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A Preliminary Results

A.1 Approximating Spectral Density of Data

A.1.1 Spectral Density of Stationary Gaussian Sequence {Gn,†
t }t∈Z

Recall that a spectral density of the stationary Gaussian sequence {Gn,†
t }t∈Z, which is obtained by [19], is

characterized by

Cov
[
Gn,†

t ,G
n,†
t+τ

]
=

η2δ2H
n

2(2H + 2)(2H + 1)
(|τ + 2|2H+2 − 4|τ + 1|2H+2 + 6|τ|2H+2 − 4|τ − 1|2H+2 + |τ − 2|2H+2)

=

∫ π

−π
e
√
−1τλη2δ2H

n fH(λ) dλ,

where
fH(λ) := CH{2(1 − cosλ)}2

∑

j∈Z

1
|λ + 2π j|3+2H

with CH := (2π)−1Γ(2H + 1) sin(πH). The following Lemma shows that the stationary Gaussian sequence
{Gn,†

t }t∈Z satisfies Assumption 1 in [19], see Section 4.2 in [19].

Lemma A.1. The spectral density f (λ,H) satisfies the following relations.

(1) For any H ∈ Θ, λ $→ f (λ,H), λ ∈ [−π,π]/{0}, is a non-negative integrable even function with 2π-periodicity.
Moreover, it satisfies that

f ∈ C3,1 (Θ × [−π,π]/{0}) .

(2) If (H1, η1) and (H2, η2) are distinct elements ofΘ×Σ, a set {λ ∈ [−π,π] : η1 f (λ,H1) ! η2 f (λ,H2)} has a positive
Lebesgue measure.

(3) Let α(H) := 2H − 1 with H ∈ (0, 1). There exist constants c1, c2 > 0 and for any ι > 0, there exists a constant c3,ι,
which only depends on ι, such that the following conditions hold for every (H,λ) ∈ Θ × [−π,π]\{0}.

(a) c1|λ|−α(H) ≤ f (λ,H) ≤ c2|λ|−α(H).

(b) For any j ∈ {1, 2, 3},
∣∣∣∣∣∣
∂ j

∂Hj f (λ,H)

∣∣∣∣∣∣ ≤ c3,ι|λ|−α(H)−ι,

∣∣∣∣∣∣
∂ j+1

∂λ∂Hj f (λ,H)

∣∣∣∣∣∣ ≤ c3,ι|λ|−α(H)−1−ι.

A.1.2 Spectral Density of Stationary Gaussian Sequence {Gn
t }t∈Z

We derive a spectral density of the stationary sequence {Gn
t }t∈Z in this subsection. Since {εn

t }t∈Z is an i.i.d.
sequence, {∆εn

t }t∈Z is a MA(1) process and its auto-covariance function is given by

γn(τ) := Cov
[
∆εn

t ,∆ε
n
t+τ

]
=



4/mn (τ = 0)

−2/mn (|τ| = 1)

0 (otherwise)

.

Then its spectral density +n is given by the Fourier series

+n(λ) :=
1

2π

∑

τ∈Z
γn(τ)e

√
−1τλ =

2
mn
+(λ), where +(λ) :=

1
π

(1 − cosλ) , λ ∈ [−π,π].
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Since {Gn,†
t }t∈Z and {εn

t }t∈Z are independent, the covariance function of {Gn
t }t∈Z is characterized by

Cov
[
Gn

t ,G
n
t+τ

]
= Cov

[
Gn,†

t ,G
n,†
t+τ

]
+ Cov

[
∆εn

t ,∆εt+τ
]
=

∫ π

−π
e
√
−1kλ f n

ϑ (λ) dλ,

where the spectral density f n
ϑ is given by

f n
ϑ (λ) ≡ f (λ,H, η, n) := η2δ2H

n fH(λ) +
2

mn
+(λ), λ ∈ [−π,π], ϑ = (H, η).

A.2 Approximation of Data

The following proposition gives a precise statement of the approximation (12) in Remark 2.6, which follows
from a Taylor expansion of Yn around the Gaussian vector Gn under high-frequency observations, i.e.
δn → 0.

Proposition A.2. For any ψ ∈ (0,H) and J ∈N, there exists a positive random variable M ≡M(ψ, J,T,ϑ), which is
independent of the asymptotic parameter n ∈N, such that

max
t∈Λn

∣∣∣∣∣∣∣∣
Yn

t − Gn
t −

J∑

j=2

j∑

k=1

(−1)k−1

k

∑

p∈Nk,|p|= j

1
p!
∆Wn,p

t

∣∣∣∣∣∣∣∣
≤M · δmin{1,(J+1)H−ψ}

n (44)

holds P-a.s. for sufficiently small δn.

Note that the lhs of the inequality in Proposition B.1 is dominated as follows:

max
t∈Λn

∣∣∣∣∣∣∣∣
Yn

t − Gn
t −

J∑

j=2

j∑

k=1

(−1)k−1

k

∑

p∈Nk ,|p|= j

1
p!
∆Wn,p

t

∣∣∣∣∣∣∣∣
(45)

≤max
t∈Λn

∣∣∣∣∣∣∣∣
Yn,†

t − Vn
t −

J∑

j=2

j∑

k=1

(−1)k−1

k

∑

p∈Nk ,|p|= j

1
p!
∆Zn,p

t

∣∣∣∣∣∣∣∣

+max
t∈Λn

∣∣∣Vn
t − Gn,†

t

∣∣∣ +max
t∈Λn

∣∣∣∣∣∣∣∣

J∑

j=2

j∑

k=1

(−1)k−1

k

∑

p∈Nk ,|p|= j

1
p!
∆

(
Zn,p

t −Wn,p
t

)
∣∣∣∣∣∣∣∣
.

In the rest of this section, we evaluate the asymptotic order of the three terms in the rhs of (45) when δn → 0.
At first, we treat the first term in (45) in the following lemma.

Lemma A.3. For any ψ ∈ (0,H) and J ∈ N, there exists a positive random variable M ≡ M(ψ, J,T,ϑ), which is
independent of the asymptotic parameter n ∈N, such that

max
t∈Λn

∣∣∣∣∣∣∣∣
Yn,†

t − Vn
t −

J∑

j=2

j∑

k=1

(−1)k−1

k

∑

p∈Nk,|p|= j

1
p!
∆Zn,p

t

∣∣∣∣∣∣∣∣
≤M · δ(J+1)H−ψ

n

holds P-a.s. for sufficiently small δn.

Proof. At first, Taylor’s theorem yields that any infinitely differentiable function f on an ε-open ball Bε(a) at
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the point of a ∈ R is expanded by

f (x) = f (a) +
J∑

j=1

f ( j)(a)
j!

xj + (x − a)J+1
∫ 1

0

(1 − z)J

J!
f (J+1) (a + z(x − a)) dz

for each x ∈ Bε(a) and J ∈N. Moreover, if the function f and its derivatives of any order are also continuous
on Bε(a), then it holds that

sup
x∈Bε(a)

∣∣∣∣∣∣

∫ 1

0

(1 − z)J

J!
f (J+1) (a + z(x − a)) dz

∣∣∣∣∣∣ < ∞. (46)

Therefore, using the Hölder continuity of log σ2, we can derive the following Taylor’s expansion:

log
[

1
δn

∫ tδn

(t−1)δn

σ2
u du

]
= log σ2

(t−1)δn
+ log

[
1
δn

∫ tδn

(t−1)δn

elog σ2
u−log σ2

(t−1)δn du
]

= log σ2
(t−1)δn

+ log


1 +

J∑

p=1

1
p!

Zn,p
t + o

(
δ(J+1)H−ψ

n

)



= log σ2
(t−1)δn

+
1
δn

∫ tδn

(t−1)δn

(
log σ2

u − log σ2
(t−1)δn

)
du +

J∑

p=2

1
p!

Zn,p
t

+
J∑

j=2

(−1) j−1

j



J∑

p=1

1
p!

Zn,p
t + o

(
δ(J+1)H−ψ

n

)


j

+ o
(
δ(J+1)H−ψ

n

)

=
1
δn

∫ tδn

(t−1)δn

log σ2
u du +

J∑

j=2

j∑

k=1

(−1)k−1

k

∑

p∈Nk ,|p|= j

1
p!

Zn,p
t + o

(
δ(J+1)H−ψ

n

)
. (47)

Note that the Hölder continuity property also implies that all reminder terms in the above equality are
independent of t ∈ Λn and ω ∈ Ω if δn is sufficiently small, see also (46). Therefore, the conclusion follows
from taking a difference of both sides of (47). !

The second term is also negligible because the following inequality holds.

Lemma A.4. The following inequality holds:

max
t∈Λn

∣∣∣Vn
t − Gn,†

t

∣∣∣ ≤

 sup

u∈[0,T]
|κu|


 · δn.

Finally, we show the negligibility of the third term. In order to achieve this purpose, it suffices to prove
that the error between Zp

n and Wp
n is negligible for each p ∈ NK by using the triangle inequality of ‖ · ‖∞.

Therefore, we show the following result.

Lemma A.5. For each p ≡ (p1, p2, · · · , pK) ∈NK with |p| ≥ 2, the following relation holds for any ψ ∈ (0,H),

max
t∈Λn+1

∣∣∣Zn,p
t −Wn,p

t

∣∣∣ ≤
(
2|p| − 1

) (
AH−ψ,η ∨ 1

)(|p|−1)

 sup

u∈[0,T]
|κu| ∨ 1



|p|
· δ1+(|p|−1)(H−ψ)

n ,
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where AH−ψ,η ≡ AH−ψ,η(T,ϑ) given by

AH−ψ,η := sup
s,u∈[0,T]

η|WH
u −WH

s |
|u − s|H−ψ < ∞.

Proof. At first, consider the case where K = 1, i.e. p ∈ N with p ≥ 2. Note that the binomial theorem yields
that the integrand of Zn,p

t is given by

(
log σ2

u − log σ2
(t−1)δn

)p
=

p∑

j=0

Γ(p + 1)
Γ(p − j + 1)Γ( j + 1)

ηp− j
(
WH

u −WH
(t−1)δn

)p− j
(∫ u

(t−1)δn

κs ds
) j

.

Then Zn,p
t is represented by

Zn,p
t =

1
δn

∫ tδn

(t−1)δn

ηp
(
WH

u −WH
(t−1)δn

)p
du +

p∑

j=1

Γ(p + 1)
Γ(p − j + 1)Γ( j + 1)

Rt,n, j,

where

Rp
t,n, j :=

1
δn

∫ tδn

(t−1)δn

ηp− j
(
WH

u −WH
(t−1)δn

)p− j
(∫ u

(t−1)δn

κs ds
) j

du.

Therefore, the conclusion when K = 1 follows from the Hölder continuity of the fractional Brownian motion
WH. Next, we consider the case where K ≥ 2. Then the multinomial theorem yield that

max
t∈Λn+1

∣∣∣Zn,p
t −Wn,p

t

∣∣∣ =max
t∈Λn+1

∣∣∣∣∣∣∣

K∏

k=1

{
Wn,pk

t +
(
Zn,pk

t −Wn,pk
t

)}
−Wn,p

t

∣∣∣∣∣∣∣

≤
∑

j1, j2,··· , jK
max
t∈Λn+1

∣∣∣∣∣∣∣

K∏

k=1

(
Wn,pk

t

) ji (
Zn,pk

t −Wn,pk
t

)1− ji

∣∣∣∣∣∣∣
,

where the last sum is taken over all j1, · · · , jK ∈ {0, 1} satisfying that there exists i ∈ {1, · · · ,K} such that ji = 0.
As a result, the conclusion when K ≥ 2 follows from (18) and the conclusion when K = 1. !

