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Abstract
We develop a new theoretical framework to analyze the generalization error of deep learning,

and derive a new fast learning rate for two representative algorithms: empirical risk minimization
and Bayesian deep learning. The series of theoretical analyses of deep learning has revealed its
high expressive power and universal approximation capability. Although these analyses are highly
nonparametric, existing generalization error analyses have been developed mainly in a fixed dimen-
sional parametric model. To compensate this gap, we develop an infinite dimensional model that
is based on an integral form as performed in the analysis of the universal approximation capability.
This allows us to define a reproducing kernel Hilbert space corresponding to each layer. Our point
of view is to deal with the ordinary finite dimensional deep neural network as a finite approximation
of the infinite dimensional one. The approximation error is evaluated by the degree of freedom of
the reproducing kernel Hilbert space in each layer. To estimate a good finite dimensional model,
we consider both of empirical risk minimization and Bayesian deep learning. We derive its gen-
eralization error bound and it is shown that there appears bias-variance trade-off in terms of the
number of parameters of the finite dimensional approximation 1.

1. Introduction

Deep learning has been showing great success in several applications such as computer vision,
natural language processing, and many other area related to pattern recognition. Several high-
performance methods have been developed and it has been revealed that deep learning possesses
great potential. Despite the development of practical methodologies, its theoretical understanding
is not satisfactory. Wide rage of researchers including theoreticians and practitioners are expecting
deeper understanding of deep learning.

Among theories of deep learning, a well developed topic is its expressive power. It has been
theoretically shown that deep neural network has exponentially large expressive power against the
number of layers. For example, Montufar et al. (2014) showed that the number of polyhedral re-
gions created by deep neural network can exponentially grow as the number of layers increases.
Bianchini and Scarselli (2014) showed that the Betti numbers of the level set of a function created
by deep neural network grows up exponentially against the number of layers. Other researches
also concluded similar facts using different notions such as tensor rank and extrinsic curvature
(Cohen et al., 2016; Cohen and Shashua, 2016; Poole et al., 2016).

Another important issue in neural network theories is its universal approximation capability. It
is well known that 3-layer neural networks have the ability, and thus the deep neural network also

1. The extended version of this article can be found in Suzuki (2017).
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does (Cybenko, 1989; Hornik, 1991; Sonoda and Murata, 2015). When we discuss the universal
approximation capability, the target function that is approximated is arbitrary and the theory is
highly nonparametric in its nature.

Once we knew the expressive power and universal approximation capability of deep neural net-
work, the next theoretical question naturally arises in its generalization error. The generalization
ability is typically analyzed by evaluating the Rademacher complexity. Bartlett (1998) studied 3-
layer neural networks and characterized its Rademacher complexity using the norm of weights.
Koltchinskii and Panchenko (2002) studied deep neural network and derived its Rademacher com-
plexity under norm constraints. More recently, Neyshabur et al. (2015) analyzed the Rademacher
complexity based on more generalized norm, and Sun et al. (2015) derived a generalization error
bound with a large margine assumption. As a whole, the studies listed above derived O(1/

√
n)

convergence of the generalization error where n is the sample size. Although this is minimax op-
timal, it is expected that we could show faster convergence rate with some additional assumptions
such as strong convexity of the loss function. Moreover, the generalization error bound has been
mainly given in finite dimensional models. As we have observed, the deep neural network possesses
exponential expressive power and universal approximation capability which are highly nonparamet-
ric characterizations. This means that the theories are developed separately in the two regimes; finite
dimensional parametric model and infinite dimensional nonparametric model. Therefore, theories
that connect these two regimes are required to comprehensively understand statistical performance
of deep learning.

In this study, we consider both of empirical risk minimization and Bayesian deep learning
and analyze the generalization error using the terminology of kernel methods. Consequently,
(i) we derive a faster learning rate than O(1/

√
n) and (ii) we connect the finite dimensional

regime and the infinite dimensional regime based on the theories of kernel methods. To ana-
lyze a sharper generalization error bound, we utilize the so-called local Rademacher complex-
ity technique for the empirical risk minimization method (Mendelson, 2002; Bartlett et al., 2005;
Koltchinskii, 2006; Giné and Koltchinskii, 2006), and, as for the Bayesian method, we employ
the theoretical techniques developed to analyze nonparametric Bayes methods (Ghosal et al., 2000;
van der Vaart and van Zanten, 2008, 2011). The obtained generalization error bound is summarized
in Table 12.

2. Generalization error analysis of deep learning

We consider a regression model formulated as
yi = fo(xi) + ξi (i = 1, . . . , n),

where (ξi)
n
i=1 is an i.i.d. sequence of Gaussian noises N(0, σ2) with mean 0 and variance σ2, and

(xi)
n
i=1 is generated independently identically from a distribution P (X) with a compact support in

Rdx . We suppose that fo has a hierarchic structure which is defined below. We define a feature
space on the ℓ-th layer. The feature space is a a probability space (Tℓ,Bℓ,Qℓ) where Tℓ is a Polish
space, Bℓ is its Borel algebra, and Qℓ is a probability measure on (Tℓ,Bℓ). Now the input x is
a dx-dimensional real vector, and thus we may set T1 = {1, . . . , dx}. Since the output is one
dimensional, the output layer is just a singleton TL+1 = {1}. Based on these feature spaces,
our integral form of the deep neural network is constructed by stacking the map on the ℓ-th layer
fo
ℓ : L2(Qℓ) → L2(Qℓ+1) given as

2. a ∨ b indicates max{a, b}.
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Table 1: Summary of derived bounds for the generalization error ∥f̂ − fo∥2L2(P (X)) where n is the

sample size, R is the norm of the weight in the internal layers, R̂∞ is an L∞-norm bound
of the functions in the model, σ is the observation noise, dx is the dimension of the input,
mℓ is the width of the ℓ-th internal layer and Nℓ(λℓ) for (λℓ > 0) is the degree of freedom
(Eq. (1)). More details can be found in Suzuki (2017).

