze the convergence rate more closely. To do so, let us consider a special case of the Matérn

prior, and assume the domain of the input is a hypercube: x(k) ∈ [0, 1]pk . The Matérn prior is a Gaussian
process prior corresponding to a kernel function that has a spectral density given as ψ(s) = 1

(1+∥s∥2)α+p/2 ,

where α is a smoothness parameter and p is the dimension of the input. It is known that the corresponding
RKHS is included in a Sobolev space Wα+p/2[0, 1]p with the smoothness α + p/2 [33], and thus, the
metric entropy exponent can be evaluated as s ≤ p/(2α + p) (with high probability). We consider a

simple situation where the Gaussian process prior on f
(k)
r is the Matérn prior with the same smoothness

parameter α for all r, k. Then, according to Theorem 1, we obtain the following convergence rate in this
situation:

EY1:n|x1:n

[
∥f̂ − f∗∥2n

]
≤ C

{
d∑

r=1

K∑
k=1

n
− 1

1+
pk

2α+pk

}
.

This could be much smaller than the optimal convergence rate O(n−
1

1+p/(2α+p) ) for the nive estimation

of f∗ ∈Wα+p/2[0, 1]p on the whole space X = X1 × · · · × XK because the full dimension p =
∑K

k=1 pk is
larger than individual dimension pk. However, an estimation fully utilizing the nonlinear tensor product
model in Eq. (1) can alleviate the curse of dimensionality.

5 Convergence analysis of the alternating minimization procedure
Here, we give a statistical and algorithmic convergence analysis for the alternating minimization procedure
(AMP, Algorithm 1).

5.1 Assumptions and problem settings for the convergence analysis

We prepare some assumptions for the theoretical analysis of AMP. First, we assume that the distribution
P (X) of the input feature x ∈ X is a product measure of Pk(X) on each Xk. That is, PX (dX) =
P1(dX1)× · · · ×PK(dXK) for X = (X1, . . . , XK) ∈ X = X1 × · · · ×XK . This is typically assumed in the
analysis of linear tensor estimation methods [15, 8, 4, 24, 2, 36, 28, 37]. Thus, the L2-norm of a “rank-1”

function f(x) =
∏K

k=1 fk(x
(k)) can be decomposed into

∥f∥2L2(PX ) = ∥f1∥
2
L2(P1)

× · · · × ∥fK∥2L2(PK).

Hereafter, with a slight abuse of notations, we denote by ∥f∥L2 = ∥f∥L2(Pk) for a function f : Xk → R.
The inner product in the space L2 is denoted by ⟨f, g⟩L2 :=

∫
f(X)g(X)dPX (X). Note that because of

the construction of PX , it holds that ⟨f, g⟩L2 =
∏K

k=1⟨fk, gk⟩L2 for functions f(x) =
∏K

k=1 fk(x
(k)) and

g(x) =
∏K

k=1 gk(x
(k)) where x = (x(1), . . . , x(K)) ∈ X .

Next, we assume that the norm of the true function is bounded away from zero and from above. Let

the magnitude of the rth component of the true function be vr := ∥
∏K

k=1 f
∗
(r,k)∥L2 and the normalized

components be f∗∗(r,k) := f∗(r,k)/∥f
∗
(r,k)∥L2

(∀(r, k)).

Assumption 5（Boundedness Assumption）

(A5-1) There exist 0 < vmin ≤ vmax such that vmin ≤ vr ≤ vmax (∀r = 1, . . . , d).
(A5-2) The true function f∗(r,k) is included in the RKHS Hr,k, i.e., f

∗
(r,k) ∈ Hr,k (∀(r, k)), and there

exists R > 0 such that max{vr, 1}∥f∗∗(r,k)∥Hr,k
≤ R (∀(r, k)).