A.3 Asymptotic Decay of Covariance Function for Stationary Process Associated with
Some Functionals of Fractional Brownian Motion

In this section, we will show an asymptotic decay of covariance function for the stationary process Wp
n

appeared in the reminder terms of the Taylor approximation given in Proposition A.2. This result plays a
key role in order to prove that the reminder terms Wp

n are asymptotically negligible in the case where the
consistency of the adapted Whittle estimator holds. We will state the key result in Section A.3.1, several
preliminary results used in its proof are summarized in Section A.3.2 and its proof is given in Section A.3.3.

A.3.1 Notation and Statement of Key Result

At first, we prepare notation in order to state a general result for Proposition C.1. Denote by CR a set of real-
valued continuous functions onR and byB(CR) a Borel σ-algebra on CR generated by a topology associated
with the compact convergence. Let µH be the distribution of the two-sided standard fractional Brownian
motion with the Hurst parameter H ∈ (0, 1] on (CR,B(CR)), and a continuous shift operator θ = {θu}u∈R be
defined by θux· := x·+u − xu for (u, x) ∈ R × CR. Note that µH is θ-invariant, i.e. µH ◦ θ−1

u = µH for each u ∈ R

5



since the fractional Brownian motion enjoys the stationary increments property. Moreover, U = {Uu}u∈R
denotes the canonical process on (CR,B(CR)), i.e. Uu(x) := xu for each (u, x) ∈ R×CR. Furthermore, for each
p = (p1, · · · , pK) ∈NK, K ∈ R, and compact set Ap ⊂ RK, we define a functional Fp by

Fp(x) :=
∫

Ap

K∏

k=1

xpk
uk

du1 · · · duK =

∫

Ap

K∏

k=1

{
Uuk (x)

}pk du1 · · · duK

for x = {xu}u∈R ∈ CR and a stochastic process {Gp
u}u∈R on (CR,B(CR), µH) by Gp

u(x) := Fp(θux) for u ∈ R and
x ∈ CR.

Next, let us recall the following definition, e.g. see Tudor [37], p.172.

Definition A.6. A filter of length J ∈ N and order r ∈ N is a (J + 1)-dimensional vector a := {a0, a1, · · · , aJ} such
that for any k ∈N ∪ {0} with k < r,

J∑

j=0

aj jk = 0, (48)

where we use 00 := 1 for convenience, and
J∑

j=0

aj jr ! 0. (49)

Moreover, we also call a = {a0, a1, · · · , aJ} as a filter of length J and order 0 if it satisfies (49) for r = 0.

Remark A.7. For any filter a = {a0, a1, · · · , aJ} of order r ∈N, the property (48) yield that for any k ∈N ∪ {0}
with k < 2r,

J∑

i, j=0

aiaj( j − i)k = 0. (50)

For a filter a = {a0, a1, · · · , aJ} and a stochastic process X = {Xu}u∈R, we define

∆aXu :=
J∑

j=0

ajXu− j, u ∈ R. (51)

For example, if we set a = (a0, a1) with a0 = −1, a1 = 1, then a is a filter of length 1 and order 1, and
∆aX· = X· − X·−1.

Finally, we will state a main result in this section.

Proposition A.8. Let a be a filter of length J ∈ N and order r ∈ N ∪ {0}. Then for any p ∈ NK with K ∈ N, the
stochastic process {∆aGp

u}u∈R is stationary and for any p ∈NK, q ∈NL with K,L ∈N and u ∈ R,

CovµH

[
∆aGp

u ,∆aGq
u+τ

]
= O

(
|τ|2H−2−2r

)
as |τ|→∞. (52)

As a corollary of Proposition A.8, we can obtain the following result from the self-similarity property of
the fractional Brownian motion.

Proposition A.9. For any p ∈ NK, q ∈ NL with K,L ∈ N, the stochastic process {Wn,p
t }t∈Z is stationary for each

n ∈N and the following relation holds for any t ∈ R:

sup
n∈N

∣∣∣∣δ−(|p|+|q|)H
n Cov

[
∆Wn,p

t ,∆Wn,q
t+τ

]∣∣∣∣ = O
(
|τ|2H−4

)
as |τ|→∞.
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A.3.2 Preliminary Results

We summarize several preliminary results used in the proof of Proposition A.8 in this subsection. The first
result is proven in the similar way to that in Billingsley [7], p.230-231.

Proposition A.10. Let A ∈ B(RK) with K ∈ N and f be a measurable function on RK. For x = {xu}u∈R ∈ CR, we
define a functional F by

F(x) :=
∫

A
f (xu1 , · · · , xuK ) du1 · · · duK. (53)

Then the functional F is B(CR)-measurable if (u1, · · · ,uK) $→ f (xu1 , · · · , xuK ) is integrable on A. Furthermore, if A is
compact and f is continuous, then x $→ F(x) is also continuous.

Since the shift operator θ is continuous and µH is θ-invariant, we can obtain the following result using
Proposition A.10.

Corollary A.11. Let us consider a functional F of the form (53) with a continuous function f and a compact set
A ∈ B(RK). Then a stochastic process G = {Gu}u∈R defined by Gu(x) := F(θux) for (u, x) ∈ R×CR is continuous and
strong stationary on the probability space (CR,B(CR), µH).

The following result is a consequence of the well-know Wick formula which expresses the higher
moments of centered multivariate Gaussian vectors in terms of its second moments, e.g. see Nourdin and
Peccati [33]. Given a finite set b the number of which is even, we denote by P(b) the class of all partitions of
b such that each block of a partition π contains exactly two elements, and recall ΛM := {1, 2, · · · ,M}.

Lemma A.12. For any K0,L0 ∈N and (K0 + L0)-dimensional centered Gaussian vector (X1, · · · ,XK0+L0 ),

Cov




K0∏

k=1

Xk,
L0∏

+=1

XK0++


 =



∑
π={{k1,+1},··· ,{kM0 ,+M0 }}∈P0(Λ2M0 ) Cov[Xk1 ,X+1 ] · · ·Cov[XkM0

,X+M0
] if K0 + L0 is even,

0 if K0 + L0 is odd,

where M0 := (K0+L0)/2 andP0(Λ2M0 ) denotes the subset ofP(Λ2M0 ) whose elements are partitionsπ = {{k1, +1}, · · · , {kM0 , +M0 }} ∈
P(Λ2M0 ) such that there exists m ∈ ΛM0 satisfying km ≤ K0 < +m.

Proof. Let us consider only the case that both K0 and L0 are even since the other cases are trivial from the
Wick formula. Since K0 and L0 are even, the Wick formula yields that

E




K0+L0∏

k=1

Xk


 =

∑

{{k1,+1},··· ,{kM0 ,+M0 }}∈P(Λ2M0 )

Cov[Xk1 ,X+1 ] · · ·Cov[XkM0
,X+M0

]

=




∑

{{k1,+1},··· ,{kK0/2,+K0/2}}∈P(ΛK0 )

Cov[Xk1 ,X+1 ] · · ·Cov[XkK0/2
,X+K0/2

]




×



∑

{{k1,+1},··· ,{kL0/2,+L0/2}}∈P(ΛL0 )

Cov[XK0+k1 ,XK0++1 ] · · ·Cov[XK0+kL0/2
,XK0++L0/2

]




+
∑

{{k1,+1},··· ,{kM0 ,+M0 }}∈P0(Λ2M0 )

Cov[Xk1 ,X+1 ] · · ·Cov[XkM0
,X+M0

]

=E




K0∏

k=1

Xk


 E




L0∏

+=1

XK0++


 +

∑

{{k1,+1},··· ,{kM0 ,+M0 }}∈P0(Λ2M0 )

Cov[Xk1 ,X+1 ] · · ·Cov[XkM0
,X+M0

].

Therefore, the conclusion follows. !
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A.3.3 Proof of Proposition A.8

Before proving Proposition A.8, we will show the following two lemmas. Denote byγs,u(τ) := CovµH [Us(θ0),Uu(θτ)]
for s,u, τ ∈ R.

Lemma A.13. For each s,u ∈ R, τ $→ γs,u(τ) is infinitely differentiable a.e. and, for any k ∈N∪ {0} and compact set
A ⊂ R, its kth derivative satisfies

sup
s,u∈A

∣∣∣∣∣∣
∂kγs,u

∂τk (τ)

∣∣∣∣∣∣ = O(|τ|2H−2−k) as |τ|→∞.

Proof. Fix s,u ∈ R and a compact set A ⊂ R. Since µH is a distribution of the two-sided standard fractional
Brownian motion with the Hurst parameter H, we have

γs,u(τ) = −1
2

(
|τ + u − s|2H − |τ + u|2H − |τ − s|2H + |τ|2H

)
, τ ∈ R.

As a result, the first assertion is obvious and for any k ∈N, we obtain

∂kγs,u

∂τk (τ) = − (sgn(τ))k

2

k−1∏

+=0

(2H − +)
(
|τ + u − s|2H−k − |τ + u|2H−k − |τ − s|2H−k + |τ|2H−k

)
(54)

if |τ| is sufficiently large, where sgn(·) denotes the sign function defined by

sgn(τ) =


1 τ ≥ 0,

−1 τ < 0.

Then the second assertion follows from (54) because Taylor’s theorem yields that for any L ∈N,

|τ + u − s|2H−k − |τ + u|2H−k − |τ − s|2H−k + |τ|2H−k

=|τ|2H−k
{(

1 +
u − s
τ

)2H−k
−

(
1 +

u
τ

)2H−k
−

(
1 +
−s
τ

)2H−k
+ 1

}

=|τ|2H−k
L∑

+0=1

1
+0!



+0−1∏

+=0

(2H − k − +)

{
(u − s)+0 − (−s)+0 + u+0

}
τ−+0 + o(|τ|2H−k−L)

as |τ|→∞ uniformly in s,u ∈ A and (u − s)+0 − (−s)+0 + u+0 = 0 for +0 = 1. !

Lemma A.14. Let a = (a0, a1, · · · , aJ) be a filter of length J ∈ N and order r ∈ N ∪ {0}. For any compact set A ⊂ R
and p = (p1, · · · , pK) ∈NK, q = (q1, · · · , qL) ∈NL with K,L ∈N,

sup
s1,u1,··· ,sv,uv∈A

∣∣∣∣∣∣∣∣

J∑

i, j=0

aiajCovµH




K∏

k=1

{
Usk (θi)

}pk ,
L∏

+=1

{
Uu+ (θ j+τ)

}q+



∣∣∣∣∣∣∣∣
= O

(
|τ|2H−2−2r

)
as |τ|→∞.