Error bound

General setting L
∑L

ℓ=2R
L−ℓ+1λℓ +

σ2+R̂2
∞

n

∑L
ℓ=1mℓmℓ+1 log(n)

under an assumption that mℓ ≳ Nℓ(λℓ) log(Nℓ(λℓ)).

Finite dimensional model σ2+R̂2
∞

n

∑L
ℓ=1m

∗
ℓm

∗
ℓ+1 log(n)

where m∗
ℓ is the true width of the ℓ-th internal layer.

Polynomial decay eigenvalue L
∑L

ℓ=2(R ∨ 1)L−ℓ+1n
− 1

1+2sℓ log(n) + d2x
n log(n)

where sℓ is the decay rate of the eigenvalue of the kernel
function on the ℓ-th layer.

fo
ℓ [g](τ) =

∫
Tℓ
hoℓ (τ, w)η(g(w))dQℓ(w) + boℓ (τ),

where η is an activation function, hoℓ (τ, w) corresponds to the weight of the feature w for the output
τ and hoℓ ∈ L2(Qℓ+1 × Qℓ) and hoℓ (τ, ·) ∈ L2(Qℓ) for all τ ∈ Tℓ+1. Specifically, the first and
the last layers are represented as fo

1 [x](τ) =
∑dx

j=1 h
o
1(τ, j)xjQ1(j) + bo1(τ), and fo

L[g](1) =∫
TL hoL(w)η(g(w))dQL(w) + boL where we wrote hoL(w) to indicate hoL(1, w) for simplicity. Then

the true function fo is given as fo(x) = fo
L◦fo

L−1◦· · ·◦fo
1 (x). We want to approximate this infinite

dimensional model by a finite dimensional one which is defined by using W (ℓ) ∈ Rmℓ+1×mℓ as

f∗
ℓ (g) = W (ℓ)η(g) + b(ℓ) (g ∈ Rmℓ , ℓ = 1, . . . , L), f∗(x) = f∗

L ◦ f∗
L−1 ◦ · · · ◦ f∗

1 (x).

Let the output of the ℓ-th layer be F o
ℓ (x, τ) := (fo

ℓ ◦ · · · ◦ fo
1 (x))(τ). We define a reproducing

kernel Hilbert space (RKHS) corresponding to the ℓ-th layer (ℓ ≥ 2) by introducing its associated
kernel function kℓ : Rdx × Rdx → R as kℓ(x, x′) :=

∫
Tℓ η(F

o
ℓ−1(x, τ))η(F

o
ℓ−1(x

′, τ))dQℓ(τ). Let
the degree of freedom be

Nℓ(λ) =
∑∞

j=1 µ
(ℓ)
j /(µ

(ℓ)
j + λ) (1)

for λ > 0 where µ
(ℓ)
1 ≥ µ

(ℓ)
2 ≥ . . . be the eigenvalues of the kernel in L2(PX).

We assume that there exist R and Rb such that the true function satisfies the following condition:
∥hoℓ (τ, ·)∥L2(Qℓ) ≤ R (∀τ ∈ Tℓ), |boℓ (τ)| ≤ Rb (∀τ ∈ Tℓ). Let R̄ = 2R and R̄b = 2Rb. Under this
condition, we construct an estimator in the following finite dimensional model:

F ={f(x) = (W (L)η(·) + b(L)) ◦ · · · ◦ (W (1)x+ b(1)) | W (ℓ) ∈ Rmℓ+1×mℓ , b(ℓ) ∈ Rmℓ+1 ,

∥W (ℓ)∥F ≤ R̄, ∥b(ℓ)∥ ≤ R̄b (ℓ = 1, . . . , L)}.

The empirical risk minimizer is given as f̂ := argminf∈F
∑n

i=1(yi−f(xi))
2. We can also construct

a Bayes estimator by putting a prior distribution Π on F . Then we obtain an upper-bound of the
generalization errors of the empirical risk minimizer and the Bayes estimator as in the following
theorem.
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Theorem 1 (Informal) Let f̂ be either of the empirical risk minimizer and the Bayes estimator with
an appropriate prior. Then, under some technical conditions, there exist constants C1, C2 > 0 such
that, if mℓ ≥ C1Nℓ(λℓ) log (Nℓ(λℓ)) (ℓ = 2, . . . , L), then, for any λℓ > 0 (ℓ = 2, . . . , L), it holds
that, with high probability,

∥f̂ − fo∥2L2(PX) ≤ C2

( L∑
ℓ=2

√
λℓ

)2

+
1

n

L∑
ℓ=1

mℓmℓ+1 log (n)
2

 .
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