(A5-3) The kernel function k(r,k) associated with the RKHS Hr,k is bounded as supx∈Xk
k(r,k)(x, x) ≤

1 (∀(r, k)).
(A5-4) There exists L > 0 such that the noise is bounded as |ϵi| ≤ L (a.s.).
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Assumption 5 is a standard one for the analysis of the tensor model and the kernel regression model.
Note that the boundedness condition of the kernel gives that ∥f∥∞ = supx(k) |f(x(k))| ≤ ∥f∥Hr,k

for all

f ∈ Hr,k because the Cauchy-Schwarz inequality gives |⟨f, k(r,k)(·, x(k))⟩Hr,k
| ≤ k(r,k)(x

(k), x(k))∥f∥Hr,k

for all x(k). Thus, combining with (A5-2), we also have ∥f∗∗(r,k)∥∞ ≤ R. The last assumption (A5-4) is a

bit restrictive. However, this assumption can be replaced with a Gaussian assumption. In that situation,
we may use the Gaussian concentration inequality [19] instead of Talagrand’s concentration inequality in
the proof.
Next, we characterize the complexity of each RKHS Hr,k by using the entropy number [34, 26]. This is

important because it directly determines the convergence rate. The ϵ-covering number N (ϵ,G, L2(PX ))
with respect to L2(PX ) is the minimal number of balls with radius ϵ measured by L2(PX ) needed to cover
a set G ⊂ L2(PX ). The ith entropy number ei(G, L2(PX )) is defined as the infimum of ϵ > 0 such that
N (ϵ,G, L2) ≤ 2i−1 [26]. Intuitively, if the entropy number is small, the space G is “simple”; otherwise, it
is “complicated.”

Assumption 6（Complexity Assumption） Let BHr,k
be the unit ball of an RKHS Hr,k. There exist 0 <

s < 1 and c such that

ei(BHr,k
, L2(PX )) ≤ ci− 1

2s , (8)

for all 1 ≤ r ≤ d and 1 ≤ k ≤ K.

The optimal rate of the ordinary kernel ridge regression on the RKHS with Assumption 6 is given as

n−
1

1+s [27]. It is known that Assumption 6 is equivalent to the polynomial decay assumption on the
spectrum of the integral operator associated with the kernel k(r,k) (see [26] and Theorem 15 of [27] for
more details).
Next, we give a technical assumption about the L∞-norm.

Assumption 7（Infinity Norm Assumption） There exist 0 < s2 ≤ 1 and c2 such that

∥f∥∞ ≤ c2∥f∥1−s2
L2
∥f∥s2Hr,k

(∀f ∈ Hr,k) (9)

for all 1 ≤ r ≤ d and 1 ≤ k ≤ K.

By Assumption 5, this assumption is always satisfied for c2 = 1 and s2 = 1. s2 < 1 is a nontrivial
situation and gives a tighter bound. We would like to note that this condition with s2 < 1 is satisfied
by many practically used kernels such as the Gaussian kernel. In particular, it is satisfied if the kernel
is smooth so that Hr,k is included in a Sobolev space W 2,s2 [0, 1]. More formal characterization of this
condition using the notion of a real interpolation space can be found in [27] and Proposition 2.10 of [7].
Finally, we assume an incoherence condition on {f∗(r,k)}r,k. Roughly speaking, the incoherence property

of a set of functions {f(r,k)}r,k means that components {f(r,k)}r are linearly independent across different
1 ≤ r ≤ d on the same mode k. This is required to distinguish each component. An analogous assumption
has been assumed also in the literature of linear models [15, 8, 4, 24, 36, 28].

Definition 2（Incoherence） A set of functions {f(r,k)}r,k, where f(r,k) ∈ L2(Pk), is µ-incoherent if, for all
k = 1, . . . ,K, it holds that

|⟨f(r,k), f(r′,k)⟩L2 | ≤ µ∥f(r,k)∥L2∥f(r′,k)∥L2 (∀r ̸= r′).

Assumption 8（Incoherence Assumption） There exists 1 > µ∗ ≥ 0 such that the true function {f∗(r,k)}r,k
is µ∗-incoherent.