Proof. By using Lemma A.12 in the case that K0 := |p|, L0 := |q| and (K0 +L0)-dimensional centered Gaussian
vector X ≡ (X1, · · · ,XK0+L0 ) given by

X := (Us1 (θi), · · · ,Us1 (θi)︸!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!︸
p1 times

, · · · ,UsK (θi), · · · ,UsK (θi)︸!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!︸
pK times

,Uu1 (θ j+τ), · · · ,Uu1 (θ j+τ)
︸!!!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!!!︸

q1 times

, · · · ,UuL (θ j+τ), · · · ,UuL (θ j+τ)
︸!!!!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!!!!︸

qL times

),
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it suffices to prove that for any compact set A ⊂ R and v ∈N,

sup
s1,u1,··· ,sv,uv∈A

∣∣∣∣∣∣∣∣

J∑

i, j=0

aiaj

v∏

w=1

CovµH

[
Usw (θi),Uuw (θ j+τ)

]
∣∣∣∣∣∣∣∣
= O

(
|τ|2H−2−2r

)
as |τ|→∞ (55)

since the stationary increments property of the fractional Brownian motion implies

CovµH

[
Us1 ,Us2

]
= CovµH

[
Us1 (θi),Us2 (θi)

]
,

CovµH

[
Uu1 ,Uu2

]
= CovµH

[
Uu1 (θ j+τ),Uu2 (θ j+τ)

]

for any s1, s2,u1,u2 ∈ R.
Fix a compact set A ⊂ R and recall γs,u(τ) := CovµH [Us(θ0),Uu(θτ)]. Since Taylor’s theorem and

Lemma A.13 yield that for any K ∈N,

sup
s,u∈A

i, j=0,··· ,J

∣∣∣∣∣∣∣
γs,u(τ + ( j − i)) −

K∑

k=0

( j − i)k

k!
∂kγs,u

∂τk (τ)

∣∣∣∣∣∣∣
= o

(
|τ|2H−2−K

)
as |τ|→∞, (56)

(55) in the case of v = 1 follows from (50) if we take K ∈ N satisfying K ≥ 2r. Moreover, the Taylor
approximation (56), the multinomial theorem and Lemma A.13 yield that

sup
s1,u1,··· ,sv,uv∈A

i, j=0,··· ,J

∣∣∣∣∣∣∣

v∏

w=1

γsw,uw (τ + ( j − i)) −
K∑

k1,··· ,kv=0

( j − i)k1+···+kv

k1! · · · kv!

v∏

w=1

∂kwγsw,uw

∂τkw
(τ)

∣∣∣∣∣∣∣
= o

(
|τ|2H−2−K

)
(57)

as |τ|→∞, and (50) and Lemma A.13 yield that

sup
s1,u1,··· ,sv,uv∈A

∣∣∣∣∣∣∣∣

J∑

i, j=0

aiaj
( j − i)k1+···+kv

k1! · · · kv!

v∏

w=1

∂kwγsw,uw

∂τkw
(τ)

∣∣∣∣∣∣∣∣
(58)


= 0 if

∑v
w=1 kw < 2r,

= O
(
|τ|

∑v
w=1(2H−2−kw)

)
as |τ|→∞ if

∑v
w=1 kw ≥ 2r.

Then (55) in the case of v ≥ 2 follows from (57) and (58) if we take K ∈ N satisfying K ≥ 2r. Therefore, we
finish the proof. !

Proof of Proposition A.8. Since Gp is stationary from Corollary A.11, the bilinearity of covariance functions
and Fubini’s theorem yield that

CovµH

[
∆aGp

u ,∆aGq
u+τ

]
=

∫

Ap×Aq

J∑

i, j=0

aiajCovµH




K∏

k=1

{
Usk (θi)

}pk ,
L∏

+=1

{
Uu+ (θ j+τ)

}q+

 ds1 · · · dsKdu1 · · · duL.

Therefore, the conclusion follows from the above equality and Lemma A.14. !
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B Extension of Some Results in Fox and Taqqu [13, 14]

We will show several extended lemmas and theorem developed in Fox and Taqqu [13, 14] in the case where
functions appeared in their results depend on the asymptotic parameter n ∈ N. They can be easily proven
in the similar way to the corresponding results in Fox and Taqqu [13, 14]; we will however give their concise
proofs in Section B.1 and Section B.2 for convenience. The following two results are extensions of Lemma 4
and Lemma 5 in [13] which show an asymptotic decay of the Fourier coefficient.

Lemma B.1 (cf. Lemma 4 and Lemma 5 in [13]). Let β ∈ (−1, 0) ∪ (0, 1) and n ∈ N. Suppose a sequence of
2π-periodic functions kn : R→ [−∞,∞], n ∈N, satisfies the following conditions:

(1) If β ∈ (0, 1), kn is continuously differentiable on [−π,π]\{0} for each n ∈N and

sup
n∈N,λ∈[−π,π]\{0}

|λ|β |kn(λ)| < ∞, sup
n∈N,λ∈[−π,π]\{0}

|λ|β+1
∣∣∣∣∣
∂kn

∂λ
(λ)

∣∣∣∣∣ < ∞.

(2) If β ∈ (−1, 0), kn is integrable and twice continuously differentiable on [−π,π]\{0} for each n ∈N and

sup
n∈N,λ∈[−π,π]\{0}

|λ|β+1
∣∣∣∣∣
∂kn

∂λ
(λ)

∣∣∣∣∣ < ∞, sup
n∈N,λ∈[−π,π]\{0}

|λ|β+2

∣∣∣∣∣∣
∂2kn

∂λ2 (λ)

∣∣∣∣∣∣ < ∞.

Then the sequence of the Fourier coefficients k̂n(τ), τ ∈ Z, satisfies

sup
n∈N

∣∣∣∣k̂n(τ)
∣∣∣∣ = O

(
|τ|β−1

)
as |τ|→∞.

Lemma B.2. Suppose a sequence of 2π-periodic functions kn : R→ [−∞,∞], n ∈ N, is continuously differentiable
on [−π,π]\{0} for each n ∈N and

sup
n∈N,λ∈[−π,π]\{0}

|kn(λ)| < ∞, sup
n∈N,λ∈[−π,π]\{0}

|λ|
∣∣∣∣∣
∂kn

∂λ
(λ)

∣∣∣∣∣ < ∞.

Then the sequence of the Fourier coefficients k̂n(τ), τ ∈ Z, satisfies

sup
n∈N

∣∣∣∣k̂n(τ)
∣∣∣∣ = O

(
|τ|−1 log |τ|

)
as |τ|→∞.

The following result is an extension of Theorem 1 in [14] in the case where functions appeared in
Theorem 1 in [14] depend on the asymptotic parameter n ∈ N; they however have the same asymptotic
behavior at the origin as that assumed in Theorem 1 in [14] uniformly to the asymptotic parameter n ∈ N
and they uniformly converge to some functions almost everywhere as n→∞.

Theorem B.3 (cf. Theorem 1 in [14]). Let α1,α2 < 1 and p ∈ N. Suppose sequences of even functions kn
1 , k

n
2 :

[−π,π]→ [−∞,∞] satisfy the following two conditions:

(1) The following relations hold:

sup
n∈N,λ∈[−π,π]\{0}

|λ|α1
∣∣∣kn

1(λ)
∣∣∣ < ∞, sup

n∈N,λ∈[−π,π]\{0}
|λ|α2

∣∣∣kn
2(λ)

∣∣∣ < ∞.
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(2) There exist functions k1, k2 : [−π,π]→ [−∞,∞] such that

lim
n→∞

ess sup
λ∈[−π,π]

|kn
1(λ) − k1(λ)| = 0, lim

n→∞
ess sup
λ∈[−π,π]

|kn
2(λ) − k2(λ)| = 0.

Moreover, the discontinuities of k1 and k2 have the Lebesgue measure 0.

Under the above conditions, we have

(a) If p(α1 + α2) < 1,

lim
n→∞

1
n

Tr
[(
Σn(kn

1)Σn(kn
2)
)p]
= (2π)2p−1

∫ π

−π
[k1(λ)k2(λ)]p dλ.

(b) If p(α1 + α2) ≥ 1, then for any ψ > 0,

Tr
[(
Σn(kn

1)Σn(kn
2)
)p]
= o

(
np(α1+α2)+ψ

)
as n→∞.

B.1 Proof of Lemma B.1 and Lemma B.2

Proof of Lemma B.1 in Case (1). Consider the case of β ∈ (0, 1). Let τ ∈ Z\{0}. Since kn is 2π-periodic, we have

k̂n(τ) =
∫ π+π/|τ|

−π+π/|τ|
e
√
−1τλkn(λ) dλ

= −
∫ π+π/|τ|

−π+π/|τ|
e
√
−1τ(λ−π/|τ|)kn(λ) dλ = −

∫ π

−π
e
√
−1τλkn

(
λ +

π
|τ|

)
dλ.

As a result, we obtain

2
∣∣∣∣k̂n(τ)

∣∣∣∣ =
∣∣∣∣∣

∫ π

−π
e
√
−1τλ

[
kn(λ) − kn

(
λ +

π
|τ|

)]
dλ

∣∣∣∣∣

≤
∫ π

−π

∣∣∣∣∣k
n(λ) − kn

(
λ +

π
|τ|

)∣∣∣∣∣ dλ =
∫ −2π/|τ|

−π
+

∫ π/|τ|

−2π/|τ|
+

∫ π

π/|τ|
. (59)

The assumption implies that

c1 := sup
n∈N,λ∈[−π,π]\{0}

{
|λ|β |kn(λ)| + |λ|β+1

∣∣∣∣∣
∂kn

∂λ
(λ)

∣∣∣∣∣

}
< ∞.

By the mean value theorem,

∫ −2π/|τ|

−π

∣∣∣∣∣k
n(λ) − kn

(
λ +

π
|τ|

)∣∣∣∣∣ dλ ≤ c1
π
|τ|

∫ −2π/|τ|

−π

∣∣∣∣∣λ +
π
|τ|

∣∣∣∣∣
−β−1

dλ

= c1
π
|τ|

∫ −π/|τ|

−π+π/|τ|
|λ|−β−1 dλ

= c1π|τ|β−1
∫ (|τ|−1)π

π
λ−β−1 dλ = O

(
|τ|β−1

)

as |τ|→ ∞. Note that β > 0 is necessary to obtain the last asymptotic behavior. A similar argument shows
that

sup
n∈N

∫ π

π/|τ|

∣∣∣∣∣k
n(λ) − kn

(
λ +

π
|τ|

)∣∣∣∣∣ dλ = O
(
|τ|β−1

)
as |τ|→∞.
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We also have
∫ π/|τ|

−2π/|τ|

∣∣∣∣∣k
n(λ) − kn

(
λ +

π
|τ|

)∣∣∣∣∣ dλ ≤
∫ π/|τ|

−2π/|τ|
|kn(λ)| dλ +

∫ π/|τ|

−2π/|τ|

∣∣∣∣∣k
n
(
λ +

π
|τ|

)∣∣∣∣∣ dλ

≤ c1

∫ π/|τ|

−2π/|τ|
|λ|−β dλ + c1

∫ π/|τ|

−2π/|τ|

∣∣∣∣∣λ +
π
|τ|

∣∣∣∣∣
−β

dλ

= 2c1

∫ π/|τ|

−2π/|τ|
|λ|−β dλ = O

(
|τ|β−1

)
as |τ|→∞.

This completes the proof in the case of β ∈ (0, 1). !

Proof of Lemma B.1 in Case (2). Consider the case of β ∈ (−1, 0). Let τ ∈ Z\{0}. Since the continuity of kn on
[−π,π]\{0} implies kn(π) = kn(−π), the integration by parts formula yields

k̂n(τ) = − 1√
−1τ

∫ π

−π
e
√
−1τλ ∂kn

∂λ
(λ) dλ.

Moreover, since the derivative ∂kn

∂λ is also 2π-periodic from the assumption, the argument in the case (1) can
be applied so that we obtain

sup
n∈N

∣∣∣∣k̂n(τ)
∣∣∣∣ =

1
|τ|O

(
|τ|(β−1)−1

)
= O

(
|τ|β−1

)
as |τ|→∞.

This completes the proof in the case of β ∈ (−1, 0). !

Proof of Lemma B.2. The same argument in Lemma B.1 shows the inequality (59). The assumption implies
that

c2 := sup
n∈N,λ∈[−π,π]\{0}

{
|kn(λ)| + |λ|

∣∣∣∣∣
∂kn

∂λ
(λ)

∣∣∣∣∣

}
< ∞.

By the mean value theorem, the similar argument in Lemma B.1 yields

∫ −2π/|τ|

−π

∣∣∣∣∣k
n(λ) − kn

(
λ +

π
|τ|

)∣∣∣∣∣ dλ ≤c2
π
|τ|

∫ (|τ|−1)π

π
λ−1 dλ

=c2
π
|τ| {log((|τ| − 1)π) − logπ} = O

(
|τ|−1 log |τ|

)

as |τ|→∞. A similar argument shows that

sup
n∈N

∫ π

π/|τ|

∣∣∣∣∣k
n(λ) − kn

(
λ +

π
|τ|

)∣∣∣∣∣ dλ = O
(
|τ|−1 log |τ|

)
as |τ|→∞.

Since kn(λ) is bounded a.e. from the assumption, the same argument in Lemma B.1 yields

sup
n∈N

∫ π/|τ|

−2π/|τ|

∣∣∣∣∣k
n(λ) − kn

(
λ +

π
|τ|

)∣∣∣∣∣ dλ = O
(
|τ|−1

)
as |τ|→∞.

This completes the proof of Lemma B.2. !
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B.2 Proof of Theorem B.3

B.2.1 Outline of Proof of Theorem B.3

Fix p ∈N and note that

Tr
[(
Σn(kn

1)Σn(kn
2)
)p]

=
n−1∑

j1=0

· · ·
n−1∑

j2p=0

k̂n
1( j1 − j2)k̂n

2( j2 − j3) · · · k̂n
1( j2p−1 − j2p)k̂n

2( j2p − j1)

=
n−1∑

j1=0

· · ·
n−1∑

j2p=0

(∫ π

−π
· · ·

∫ π

−π
e
√
−1( j1− j2)y1 e

√
−1( j2− j3)y2 · · · e

√
−1( j2p− j1)y2p kn

1(y1)kn
2(y2) · · · kn

1(y2p−1)kn
2(y2p) dy1 · · ·dy2p

)

=

∫

Uπ

Pn(y)Qn(y) dy,

where Ut := [−t, t]2p for t ∈ (0,π] and

Pn(y) := h∗n(y1 − y2p)h∗n(y2 − y1) · · · h∗n(y2p − y2p−1), h∗n
(
y
)

:=
n−1∑

j=0

e
√
−1 jy,

Qn(y) := kn
1(y1)kn

2(y2) · · · kn
1(y2p−1)kn

2(y2p).

Following the arguments of Fox and Taqqu [14], we divide Uπ into three disjoint sets Et, Ft, G given by

Et := Uπ\{Ut ∪W}, Ft := Ut\W, G := Uπ ∩W,

where t ∈ (0,π] and

Wj :=
{

y = (y1, · · · , y2p) ∈ R2p : |yj| ≤
|yj+1|

2

}
, j = 1, · · · , 2p,

W :=W1 ∪W2 ∪ · · ·W2p.

Note that we use the notation y2p+1 ≡ y1 for simplicity.
In order to prove the first result of Theorem B.3, it suffices to prove that p(α1 + α2) < 1 implies the

following three results:

lim
n→∞

1
n

∫

Et

Pn(y)Qn(y) dy = (2π)2p−1
∫

t≤|z|≤π
[ f (z)g(z)]p dz, ∀t ∈ (0, 1], (60)

lim
t→0

lim sup
n→∞

1
n

∫

Ft

Pn(y)Qn(y) dy = 0, (61)

lim
n→∞

1
n

∫

G
Pn(y)Qn(y) dy = 0. (62)

Remark B.4. In order to prove (61), we will show that p(α1 + α2) < 1 implies

lim
t→0

lim sup
n→∞

1
n

∫

Ut

Pn(y)Qn(y) dy = 0. (63)
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Remark B.5. Since G =
⋃2p

j=1[Uπ ∩Wj], the relation (62) will hold if we prove that p(α1 + α2) < 1 implies

lim
n→∞

1
n

∫

Uπ∩Wj

|Pn(y)Qn(y)|dy = 0, j = 1, · · · , 2p. (64)

From the definition of Pn and Qn, it is clear that
∫

Uπ∩W1

|Pn(y)Qn(y)|dy =
∫

Uπ∩W3

|Pn(y)Qn(y)|dy = · · · =
∫

Uπ∩W2p−1

|Pn(y)Qn(y)|dy

and ∫

Uπ∩W2

|Pn(y)Qn(y)|dy =
∫

Uπ∩W4

|Pn(y)Qn(y)|dy = · · · =
∫

Uπ∩W2p

|Pn(y)Qn(y)|dy.

Because of the symmetry between α1 and α2 in the hypothesis of theorem, it is clear that we prove that
p(α1 + α2) < 1 implies

lim
n→∞

1
n

∫

Uπ∩W1

|Pn(y)Qn(y)|dy = 0, (65)

then we will have also established

lim
n→∞

1
n

∫

Uπ∩W2

|Pn(y)Qn(y)|dy = 0.

Thus (64) will follow from (65).

In conclusion, the first result of Theorem B.3 will be proven if we show that p(α1 + α2) < 1 implies (60),
(63) and (65). Moreover, the second result of Theorem B.3 will be proven if we show that p(α1 + α2) ≥ 1
implies

∀ψ > 0,
∫

Uπ

|Pn(y)Qn(y)|dy = O(np(α1+α2)+ψ) as n→∞. (66)

These results will be proven in Section B.2.3. In the next subsection, we summarize several preliminaries
used in the proof of Theorem B.3 following with Fox and Taqqu [14].

B.2.2 Preliminaries

To state the lemma, introduce the diagonal

D := {y = (y1, · · · , y2p) ∈ Uπ : y1 = y2 = · · · = y2p}.

Let µ be the measure on Uπ which is concentrated on D and satisfies µ({y : a ≤ y1 = y2 = · · · = y2p ≤ b}) = b−a
for all −π ≤ a ≤ b ≤ π. Thus µ is Lebesgue measure on D, normalized so that µ(D) = 2π.

Lemma B.6 (cf. Lemma 7.1. in [14]). Define a (signed) measure µn on Uπ by

µn(A) :=
1

(2π)2p−1n

∫

A
Pn(y) dy (67)

for each measurable set A ⊂ Uπ. Then µn converges weakly to µ as n→∞.
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For each n ∈N, define the function

hn(z) :=



min
(

1
|z+2π| ,n

)
if −2π ≤ z < −π,

min
(

1
|z| ,n

)
if −π ≤ z < π,

min
(

1
|z−2π| ,n

)
if π ≤ z ≤ 2π.

and the function fn : R2p → R by

fn(y) :=hn
(
y1 − y2p

)
hn

(
y2 − y1

)
hn

(
y3 − y2

) · · · hn
(
y2p − y2p−1

)

× |y1|−α1 |y2|−α2 |y3|−α1 · · · |y2p|−α2 ,

where α1,α2 < 1.

Lemma B.7. There exists a constant c > 0 such that for each n ∈N and y ∈ Uπ,

∣∣∣Pn(y)Qn(y)
∣∣∣ ≤ c fn(y).

Proof. As shown in [14], p.237, we have

|Pn(y)| ≤ 42phn
(
y1 − y2p

)
hn

(
y2 − y1

)
hn

(
y3 − y2

) · · · hn
(
y2p − y2p−1

)

for each n ∈N and y ∈ Uπ. Therefore, the conclusion follows from the assumption. !

Proposition B.8 (cf. Proposition 6.1. in [14]). Let α1,α2 < 1 and W1 = {y ∈ R2p : |y1| ≤ |y2 |
2 }.

a) If α1 + α2 ≤ 0, then for any ψ > 0,
∫

Uπ∩W1

fn(y) dy = O(nψ) as n→∞.

b) If α1 + α2 > 0, then for any ψ > 0,
∫

Uπ∩W1

fn(y) dy = O(np(α1+α2)+ψ) as n→∞.

Proposition B.9 (cf. Proposition 6.2. in [14]). Let α1,α2 < 1.

a) If p(α1 + α2) < 1, then

lim
t→0

lim sup
n→∞

1
n

∫

Ut

fn(y) dy = 0.

b) If p(α1 + α2) ≥ 1, then for any ψ > 0,
∫

Uπ

fn(y) dy = O(np(α1+α2)+ψ) as n→∞.

B.2.3 Proof of Theorem B.3

As mentioned in Fox and Taqqu [14], p.237-238, the results (63), (65) and (66) immediately follow from
Proposition 6.1., Proposition 6.2. in [14] in addition to Lemma B.7. In the rest of this section, we will prove
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(60). Note that
1
n

∫

Et

Pn(y)Qn(y) dy = (2π)2p−1
∫

Et

Qn(y)µn(dy),

where µn is given in (67), and set

Q(y) := k1(y1)k2(y2) · · · k1(y2p−1)k2(y2p), y = (y1, · · · , y2p) ∈ Et.

Since the assumptions imply
lim
n→∞

ess sup
λ∈[−π,π]

|Qn(λ) −Q(λ)| = 0

and the limit function Q is continuous a.e. and bounded on Et for each t ∈ (0,π], see Fox and Taqqu [14],
p.237, for more detail, Lemma 7.1. in Fox and Taqqu [14] yields

1
n

∫

Et

Pn(y)Qn(y) dy = (2π)2p−1
∫

Et

Qn(y)µn(dy)

= (2π)2p−1
∫

Et

(
Qn(y) −Q(y)

)
µn(dy) + (2π)2p−1

∫

Et

Q(y)µn(dy)

n→∞→ (2π)2p−1
∫

Et

Q(y)µ(dy) = (2π)2p−1
∫

[−π,π]\[−t,t]
[ f (z)g(z)]p dz.

Therefore, the conclusion follows.

C Limit Theorems of Quadratic Forms

In this section, we derive several limit theorems of the quadratic form of random sequence which are used
in the proof of Proposition 4.1 and Proposition 4.2 under the following assumptions.

Assumption C.1. Recall Θ := ΘH × Θη is a compact set of the form ΘH := [H−,H+] ⊂ (0, 1] and Θη :=
[η−, η+] ⊂ (0,∞). Let us consider a function k : [−π,π] ×Θ ×N→ [−∞,∞], denoted by kn

ϑ(λ) ≡ k(λ,ϑ, n), be
even and integrable on [−π,π] for each ϑ ∈ Θ and n ∈ N and assume there exist monotonically increasing
continuous functions β0, β1 : ΘH → (−1, 1) such that the function k satisfies the conditions (C.1)-(C.3) below
on a restricted parameter space Θ0(ξ) := ΘH,0(ξ) ×K , whereK be a compact interval of (0,∞) and

ΘH,0(ξ) := {H ∈ ΘH : −β0(H) − α(H0) ≥ −1 + ξ,−β1(H) − α(H0) ≥ −1 + ξ}, ξ ∈ (0, 1).

Here H0 denotes the true value of H ∈ ΘH, the function α : ΘH → (−1, 1) is given in Lemma A.1 and we only
consider sufficiently small ξ ∈ (0, 1) such that Θ̊H,0(ξ) ! ∅, where Θ̊H,0(ξ) is the set of all interior points of
ΘH,0(ξ).

(C.1) For each ϑ ∈ Θ0(ξ), there exists a function kϑ such that

lim
n→∞

ess sup
λ∈[−π,π]

|kn
ϑ(λ) − kϑ(λ)| = 0,

and the discontinuities of kϑ has the Lebesgue measure 0 for each ϑ ∈ Θ0(ξ).

(C.2) For each ϑ ∈ Θ0(ξ), the following relations hold:

sup
n∈N,λ∈[−π,π]\{0}

|λ|β0(H)
∣∣∣kn
ϑ(λ)

∣∣∣ < ∞.
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(C.3) For each λ ∈ [−π,π]\{0}, kn
ϑ(λ) is differentiable with respect to ϑ ∈ Θ0(ξ) and its partial derivatives

satisfy

sup
n∈N,λ∈[−π,π]\{0},
ϑ=(ϑ1,ϑ2)∈Θ0(ξ)

|λ|β1(ϑ1)

∣∣∣∣∣∣
∂kn

ϑ

∂ϑ j
(λ)

∣∣∣∣∣∣ < ∞, j = 1, 2.