5.2 Linear convergence of alternating minimization procedure

In this section, we give the convergence analysis of the AMP algorithm. Under the assumptions presented
in the previous section, it will be shown that the AMP algorithm shows linear convergence in the sense
of optimization algorithm and achieves the minimax optimal rate in the sense of statistical performance.
Roughly speaking, if the initial solution is sufficiently close to the true function (namely, in a distance of
O(1)), then the solution generated by AMP linearly converges to the optimal solution and the estimation

accuracy of the final solution is given as O(dKn− 1
1+s ) up to log(dK) factor.
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We analyze how close the updated estimator is to the true one when the (r, k)th component is up-

dated from f̃(r,k) to f̃ ′(r,k). The tensor decomposition {f(r,k)}r,k of a nonlinear tensor model has a

freedom of scaling. Thus, we need to measure the accuracy based on a normalized representation to
avoid the scaling factor uncertainty. Let the normalized components of the estimator be f̄(r′,k′) =

f̃(r′,k′)/∥f̃(r′,k′)∥L2
(∀(r′, k′) ∈ [d]× [K]) and v̄r′ = ṽr′

∏K
k′=1 ∥f̃(r′,k′)∥L2

(∀r′ ∈ [d]). On the other hand,

the newly updated (r, k)th element is denoted by f̃ ′(r,k) (see Eq. (5)) and we denote by v̄′r the updated

value of v̄r correspondingly: v̄′r = ∥f̃ ′(r,k)∥L2

∏
k′ ̸=k ∥f̃(r,k′)∥L2

. The normalized newly updated element is

denoted by f̄ ′(r,k) = f̃ ′(r,k)/∥f̃
′
(r,k)∥L2

.

For an estimator (f̄ , v̄) = ({f̄(r′,k′)}r′,k′ , {v̄r′}r′) which is a couple of the normalized component and
the scaling factor, define

d∞(f̄ , v̄) := max
(r′,k′)

{vr′∥f̄(r′,k′) − f∗∗(r′,k′)∥L2 + |vr′ − v̄r′ |}.

For any λ1,n > 0 and λ2,n > 0 and τ > 0, we let aτ := max{1, L}max{1, τ} log(dK) and define
ξn = ξn(λ1,n, τ) and ξ

′
n = ξ′n(λ2,n, τ) as

∗

ξn := aτ

(
K

1+2s
2 λ

− s
2

1,n√
n

∨ K
1+2s
1+s

λ
2s+(1−s)s2

2(1+s)

1,n n
1

1+s

)
, ξ′n := aτ

(
λ
− s

2
2,n√
n
∨ 1

λ
1
2
2,nn

1
1+s

)
.

Theorem 3 Suppose that Assumptions 5–8 are satisfied, and the regularization parameter R̃ in Eq. (6)

is set as R̃ = 2R. Let R̂ = 4R̃/min{vmin, 1} and suppose that we have already obtained an estimator f̃
satisfying the following conditions:

• The RKHS-norms of {f̄(r′,k′)}r′,k′ are bounded as ∥f̄(r′,k′)∥Hr′,k′ ≤ R̂ (∀(r′, k′) ̸= (r, k)).

• The distance from the true one is bounded as d∞(f̄ , v̄) ≤ γ.

Then, for a sufficiently small µ∗ and γ (independent of n), there exists an event with probability greater
than 1− 3 exp(−τ) where any (f̄ , v̄) satisfying the above conditions gives(

vr∥f̄ ′(r,k) − f
∗∗
(r,k)∥L2

+ |v̄′r − vr|
)2
≤ 1

2
d∞(f̄ , v̄)2 + SnR̂

2K (10)

for any sufficiently large n, where Sn is defined for a constant C ′ depending on s, s2, c, c2 as

Sn := C ′
[
(R̂K + 1)(ξ′nλ

1/2
2,n + ξ′

2
n) + (R̂K + d)ξnλ

1/2
1,n + R̂2(K−1)( 1

s2
−1)(dξn)

2/s2
]
.

Moreover, if we denote by ηn the right hand side of Eq. (10), then it holds that

∥f̄ ′(r,k)∥Hr,k
≤ 2

vr −
√
ηn
R̃.