C.1 Basic Properties of Bilinear and Quadratic Forms

At first, we summarize several basic properties of the bilinear form Bn and the quadratic form Qn as
functionals on L1[−π,π] without proofs.

Lemma C.2. Let x,y ∈ Cn. The functionals Bn(x,y, ·) and Qn(x, ·) on L1[−π,π] satisfy the following properties.

(1) For each x,y ∈ Cn, the functional Bn(x,y, ·) is linear on L1[−π,π].

(2) For each x ∈ Cn, the functional Qn(x, ·) is non-decreasing on L1[−π,π], i.e. for each k1, k2 ∈ L1[−π,π],

Qn(x, k1) ≤ Qn(x, k2) if k1 ≤ k2,

where k1 ≤ k2 means k1(λ) ≤ k2(λ) for a.e. λ ∈ [−π,π].

(3) For each x ∈ Cn, Qn(x, k) ≥ 0 if k ∈ L1[−π,π] satisfies k ≥ 0.

(4) For each x ∈ Cn with x ! 0, Qn(x, k) > 0 if k ∈ L1[−π,π] satisfies k ≥ 0 and the set {λ ∈ [−π,π] : k(λ) > 0} has
a positive Lebesgue measure.

Next lemma is useful to evaluate asymptotic behaviors of bilinear forms.

Lemma C.3. Suppose a sequence of functions kn
ϑ, n ∈N, satisfies the condition (C.2) in Assumption C.1. Then there

exists an even and 2π-periodic function k†ϑ, which is independent of the asymptotic parameter n ∈N, such that

sup
n∈N

∣∣∣kn
ϑ(λ)

∣∣∣ ≤
∣∣∣k†ϑ(λ)

∣∣∣ and sup
ϑ∈Θ0,λ∈[−π,π]\{0}

{
|λ|β0(H)

∣∣∣k†ϑ(λ)
∣∣∣
}
< ∞.

Moreover, the following two inequalities hold for each x,y ∈ Cn and ϑ ∈ Θ0:
∣∣∣∣Qn

(
x, kn

ϑ

)∣∣∣∣ ≤ Qn
(
x,

∣∣∣kn
ϑ

∣∣∣
)
≤ Qn(x, k†ϑ), (68)

∣∣∣∣Bn
(
x,y, kn

ϑ

)∣∣∣∣ ≤ 2
√

Qn
(
x, k†ϑ

)√
Qn

(
y, k†ϑ

)
. (69)

Proof. Define a function k†ϑ by

k†ϑ(λ) := c{2(1 − cosλ)}
∑

j∈Z
|λ + 2π j|−β0(H)−2

with c := sup
ϑ∈Θ0,λ∈[−π,π]\{0},n∈N

{ |λ|2
2(1 − cosλ)

· |λ|β0(H)
∣∣∣kn
ϑ(λ)

∣∣∣
}
.

Then it is obvious that the function k†ϑ satisfies all conditions mentioned at the beginning. Moreover, the
first inequality immediately follows from Lemma C.2 (2). In the rest of this proof, we will prove the second
inequality. Decompose kn

ϑ into the following two non-negative functions:

kn
ϑ(λ) = kn

ϑ,+(λ) − kn
ϑ,−(λ), where kn

ϑ,+(λ) := max(kn
ϑ(λ), 0), kn

ϑ,−(λ) := max(−kn
ϑ(λ), 0).
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Note that both of kn
ϑ,+ and kn

ϑ,− are even functions and satisfy the condition (C.2) from the assumptions of kn
ϑ.

At first, consider the case where both of kn
ϑ,+ and kn

ϑ,− are positive almost everywhere. Since Lemma C.2 (4)
yields the matrix Σn(kn

ϑ) is positive definite, Lemma C.2 (1), Schwartz’s inequality of bilinear forms and (68)
yield that for each x,y ∈ Cn,

∣∣∣∣Bn
(
x,y, kn

ϑ

)∣∣∣∣ ≤
∣∣∣∣Bn

(
x,y, kn

ϑ,+

)∣∣∣∣ +
∣∣∣∣Bn

(
x,y, kn

ϑ,−
)∣∣∣∣

≤
∑

i∈{+,−}

√
Qn

(
x, kn

ϑ,i

)√
Qn

(
y, kn

ϑ,i

)
≤ 2

√
Qn

(
x, k†ϑ

)√
Qn

(
y, k†ϑ

)
.

Note that the above inequalities also follows even if kn
ϑ,+ ≡ 0 or kn

ϑ,− ≡ 0. Therefore, the conclusion follows. !

The following result immediately follows from Lemma C.2 and Lemma C.3.

Corollary C.4. Let J ∈ N and suppose a sequence of functions kn
ϑ, n ∈ N, satisfies the condition (C.2) in Assump-

tion C.1. For any n-dimensional vector of the form y :=
∑J

j=0 ajw j with w j ∈ Cn and aj ∈ C for j ∈ {0, 1, 2, · · · , J},
the following inequality holds:

∣∣∣∣Qn
(
y, kn

ϑ

)
−Qn

(
a0w0, kn

ϑ

)∣∣∣∣ ≤
J∑

i=0

J∑

j=1

|ai||aj|
∣∣∣∣Bn

(
wi,w j, kn

ϑ

)∣∣∣∣

≤ 2
J∑

i=0

J∑

j=1

|ai||aj|
√

Qn
(
wi, k†ϑ

)√
Qn

(
w j, k†ϑ

)
,

where k†ϑ is given in Lemma C.3.

C.2 Pointwise Convergence of Gaussian Quadratic Form

Denote by G̃n := δ−H0
n Gn. In the next lemma, we show a pointwise convergence of the quadratic form of the

stationary Gaussian sequence G̃n, n ∈N.

Lemma C.5. Suppose a sequence of functions kn
ϑ, n ∈N, satisfies the conditions (C.1) and (C.2) in Assumption C.1.

Under the conditions (H.1) and (H.3), the following convergence holds for each ϑ ∈ Θ0(ξ):

lim
n→∞

∥∥∥∥Qn
(
G̃n, kn

ϑ

)
−Qϑ0 (kϑ)

∥∥∥∥
2
= 0,

where kϑ is the limit function given in (C.1) and

Qϑ0 (kϑ) :=
∫ π

−π
η2

0 fH0 (λ)kϑ(λ) dλ. (70)

Proof. At first, we obtain

∥∥∥∥Qn
(
G̃n, kn

ϑ

)
−Qϑ0 (kϑ)

∥∥∥∥
2

2
= Var

[
Qn

(
G̃n, kn

ϑ

)]
+

{
E
[
Qn

(
G̃n, kn

ϑ

)]
−Qϑ0 (kϑ)

}2

=
2

(2πn)2 Tr
[(
Σn

(
hn
ϑ0

)
Σn

(
kn
ϑ

))2
]
+

( 1
2πn

Tr
[
Σn

(
hn
ϑ0

)
Σn

(
kn
ϑ

)]
−Qϑ0 (kϑ)

)2
,

where hn
ϑ̃
≡ hn

H,̃ν is given in (15). Note that ϑ̃0 := (H0, δ
−H0
n ν0) = ϑ0. Since ϑ = (H, ν) ∈ Θ0(ξ) implies
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β0(H) + α(H0) < 1 and under the conditions (H.1) and (H.3), we have

sup
λ∈[−π,π]

|hn
ϑ0

(λ) − η2
0 fH0 (λ)| = 1

nnδ
H0
n

sup
λ∈[−π,π]

|+(λ)| n→∞→ 0,

the conclusion follows from the conditions (C.1), (C.2) and Theorem B.3. !

The following result is easily proven in the similar way to the proof of Lemma C.5.

Corollary C.6. Suppose a sequence of functions kn
ϑ, n ∈ N, satisfies the condition (C.2) in Assumption C.1.

Under the conditions (H.1) and (H.3), the following convergence holds for each ϑ = (H, ν) ∈ Θ0(ξ) satisfying
α(H0) + β0(H) < 1/2:

Qn
(
G̃n, kn

ϑ

)
− E

[
Qn

(
G̃n, kn

ϑ

)]
= OP

(
1/
√

n
)

as n→∞.

C.3 Pointwise Convergence of Quadratic Form of Observation Yn

Denote by Ỹn := δ−H0
n Yn. Our goal in this subsection is to prove that the quadratic form of the rescaled

observation Ỹn and that of the Gaussian vector G̃n are asymptotically equivalent as δn → 0. Namely, we
show the following result.

Proposition C.7. Suppose a sequence of functions kn
ϑ, n ∈ N, satisfies the condition (C.2) in Assumption C.1.

Under the conditions (H.1) − (H.3), there exists a constant ψ > 0 such that the following convergence holds for each
ϑ ∈ Θ0(ξ):

Qn
(
Yn, kn

ϑ

)
= Qn

(
Gn, kn

ϑ

)
+ oP

(
δ2H0+ψ

n

)
as n→∞.

Proof. From Proposition A.2, Corollary C.4 and Lemma C.5, it suffices to prove the following two results
for the non-negative function k†ϑ given in Lemma C.3 and each ϑ ∈ Θ0(ξ) × (0,∞):

(R.1) For any K ∈N and p ≡ (p1, · · · , pK) ∈NK, the following relation holds:

Qn
(
∆Wp

n , k†ϑ
)
= OP

(
δ2|p|H0

n

)
as n→∞.

(R.2) Assume that there exists a positive random variable A, which is independent of the asymptotic
parameter n ∈N, such that a random vector Rn := (Rn

1 ,R
n
2 , · · · ,Rn

n) satisfies

sup
t∈Λn

∣∣∣Rn
t

∣∣∣ ≤ A · δn. (71)

Then there exists a constant ψ > 0 such that the following relation holds:

Qn
(
Rn, k†ϑ

)
= o

(
δ2H0+ψ

n

)
as n→∞.

In the rest of this proof section, we prove (R.1) and (R.2). !

Proof of (R.1). Fix ϑ ∈ Θ0(ξ) × (0,∞). At first, Chebyshev’s inequality and Lemma C.2 (3) yield that the

19



following inequality holds for any M > 0:

P
[∣∣∣∣Qn

(
∆Wp

n , k†ϑ
)∣∣∣∣ >M

]
≤ 1

M
E
[
Qn

(
∆Wp

n , k†ϑ
)]

=
1

2πM
· 1

n

n∑

s,t=1

k̂†ϑ(s − t)Cov
[
∆Wn,p

s ,∆Wn,p
t

]

=
1

2πM

∑

|τ|<n

(
1 − |τ|

n

)
k̂†ϑ(τ)Cov

[
∆Wn,p

1 ,∆Wn,p
1+|τ|

]
, (72)

where the stationarity property of {Wn,p
t }t∈Z is used in the last equality, see Proposition A.9. Since the

function k†ϑ satisfies the all assumptions in Lemma B.1 and Lemma B.2 with respect to β ≡ β0(H), we obtain

k̂†ϑ(τ) = O
(
|τ|β0(H)−1

)
as |τ|→∞. (73)

As a result, (73) and Proposition A.9 yield that there exists a constant c > 0 such that the last quantity of (72)
is dominated by

1
2πM

∑

|τ|<n

∣∣∣∣k̂†ϑ(τ)
∣∣∣∣
∣∣∣∣Cov

[
∆Wp

1 ,∆Wp
1+|τ|

]∣∣∣∣ ≤
cδ2|p|H0

n

2πM

∑

|τ|<n

|τ|β0(H)−1+(2H0−4)

≤cδ2|p|H0
n

2πM

∑

τ∈Z
|τ|β0(H)+α(H0)−4. (74)

Note that the series in (74) converges because H ∈ ΘH,0(ξ) implies β0(H) + α(H0) − 4 < −1. Since the last
quantity of (74) is independent of the asymptotic parameter n ∈N, the conclusion follows as M→∞. !

Proof of (R.2). Fix ξ ∈ (0, 1). At first, (71) and (73) yield that there exists a constant c > 0 such that

Qn(Rn, k†ϑ) =
1

2πn

n∑

s,t=1

k̂†ϑ(s − t)Rn
s Rn

t

≤A2

2π
· δ

2
n

n

n∑

s,t=1

∣∣∣∣k̂†ϑ(s − t)
∣∣∣∣

=
A2

2π
· δ2

n

∑

|τ|<n

(
1 − |τ|

n

) ∣∣∣∣k̂†ϑ(τ)
∣∣∣∣ ≤

cA2

2π
· δ2

n

∑

|τ|<n

|τ|β0(H)−1 . (75)

Moreover, for sufficiently smallψ > 0 satisfyingψ < 1−α(H0) = 2−2H0, the last quantity of (75) is dominated
by

δ2
n

∑

|τ|<n

|τ|β0(H)−1 ≤ δ2
n

∑

|τ|<n

∣∣∣∣
τ
n

∣∣∣∣
α(H0)−1+ψ

|τ|β0(H)−1 ≤ δ2H0+ψ
n T2−2H0−ψ

n

∑

τ∈Z
|τ|α(H0)+β0(H)−2+ψ . (76)

Note that the series in (76) converges because ψ ∈ (0, ξ) and H ∈ ΘH,0(ξ) imply α(H0) + β0(H) − 2 + ψ ≤
−1 + ψ − ξ < −1. Then the conclusion follows from (75), (76) and the assumptions (H.1) and (H.2). !

We can obtain the following result from Lemma C.5 and Proposition C.7.

Corollary C.8. Suppose a sequence of functions kn
ϑ, n ∈N, satisfies the conditions (C.1) and (C.2) in Assumption C.1.
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Under the conditions (H.1) − (H.3), the following convergence holds for each ϑ ∈ Θ0(ξ):

Qn
(
Ỹn, kn

ϑ

)
= Qϑ0 (kϑ) + oP(1) as n→∞.

Furthermore we can show the following result.

Proposition C.9. Suppose a sequence of functions kn
ϑ, n ∈ N, satisfies the condition (C.2) in Assumption C.1 with

β(H) := α(H) + ε for an arbitrarily small ε > 0. Under the same assumptions in Theorem 2.12,

√
nQn

(
Yn, kn

ϑ0

)
=
√

nQn
(
Gn, kn

ϑ0

)
+ oP

(
δ2H0

n

)
as n→∞.

Proof. The outline of the proof is similar to the one in Proposition C.7. At first consider the case of κ = 0.
Note that if H0 ∈ (1/2, 1), then

√
nQn

(
∆Wp

n , k†ϑ0

)
= oP

(
δ2H0

n

)
as n→∞ (77)

for any p ∈NK with K ∈N and |p| ≥ 3 thanks to (R.1) in Proposition C.7 since
√

nδH0
n = o(1) as n→∞ from

the assumptions. Furthermore, if H0 = 1/2, we can also show that

√
nQn

(
∆Wp

n , k†ϑ0

)
= oP

(
δ2H0

n

)
as n→∞ (78)

for any p ∈NK with |p| ≥ 4 thanks to (R.1) in Proposition C.7 again, and

√
nBn

(
∆Wp1

n ,∆Wp2
n , kn

ϑ0

)
= oP

(
δ2H0

n

)
as n→∞ (79)

for any p1,p2 ∈NK with |p1|+ |p2| = 3. Indeed, the stationary and independent increments properties of the
Brownian motion WH0 yield that

E
[
nBn

(
∆Wp1

n ,∆Wp2
n , kn

ϑ0

)2
]
=

1
(2π)2n

∑
kn
ϑ0

(t1 − t2)kn
ϑ0

(t3 − t4)E[∆Wn,p1
t1
∆Wn,p2

t2
∆Wn,p1

t3
∆Wn,p2

t4
],

where the above sum is taken over all t1, · · · , t4 ∈ {1, · · · ,n} satisfying |ti − t1| ≤ 1 for all i = 2, 3, 4. Thus the
number of terms in the above sum is proportional to the sample size n so that, thanks to the scaling property
of Wn,p, we obtain

E
[
nBn

(
∆Wp1

n ,∆Wp2
n , kn

ϑ0

)2
]
= oP

(
δ4H0

n

)
as n→∞.

Thus the conclusion under the first condition follows from (77), (78) and (79) in the similar way to the proof
of Proposition C.7. Furthermore the conclusion under the second condition also follows from (77), (78) and
(79) in the similar way to the above proof once we have proven that

√
nQn

(
Rn, k†ϑ0

)
= o

(
δ2H0

n

)
as n→∞

under the same assumption in (71) when H0 ∈ (0, 3/4). The above result can be easily proven in the similar
way to the proof of (R.2) because, instead of (76), we can show that

√
nδ2

n

∑

|τ|<n

|τ|β0(H0)−1+ε = δ2H0
n T2(1−H0)

n n
1
2−2(1−H0)

∑

|τ|<n

|τ|−2H0+ε = o
(
δ2H0

n

)
as n→∞. (80)

Indeed, (80) follows from the absolute convergence of the sum in (80) and
√

nδ2(1−H0)
n = o(1) as n → ∞ if
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H0 ∈ (1/2, 3/4), and from the upper estimate

n
1
2−2(1−H0)

∑

|τ|<n

|τ|−2H0 ≤ n2H0− 3
2

∑

|τ|<n

∣∣∣∣
τ
n

∣∣∣∣
2H0−1−ι

|τ|−2H0+ε = n−
1
2+ι

∑

|τ|<n

|τ|−1+ε−ι = o (1) as n→∞

for ι ∈ (ε, 1/2) if H0 ∈ (0, 1/2]. This completes the proof. !

C.4 Uniform Convergence of Quadratic Form of Observations Yn

In this subsection, we prove a uniform convergence of the quadratic form of Ỹn which is an extension of
Corollary C.8 given in the previous subsection.

Proposition C.10. Suppose a sequence of functions kn
ϑ, n ∈N, satisfies the conditions (C.1)-(C.3) in Assumption C.1.

Under the conditions (H.1) − (H.3), the following uniform convergence holds:

sup
ϑ∈Θ0(ξ)

∣∣∣∣Qn
(
Ỹn, kn

ϑ

)
−Qϑ0 (kϑ)

∣∣∣∣ = oP(1) as n→∞.

Proof. Fix ξ ∈ (0, 1). At first, the compactness of Θ0(ξ) yields that for each r > 0, there exists j(r) ∈ N and a
finite open covering {Br(ϑi)}i∈Λ j(r) given by

Br(ϑi) := {ϑ ∈ Θ0(ξ) : ‖ϑ − ϑi‖R2 < r} for ϑi = (Hi, ηi) ∈ Θ0(ξ), i ∈ Λ j(r).

Then we obtain the following inequality:

sup
ϑ∈Θ0(ξ)

∣∣∣∣Qn
(
Ỹn, kn

ϑ

)
−Qϑ0 (kϑ)

∣∣∣∣ ≤ sup
i∈Λ j(r),ϑ∈Br(ϑi)

∣∣∣∣Qn
(
Ỹn, kn

ϑ

)
−Qϑ0 (kϑ)

∣∣∣∣

≤max
i∈Λ j(r)

∣∣∣∣Qn(Ỹn, kn
ϑi

) −Qϑ0 (kϑi )
∣∣∣∣

+ sup
‖ϑ1−ϑ2‖R2<r
ϑ1,ϑ2∈Θ0(ξ)×K

∣∣∣Qϑ0 (kϑ1 ) −Qϑ0 (kϑ2 )
∣∣∣

+ sup
i∈Λ j(r),ϑ∈Br(ϑi)

∣∣∣∣Qn
(
Ỹn, kn

ϑ

)
−Qn

(
Ỹn, kn

ϑi

)∣∣∣∣ . (81)

Here Corollary C.8 yields that for each r > 0, the first term of the last quantity of (81) converges to 0 as
n → ∞. Moreover, the second term of it also converges to 0 as r ↓ 0 because ϑ $→ Qϑ0 (kϑ) is uniformly
continuous on Θ0(ξ) under the condition (C.3). As a result, it suffices to show that the third term of it is
negligible for sufficiently small r > 0 and large n ∈N.

Without loss of generality, we assume r ∈ (0, ξ/2) and

sup
H†1 ,H

†
2∈ΘH,0(ξ),|H†1−H†2 |<r

|β1(H†1) − β1(H†2)‖ < ξ/2

since β1 is uniformly continuous on ΘH,0(ξ). Here the condition (C.3) implies

c1 := sup
n∈N,λ∈[−π,π]\{0},
ϑ=(H,η)∈Θ0(ξ)

|λ|β1(H)
∥∥∥∇kn

ϑ(λ)
∥∥∥
R2 < ∞.

Then the mean value theorem and Schwartz’s inequality yield that for any ϑ†,1i ,ϑ
†,2
i ∈ Br(ϑi), i ∈ Λ j(r) and

22



λ ∈ [−π,π]\{0},
∣∣∣∣∣k

n
ϑ†,1i

(λ) − kn
ϑ†,2i

(λ)
∣∣∣∣∣ ≤

∥∥∥∥∇kn
ϑ†i

(λ)
∥∥∥∥
R2

∥∥∥ϑ†,1i − ϑ
†,2
i

∥∥∥
R2 ≤ rc1 |λ|−β1(H†i ) ≤ rc2 |λ|−β1(Hi)−ξ/2 , (82)

where c2 := c1πξ and ϑ†i ≡ (H†i , η
†
i ) ∈ Br(ϑi) is determined by the relation ϑ†i = ϑ†,1i + t(ϑ†,1i − ϑ

†,2
i ) with

t ≡ t(ϑ†,1i ,ϑ
†,2
i ) ∈ (0, 1). Since ϑ†i ≡ (H†i , η

†
i ) ∈ Θ0(ξ) implies −β1(H†i ) − α(H0) − ξ/2 > −1, Lemma C.2 and (82)

yield that the third term of the last quantity of (81) is dominated by

max
i∈Λ j(r)

Qn


Ỹn, sup

ϑ∈Br(ϑi)

∣∣∣kn
ϑ − kn

ϑi

∣∣∣

 ≤r

c2

2π
max
i∈Λ j(r)

∫ π

−π
In

(
λ, Ỹn

)
|λ|−β1(Hi)−ξ/2 dλ

≤r
c2

2π

(
max
i∈Λ j(r)

QH0,ξ(Hi) +max
i∈Λ j(r)

Rn,ξ(Hi)
)
, (83)

where

QH0,ξ(Hi) :=
∫ π

−π
η2

0 fH0 (λ) |λ|−β1(Hi)−ξ/2 dλ,

Rn,ξ(Hi) :=
∣∣∣∣∣

∫ π

−π
In

(
λ, Ỹn

)
|λ|−β1(Hi)−ξ/2 dλ −QH0,ξ(Hi)

∣∣∣∣∣ .

Moreover, Lemma A.1 and ϑ†i ≡ (H†i , η
†
i ) ∈ Θ0(ξ), i ∈ Λ j(r), yield that there exists a constant c3 ≡ c3(ξ) > 0,

which is independent of r ∈N, such that the first term of the last quantity of (83) is dominated by

r
c2

2π
·max

i∈Λ j(r)
QH0,ξ(Hi) ≤ r

c3

2π

∫ π

−π
|λ|−1+ξ/2 dλ = rc3πξ/2−1.