The proof is given by using such techniques as the so-called peeling device [32] or, equivalently, the local
Rademacher complexity [5], and by combining these techniques with the coordinate descent optimization
argument. Theorem 3 states that, if the initial solution is sufficiently close to the true one, then the
following updated estimator gets closer to the true one and its RKHS-norm is still bounded above by a
constant. Importantly, it can be shown that the updated one still satisfies the conditions of Theorem 3
for large n. Since the bound given in Theorem 3 is uniform, the inequality (10) can be recursively applied

to the sequence of f̂ (t) (t = 1, 2, . . . ).

By substituting λ1,n = K− 1+s
1−s d−

2
1−sn−

1
1+s and λ2,n = n−

1
1+s , we have that

Sn = O
(
n−

1
1+s ∨

(
n
− 1

1+s−(1−s2)min{ 1−s
4(1+s)

, 1
s2(1+s)

}
poly(d,K)

))
log(dK),

where poly(d,K) means a polynomial of d,K. Thus, if s2 < 1 and n is sufficiently large compared with

d and K, then the second term is smaller than the first term and we have Sn ≤ Cn− 1
1+s with a constant

C. Furthermore, we can bound the L2-norm from the true one as in the following theorem.

∗ The symbol ∨ indicates the max operation, that is, a ∨ b := max{a, b}.
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Theorem 4 Let (f̂ (t), v̂(t)) be the estimator at the tth iteration. In addition to the assumptions of

Theorem 3, suppose that (f̂ (1), v̂(1)) satisfies d∞(f̂ (1), v̂(1))2 ≤ v2
min

8 and SnR̂
2K ≤ v2

min

8 , s2 < 1 and

n≫ d,K, then f̌ (t)(x) =
∑d

r=1 v̂
(t)
r
∏K

k=1 f̂
(t)
(r,k)(x

(k)) satisfies

∥f̌ (t) − f∗∥2L2
= O

(
dKn− 1

1+s log(dK) + dK

(
3

4

)t
)
.

with probability 1− 3 exp(−τ).

This theorem indicates that after T = O(log(n)) iterations, we obtain the estimation accuracy of

O(dKn− 1
1+s log(dK)). The estimation accuracy bound O(dKn− 1

1+s log(dK)) is intuitively natural because
we are estimating d×K functions {f∗(r,k)}r,k and the optimal sample complexity to estimate one function

f∗(r,k) is known as n−
1

1+s [27]. Indeed, this accuracy bound is minimax optimal (see Section 6). A rough

Bayes estimator would be a good initial solution satisfying the assumptions.

6 Minimax lower bound
Here, we give the minimax lower bound. To simplify the problem, we specify the structure of the
problem. We assume that each component x(k) ∈ Xk of the input x = (x(1), . . . , x(K)) ∈ X can be further
decomposed as

x(k) = (x(1,k), . . . , x(d,k)) ∈ X(1,k) × · · · × X(d,k) = Xk.

Then, each RKHS Hr,k takes x(r,k) ∈ X(r,k) as an input; that is, for any f(r,k) ∈ Hr,k, there is a function

f̃(r,k) : X(r,k) → R such that f(r,k)(xk) = f̃(r,k)(x(r,k)). We assume that the distribution of the input
xk ∈ Xk is a product measure PXk

= PX(1,k)
× · · · × PX(d,k)

and the distribution of the whole input

x = (x(1), . . . , x(K)) ∈ X is also a product of PXk
: PX = PX1 × · · · × PXK

. We may assume that all
functions f(r,k) ∈ Hr,k have zero mean without loss of generality: EX∼PXk

[f(r,k)(X)] = 0. Then, by the
set up of PX , we have that

∥f∥2L2(PX ) = EX∼P (X)[f
2(X)] =

d∑
r=1

K∏
k=1

∥f(r,k)∥2L2(PXk
)

for f =
∑d

r=1

∏K
k=1 f(r,k) where f(r,k) ∈ Hr,k. Moreover, we assume that the noise is distributed from a

normal distribution: ϵi ∼ N(0, σ2) (i.i.d.).
To simplify the analysis, we assume that the complexities of all RKHSs Hr,k are the same and have

the following lower bound of the metric entropy.