As a result, the first term of the last quantity of (83) converges to 0 as r ↓ 0 irrespectively of the asymptotic
parameter n ∈ N. Moreover, Corollary C.8 yields that for each r ∈ (0, ξ/2), the second term of the last
quantity of (83) converges to 0 as n→∞. Therefore, the conclusion follows. !

D Proof of Theorem 2.1

In this appendix, we give a proof of Theorem 2.1 in the original article. Actually, we will show the following
limit theorem that is a stronger version of Theorem 2.1.

Theorem D.1. Under the same assumption in Theorem 2.1, a sequence of càdlàg processes

√
mn

(
log σ̂2

· − log
∫ (·+1)δn

·δn

σ2
u du

)

converges in law to a continuous Gaussian process G = {Gs}s∈[0,∞) given by Gs :=
√

2(B́s+1 − B́s), s ∈ [0,∞), as
n→∞, where B́ is a standard Brownian motion independent of F .

We recall the martingale functional central limit theorem in Section D.1, a preliminary result used in the
proof of Theorem D.1 is summarized in Section D.2 and we prove Theorem D.1 in Section D.3.

23



D.1 Summary of Martingale Functional Central Limit Theorem

In this subsection, we recall the well-known martingale functional central limit theorem and give its concise
proof in the case where local martingales are continuous.

Theorem D.2 (Martingale Functional Central Limit Theorem). Let (Ω,F ,P) be a probability space, Fn =

{F n
s }s∈[0,∞) be a sequence of filtrations on (Ω,F ) satisfying the usual conditions and {Zn}n∈N be a sequence of

continuous Fn-local martingales. If there exists a continuous function v : [0,∞) → [0,∞) such that for any
s ∈ [0,∞),

〈Zn〉s n→∞−→ vs in probability, (84)

then a sequence of the C[0,∞)-valued random variables {Zn}n∈N converges in law to the time-changed Brownian motion
B́v, where B́ is a standard Brownian motion and C[0,∞) is the set of all continous functions on [0,∞) endowed with the
topology of the uniform convergence on compact sets.

Proof. At first, Dambis-Dubins-Schwarz’s theorem, see Karatzas and Shreve [29], Theorem 3.4.6, yields that
there exists a sequence of standard Brownian motions {Bn}n∈N such that for each n ∈N,

Zn = Bn
〈Zn〉 P-a.s..

Note that, since 〈Zn〉 is non-negative and non-decreasing for each n ∈N and v is continuous, the assumption
(84) implies that for any s ∈ [0,∞),

sup
0≤u≤s

|〈Zn〉u − vu| = oP(1) as n→∞ (85)

by using Theorem VI.2.15 in Jacod and Shiryaev [27]. Moreover, (85) and the Slutsky’s theorem yield that
the sequence of C2

[0,∞)-valued random variables (Bn, 〈Zn〉) converges in law to (B́, v) as n → ∞, where B́ is
a standard Brownian motion, since the convergence (85) is equivalent to the convergence of the sequence
of C[0,∞)-valued random variables 〈Zn〉 to the continuous function v on [0,∞) in probability. Therefore,
the conclusion follows from the above convergence in law and the continuous mapping theorem since
ψ : C2

[0,∞) → C[0,∞) defined by ψ(z, v) := z ◦ v is continuous in the similar argument to Billingsley [7],
p.145. !

Remark D.3. In Theorem D.2, it is always possible to take a standard Brownian motion B́ independent of F .

D.2 Notation and Preliminaries

In this subsection, we summarize notation and a preliminary result used in the proof of Theorem D.1. In the
rest of this section, we consider a sequence of filtrations Fn := {Fsδn }s∈[0,∞) and sequences of Fn-martingales
Mn = {Mn

s }s∈[0,∞) and Bn = {Bn
s }s∈[0,∞) defined by

Mn
s := δ−

1
2

n Msδn , Bn
s := δ−

1
2

n Bsδn .

Moreover, we set τn
j := j/mn for j ∈ N ∪ {0} and Ns[τn] := max{ j ∈ N ∪ {0} : τn

j ≤ s} for s ∈ [0,∞). In the
following lemma, we will show that the assumption of the asset price process S introduced in Section 2.1
in the original article implies the similar conditions introduced in Fukasawa [15]. Note that, by localization
argument, we can also assume without loss of generality that κ is bounded and so the volatility process σ2

is the Hölder-continuous.
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Lemma D.4. For any k,n ∈N and s ∈ [0,∞), as n→∞,

sup
j=0,1,··· ,Ns[τn]

∣∣∣∣∣∣E[(Mn
τn

j+1
−Mn

τn
j
)2k|F n

τn
j
] − σ2k

τn
j δn

(2k − 1)!!
( 1

mn

)k
∣∣∣∣∣∣ = oP

(( 1
mn

)k)
,

sup
j=0,1,··· ,Ns[τn]

∣∣∣∣∣E[(Mn
τn

j+1
−Mn

τn
j
)2k−1|F n

τn
j
]
∣∣∣∣∣ = oP

(( 1
mn

)k−1/2)
,

where !! denotes the double factorial operator defined by 1!! := 1 and n!! :=
∏8n/29−1

k=0 (n − 2k) for n ≥ 2.

Proof. Since we have

Mn
s −Mn

v = σvδn (Bn
s − Bn

v) + δ−
1
2

n

∫ sδn

vδn

(σu − σvδn ) dBu, 0 ≤ v ≤ s < ∞,

the binomial theorem yields that for any k ∈N,

E[(Mn
τn

j+1
−Mn

τn
j
)k|F n

τn
j
] − σk

τn
j δn

E[(Bn
τn

j+1
− Bn

τn
j
)k|F n

τn
j
]

=
k∑

r=1
kCrσk−r

τn
j δn

E


(B

n
τn

j+1
− Bn

τn
j
)k−r


δ
− 1

2
n

∫ τn
j+1δn

τn
j δn

(σu − στn
j δn ) dBu




r ∣∣∣∣∣F n
τn

j


 . (86)

Since the Brownian motion B enjoys stationary and independent increments properties, we have

E[(Bn
τn

j+1
− Bn

τn
j
)2k|F n

τn
j
] = (2k − 1)!!

( 1
mn

)k
, E[(Bn

τn
j+1
− Bn

τn
j
)2k−1|F n

τn
j
] = 0 (87)

for any k ∈N. Moreover, the Burkholder-Davis-Gundy inequality and the Hölder-continuity of σ yield that
for any k ∈ (0,∞), there exists a constant Ck > 0 such that for each s ∈ [0,∞),

sup
j=1,··· ,Ns[τn]

E




∣∣∣∣∣∣∣
δ
− 1

2
n

∫ τn
j+1δn

τn
j δn

(σu − στn
j δn ) dBu

∣∣∣∣∣∣∣

k ∣∣∣∣∣F n
τn

j


 (88)

≤ Ck sup
j=1,··· ,Ns[τn]

E




∣∣∣∣∣∣∣
δ−1

n

∫ τn
j+1δn

τn
j δn

(σu − στn
j δn )2 du

∣∣∣∣∣∣∣

k/2 ∣∣∣∣∣F n
τn

j


 = oP

(( 1
mn

)k/2)

as n→∞. Then the conclusion follows from (87) and (88) by using Cauchy-Schwarz’s inequality to the rhs
of (86). !

D.3 Proof of Theorem D.1

Before proving Theorem D.1, we will show the following theorem.

Theorem D.5. Consider sequences of continuous Fn-local martingales Zn = {Zn
s }s∈[0,∞) and continuous stochastic

processes Σn = {Σn
s }s∈[0,∞) respectively given by

Zn
s :=

√
mn




∞∑

j=0

(
Mn
τn

j+1∧s −Mn
τn

j∧s

)2
− 1
δn

∫ sδn

0
σ2

u du


 , Σ

n
s :=

1
δn

∫ (s+1)δn

sδn

σ2
u du.

Then a sequence of the C[0,∞)-valued random variables Yn = {Yn
s }s∈[0,∞) given by Yn

s := (Zn
s+1 − Zn

s )/Σn
s , s ∈ [0,∞),
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converges in law to the continuous Gaussian process G = {Gs}s∈[0,∞) defined in Theorem D.1.

Proof. Since we have
1
δn

∫ sδn

0
σ2

u du = 〈Mn〉s, s ∈ [0,∞),

Itô’s formula yields that

Zn
s = 2

√
mn

∞∑

j=0

∫ τn
j+1∧s

τn
j∧s

(Mn
u −Mn

τn
j∧s) dMn

u.

Since Taylor’s theorem yields that

1
Σn

s
=

1
σ2

sδn

−
∫ 1

0

(Σn
s − σ2

sδn
)

(σ2
sδn
+ z(Σn

s − σ2
sδn

))2
dz

=
1

σ2
τn

j δn

−
∫ 1

0

(σ2
sδn
− σ2

τn
j δn

)

(σ2
τn

j δn
+ z(σ2

sδn
− σ2

τn
j δn

))2
dz −

∫ 1

0

(Σn
s − σ2

sδn
)

(σ2
sδn
+ z(Σn

s − σ2
sδn

))2
dz,

we can decompose Yn into the following three parts:

Yn
s =2

√
mn

∞∑

j=0

1
Σn

s

∫ (τn
j+1∨s)∧(s+1)

(τn
j∨s)∧(s+1)

(
Mn

u −Mn
τn

j∧s

)
dMn

u

=(Z̃n
s+1 − Z̃n

s ) − Rn
s − (Zn

s+1 − Zn
s )

∫ 1

0

(Σn
s − σ2

sδn
)

(σ2
sδn
+ z(Σn

s − σ2
sδn

))2
dz (89)

for each s ∈ [0,∞), where a sequence of continuous Fn-local martingales Z̃n = {Z̃n
s }s∈[0,∞) and continuous

process Rn = {Rn
s }s∈[0,∞) are given by

Z̃n
s := 2

√
mn

∞∑

j=0

∫ τn
j+1∧s

τn
j∧s




Mn
u −Mn

τn
j∧s

σ2
τn

j δn


 dMn

u,

Rn
s := 2

√
mn

∞∑

j=0

∫ (τn
j+1∨s)∧(s+1)

(τn
j∨s)∧(s+1)

(Mn
u −Mn

τn
j∧s) dMn

u ·
∫ 1

0

(σ2
sδn
− σ2

τn
j δn

)

(σ2
τn

j δn
+ z(σ2

sδn
− σ2

τn
j δn

))2
dz.

First of all, we will show that
Z̃n n→∞→

√
2B́ in law. (90)

Then Theorem D.2 yields that, in order to prove (90), it suffices to prove that for each s ∈ [0,∞),

〈Z̃n〉s = 2s + oP(1) as n→∞. (91)

By Itô’s formula, we have

〈Z̃n〉s = 4mn

∞∑

j=0

∫ τn
j+1∧s

τn
j∧s




Mn
u −Mn

τn
j∧s

σ2
τn

j δn




2

d〈Mn〉u =
Ns[τn]∑

j=0

Bn
j + oP(1) as n→∞,
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where

Bn
j :=

2
3

mn

(Mn
τn

j+1
−Mn

τn
j
)4

σ4
τn

j δn

− 8
3

mn

∫ τn
j+1

τn
j

(Mn
u −Mn

τn
j
)3

σ4
τn

j δn

dMn
u.

Since Lemma D.4 and the Burkholder-Davis-Gundy inequality yield that as n→∞,

Ns[τn]∑

j=0

E[Bn
j |F n

τn
j
] =

2
3

mn

Ns[τn]∑

j=0

1
σ4
τn

j δn

E[(Mn
τn

j+1
−Mn

τn
j
)4|F n

τn
j
] = 2s + oP(1),

Ns[τn]∑

j=0

E[|Bn
j |2|F n

τn
j
] = oP(1)

hold, the convergence (91) follows from Lemma 2.3. in [15] and the above two convergences. Therefore, the
convergence (90) follows.

In the rest of this proof, we would like to show that the second and third terms of (89) are negligible as
n→∞. Namely, we will prove the following three convergences: for any s ∈ [0,∞) and ι > 0,

sup
0≤u≤s

∣∣∣∣∣∣∣

∫ 1

0

(Σn
u − σ2

uδn
)

(σ2
uδn
+ z(Σn

u − σ2
uδn

))2
dz

∣∣∣∣∣∣∣
= oP

(
δH0−ι

n

)
as n→∞, (92)

sup
0≤s≤u

∣∣∣Zn
s

∣∣∣ = OP (1) as n→∞, (93)

sup
0≤s≤u

∣∣∣Rn
s

∣∣∣ = oP (1) as n→∞. (94)

Indeed, if (92), (93) and (94) hold, then the continuous processes appeared in the second and third terms of
(89) converge in probability to the function that is identically zero as n → ∞ so that the convergence of Yn

follows from (90) and the continuous mapping theorem.
At first, (92) immediately follows from the Hölder-continuity of the volatility process σ2. Next, we will

prove (93). In the similar argument to the first term of (89), we can show that

〈Zn〉s = 2
∫ s

0
σ4

u du + oP(1) as n→∞. (95)

Then (93) follows from (95) and Doob’s inequality. Finally, we will prove (94). By Itô’s formula, we have

Rn
s =

Ns+1[τn]∑

j=Ns[τn]+1

Cn
j,s + oP(1) as n→∞,

where

Cn
j,s := 2

√
mn

∫ τn
j+1

τn
j

(Mn
u −Mn

τn
j
) dMn

u ·
∫ 1

0

(σ2
sδn
− σ2

τn
j δn

)

(σ2
τn

j δn
+ z(σ2

sδn
− σ2

τn
j δn

))2
dz.
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Since Lemma D.4 and the Burkholder-Davis-Gundy inequality yield

Ns+1[τn]∑

j=Ns[τn]+1

E[Cn
j,s|F n

τn
j
] = 2

√
mn

Ns+1[τn]∑

j=Ns[τn]+1

∫ 1

0

(σ2
sδn
− σ2

τn
j δn

)

(σ2
τn

j δn
+ z(σ2

sδn
− σ2

τn
j δn

))2
dzE




∫ τn
j+1

τn
j

(Mn
u −Mn

τn
j
) dMn

u

∣∣∣∣∣F n
τn

j


 = 0,

Ns+1[τn]∑

j=Ns[τn]+1

E[|Cn
j,s|2|F n

τn
j
]

= 4mn

Ns+1[τn]∑

j=Ns[τn]+1




∫ 1

0

(σ2
sδn
− σ2

τn
j δn

)

(σ2
τn

j δn
+ z(σ2

sδn
− σ2

τn
j δn

))2




2

dzE







∫ τn
j+1

τn
j

(Mn
u −Mn

τn
j
) dMn

u




2 ∣∣∣∣∣F n
τn

j


 = oP(1) as n→∞,

the convergence (94) follows from an easy modification of Lemma 2.3. in [15] and the above two conver-
gences. Therefore, we finish the proof. !

Let us embed the realized variance σ̂2 into a continuous-time stochastic process

σ̂2
s :=

mn−1∑

j=0

∣∣∣∣log Sδnτn
8mns9+ j+1

− log Sδnτn
8mns9+ j

∣∣∣∣
2
, s ∈ [0,∞).

Then we can obtain the following limit theorem.

Theorem D.6. A sequence of càdlàg processes Ỹn = {Ỹn
s }s∈[0,∞) given by

Ỹn
s :=

√
mn



σ̂2

s −
∫ (s+1)δn

sδn
σ2

u du
∫ (s+1)δn

sδn
σ2

u du



, s ∈ [0,∞),

converges in law to the continuous Gaussian process G = {Gs}s∈[0,∞) defined in Theorem D.1.

Proof. Note that we have

√
mn

δn




∞∑

j=0

(log Sτn
j+1∧(sδn) − log Sτn

j∧(sδn))2 −
∫ sδn

0
σ2

u du




= Zn
s + 2

√
mn

∞∑

j=0

(Mn
τn

j+1∧s −Mn
τn

j∧s)(A
n
τn

j+1∧s − An
τn

j∧s) +
√

mn

∞∑

j=0

(An
τn

j+1∧s − An
τn

j∧s)
2,

where An
s := δ−1/2

n Asδn , s ∈ [0,∞). By using Lemma D.4, we can show that

√
mn

∞∑

j=0

(An
τn

j+1∧s − An
τn

j∧s)
2 = oP(1) as n→∞,

2
√

mn

∞∑

j=0

(Mn
τn

j+1∧s −Mn
τn

j∧s)(A
n
τn

j+1∧s − An
τn

j∧s) = oP(1) as n→∞

uniformly in u ∈ [0, s] for any s > 0 in the similar way to the proof of Lemma 3.9. and Theorem 3.10. in [15]
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respectively. Then we obtain

√
mn

δn

(
σ̂2

s −
∫ (s+1)δn

sδn

σ2
u du

)
=

√
mn

δn




∞∑

j=0

(log Sτn
j+1∧{(s+1)δn} − log Sτn

j∧{(s+1)δn})
2 −

∫ (s+1)δn

0
σ2

u du




−
√

mn

δn




∞∑

j=0

(log Sτn
j+1∧(sδn) − log Sτn

j∧(sδn))2 −
∫ sδn

0
σ2

u du


 + oP(1)

= (Zn
s+1 − Zn

s ) + oP(1)

as n→∞ uniformly in s ∈ [0,u] for any u > 0. Therefore, the conclusion follows from Theorem D.5 and the
continuous mapping theorem since 1/Σn

s = OP(1) as n→∞ uniformly in u ∈ [0, s] for any s > 0. !

In the end of this appendix, we prove Theorem D.1 by using Theorem D.6.

Proof of Theorem D.1. By Taylor’s theorem, we obtain

√
mn

(
log σ̂2

s − log
∫ (s+1)δn

sδn

σ2
u du

)
=
√

mn log



1 +

σ̂2
s −

∫ (s+1)δn

sδn
σ2

u du
∫ (s+1)δn

sδn
σ2

u du




=
√

mn



σ̂2

s −
∫ (s+1)δn

sδn
σ2

u du
∫ (s+1)δn

sδn
σ2

u du



+
√

mn



σ̂2

s −
∫ (s+1)δn

sδn
σ2

u du
∫ (s+1)δn

sδn
σ2

u du




2 ∫ 1

0
(1 − z)


1 + z



σ̂2

s −
∫ (s+1)δn

sδn
σ2

u du
∫ (s+1)δn

sδn
σ2

u du






−2

dz

for each s ∈ [0,∞). Since we have

sup
0≤s≤s0

∣∣∣∣∣∣∣∣∣

∫ 1

0
(1 − z)


1 + z



σ̂2

s −
∫ (s+1)δn

sδn
σ2

u du
∫ (s+1)δn

sδn
σ2

u du






−2

dz

∣∣∣∣∣∣∣∣∣
= OP(1) as n→∞

for each s0 ∈ [0,∞), the conclusion follows from Theorem D.6 and the continuous mapping theorem. !

E Approximate Formula of Estimation Function Un(H, ν)

In this appendix, we derive the approximate formula of the estimation function (15) in the original article.
Since the spectral density gH,ν(λ) and the periodogram In(λ) are symmetric with respect to λ ∈ [−π,π], we
have

Un(H, ν) =
1

2π

∫ π

0

(
log gH,ν(λ) +

In(λ,Yn)
gH,ν(λ)

)
dλ

=
1

2π

∫ π

ψ

(
log gH,ν(λ) +

In(λ,Yn)
gH,ν(λ)

)
dλ + B1

H,ν
(
ψ
)
+ B2

H,ν
(
ψ
)

for any ψ ∈ (0,π], where

B1
H,ν(ψ) :=

1
2π

∫ ψ

0
log gH,ν(λ) dλ, B2

H,ν(ψ) :=
1

2π

∫ ψ

0

In(λ,Yn)
gH,ν(λ)

dλ.
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In the rest of this subsection, we will show B1
H,ν(ψ) ≈ A1

H,ν(ψ) and B2
H,ν(ψ) ≈ A2

H,ν(ψ) as ψ ↓ 0. At first, we
consider the first approximation. Note that the Taylor expansion yields that

gH,ν(λ) = ν2CH |λ|1−2H +
|λ|2
mπ
+O(|λ|3+2H) as |λ|→ 0. (96)

Then we obtain the first approximation from the Taylor expansion as ψ ↓ 0 as follows:

B1
H,ν(ψ) ≈ 1

2π

∫ ψ

0
log

(
ν2CHλ1−2H +

λ2

mπ

)
dλ

=
1

2π

{
ψ log(ν2CH) + ψ(logψ − 1)(1 − 2H) +

∫ ψ

0
log

(
1 +

1
ν2CHmπ

λ1+2H
)

dλ
}

≈ 1
2π

{
ψ log(ν2CH) + ψ(logψ − 1)(1 − 2H) +

ψ2+2H

ν2CHmπ(2 + 2H)

}
.

Next we consider the second approximation. Since gH,ν is an even function, B2
H,ν(ψ) is represented by

B2
H,ν(ψ) =

1
2π


bH,ν(0,ψ)γ̂n(0) + 2

n−1∑

τ=1

bH,ν(τ,ψ)γ̂n(τ)


 ,

where

bH,ν(τ,ψ) :=
1

2π

∫ ψ

0

cos(τλ)
gH,ν(λ)

dλ.

Since the Taylor expansion as ψ ↓ 0 yields that

bH,ν(τ,ψ) =
1

2π

∞∑

j=0

(−1) jτ2 j

(2 j)!

∫ ψ

0

λ2 j

gH,ν(λ)
dλ (97)

≈ 1
2π

∞∑

j=0

(−1) jτ2 j

(2 j)!

∫ ψ

0

λ2 j

ν2CH |λ|1−2H + |λ|
2

mπ

dλ

≈ 1
2π

∞∑

j=0

(−1) jτ2 j

(2 j)!

∫ ψ

0

λ−1+2 j+2H

ν2CH

(
1 − 1

ν2CHmπ
λ1+2H

)
dλ

=
1

2π

∞∑

j=0

(−1) jτ2 j

(2 j)!
1

ν2CH

(
ψ2 j+2H

2 j + 2H
− ψ1+2 j+4H

ν2CHmπ(1 + 2 j + 4H)

)
, (98)

we obtain the second approximation when the series in (98) is truncated after finite terms. Note that the
truncation error of the Taylor expansion in (97) is dominated as follows:

sup
τ∈{0,1,··· ,n−1}

∣∣∣∣∣∣∣∣
bH,ν(τ,ψ) − 1

2π

J∑

j=0

(−1) j

(2 j)!

∫ ψ

0

(τλ)2 j

gH,ν(λ)
dλ

∣∣∣∣∣∣∣∣
≤ (nψ)2J+1−1

(2J + 1)!
· 1

2

∫ ψ

0

1
gH,ν(λ)

dλ

for any J ∈ N and ψ > 0. As a result, for fixed n ∈ N, we can make the truncation error arbitrary small
uniformly with respect to τ ∈ {0, 1, · · · ,n− 1} as J ∈N is taken sufficiently large even in the case of the finite
sample.
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