Assumption 9 There exists a real value 0 < s < 1 such that

logN(BH(r,k)
, ϵ, L2(PX(r,k)

)) ∼ ϵ−2s. (11)

Moreover, the kernel function is bounded as supx kr,k(x, x) ≤ 1, and there exists c1 > 0 such that

∃f̂(r,k) ∈ BHr,k
satisfying ∥f̂(r,k)∥L2(PXk

) ≥ c1 for all r, k.

Let Hr,k(R) := {f ∈ Hr,k | ∥f∥Hr,k
≤ R} be the ball with radius R in Hr,k. Then, we define a set of

tensors as

H(d,K)(R) :=

{
f =

d∑
r=1

K∏
k=1

f(r,k)

∣∣∣∣ f(r,k) ∈ Hr,k(R)

}
.

Under these settings, we have the following minimax optimal lower bound of the estimation error.

Theorem 5 If every Xk is a compact metric space, every k(r,k) is continuous, and the radius R of the

tensor set H(d,K)(R) satisfies R ≥ 1+c1
c1

, then there is a constant C1 > 0 independent of d,K, n such that

inf
f̂

sup
f∗∈H(d,K)(R)

E[∥f − f̂∥2L2(PX )] ≥ C1dKn
− 1

1+s ,

where the inf is taken over all estimators f̂ .
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In the proof, we utilize the information theoretic technique developed by [35]. This theorem states that
the learning rates of the Gaussian process tensor estimator (Theorem 1) and the AMP (Theorem 4) is
actually minimax-optimal up to constants.

References
[1] N. Aronszajn. Theory of reproducing kernels. Transactions of the American Mathematical Society, 68:337–

404, 1950.
[2] A. Aswani. Low-rank approximation and completion of positive tensors. arXiv preprint arXiv:1412.0620,

2014.
[3] M. T. Bahadori, Q. R. Yu, and Y. Liu. Fast multivariate spatio-temporal analysis via low rank tensor

learning. In Advances in Neural Information Processing Systems 27.
[4] B. Barak and A. Moitra. Tensor prediction, rademacher complexity and random 3-xor. arXiv preprint

arXiv:1501.06521, 2015.
[5] P. Bartlett, O. Bousquet, and S. Mendelson. Local Rademacher complexities. The Annals of Statistics,

33:1487–1537, 2005.
[6] C. Bennett and R. Sharpley. Interpolation of Operators. Academic Press, Boston, 1988.
[7] C. Bennett and R. Sharpley. Interpolation of Operators. Academic Press, Boston, 1988.
[8] S. Bhojanapalli and S. Sanghavi. A new sampling technique for tensors. arXiv preprint arXiv:1502.05023,

2015.
[9] O. Catoni. Statistical Learning Theory and Stochastic Optimization. Lecture Notes in Mathematics. Springer,

2004. Saint-Flour Summer School on Probability Theory 2001.
[10] W. Chu and Z. Ghahramani. Probabilistic models for incomplete multi-dimensional arrays. In Proceedings

of the 12th International Conference on Artificial Intelligence and Statistics (AISTATS), volume 5 of JMLR
Workshop and Conference Proceedings, 2009.

[11] A. S. Dalalyan and A. B. Tsybakov. Aggregation by exponential weighting sharp PAC-Bayesian bounds and
sparsity. Machine Learning, 72:39–61, 2008.

[12] D. E. Edmunds and H. Triebel. Function Spaces, Entropy Numbers, Differential Operators. Cambridge
University Press, Cambridge, 1996.

[13] F. L. Hitchcock. The expression of a tensor or a polyadic as a sum of products. Journal of Mathematics and
Physics, 6:164–189, 1927.

[14] F. L. Hitchcock. Multilple invariants and generalized rank of a p-way matrix or tensor. Journal of Mathematics
and Physics, 7:39–79, 1927.

[15] P. Jain and S. Oh. Provable tensor factorization with missing data. In Advances in Neural Information
Processing Systems 27, pages 1431–1439. Curran Associates, Inc., 2014.

[16] H. Kanagawa, T. Suzuki, H. Kobayashi, N. Shimizu, and Y. Tagami. Gaussian process nonparametric tensor
estimator and its minimax optimality. In International Conference on Machine Learning (ICML2016), pages
1632–1641, 2016.

[17] A. Karatzoglou, X. Amatriain, L. Baltrunas, and N. Oliver. Multiverse recommendation: N-dimensional
tensor factorization for context-aware collaborative filtering. In Proceedings of the 4th ACM Conference on
Recommender Systems 2010, pages 79–86, 2010.

[18] J. Kuelbs and W. V. Li. Metric entropy and the small ball problem for Gaussian measures. Journal of
Functional Analysis, 116(1):133–157, 1993.

[19] M. Ledoux. The concentration of measure phenomenon. Number 89 in Mathematical Surveys and Mono-
graphs. American Mathematical Soc., 2005.

[20] W. V. Li and Q.-M. Shao. Gaussian processes: inequalities, small ball probabilities and applications. Stochas-
tic Processes: Theory and Methods, 19:533–597, 2001.

[21] D. McAllester. Some PAC-Bayesian theorems. In Proceedings of the 11th Annual Conference on Computa-
tional Learning Theory, pages 230–234, 1998.

[22] D. McAllester. PAC-Bayesian model averaging. In the Anual Conference on Computational Learning Theory,
pages 164–170, 1999.

[23] B. Romera-Paredes, H. Aung, N. Bianchi-Berthouze, and M. Pontil. Multilinear multitask learning. In
Proceedings of the 30th International Conference on Machine Learning (ICML2013), volume 28 of JMLR
Workshop and Conference Proceedings, pages 1444–1452, 2013.

[24] P. Shah, N. Rao, and G. Tang. Optimal low-rank tensor recovery from separable measurements: Four
contractions suffice. arXiv preprint arXiv:1505.04085, 2015.

[25] M. Signoretto, L. D. Lathauwer, and J. A. K. Suykens. Learning tensors in reproducing kernel Hilbert spaces
with multilinear spectral penalties. CoRR, abs/1310.4977, 2013.

[26] I. Steinwart and A. Christmann. Support Vector Machines. Springer, 2008.
[27] I. Steinwart, D. Hush, and C. Scovel. Optimal rates for regularized least squares regression. In Proceedings

of the Annual Conference on Learning Theory, pages 79–93, 2009.

9



[28] W. Sun, Z. Wang, H. Liu, and G. Cheng. Non-convex statistical optimization for sparse tensor graphical
model. In Advances in Neural Information Processing Systems, pages 1081–1089, 2015.

[29] T. Suzuki. Convergence rate of Bayesian tensor estimator and its minimax optimality. In Proceedings of
the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, pages
1273–1282, 2015.

[30] T. Suzuki, H. Kanagawa, H. Kobayashi, N. Shimizu, and Y. Tagami. Minimax optimal alternating mini-
mization for kernel nonparametric tensor learning. In Annual Conference on Neural Information Processing
Systems (NIPS2016), page to appear, 2016.

[31] R. Tomioka, T. Suzuki, K. Hayashi, and H. Kashima. Statistical performance of convex tensor decomposition.
In Advances in Neural Information Processing Systems 24, pages 972–980, 2011. NIPS2011.

[32] S. van de Geer. Empirical Processes in M-Estimation. Cambridge University Press, 2000.
[33] A. W. van der Vaart and J. H. van Zanten. Information rates of nonparametric Gaussian process methods.

Journal of Machine Learning Research, 12:2095–2119, 2011.
[34] A. W. van der Vaart and J. A. Wellner. Weak Convergence and Empirical Processes: With Applications to

Statistics. Springer, New York, 1996.
[35] Y. Yang and A. Barron. Information-theoretic determination of minimax rates of convergence. The Annals

of Statistics, 27(5):1564–1599, 1999.
[36] Z. Zhang and S. Aeron. Exact tensor completion using t-svd. arXiv preprint arXiv:1502.04689, 2015.
[37] T. Zhao, Z. Wang, and H. Liu. A nonconvex optimization framework for low rank matrix estimation.

In Advances in Neural Information Processing Systems 28, pages 559–567. Curran Associates, Inc., 2015.
NIPS2015.

10


