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A Preliminary Results

A.1 Approximating Spectral Density of Data
A.1.1 Spectral Density of Stationary Gaussian Sequence {Gf’*}tez

Recall that a spectral density of the stationary Gaussian sequence {G’;’Jr}tez, which is obtained by [19], is
characterized by

2 S2H

n,t n,t Ui 611
Cov|[G}", G ] = 20H +2)(2H + 1)

= f e VI 2s2H £(1) dA,

(|T + 2|2H+2 _ 4|T + 1|2H+2 + 6|T|2H+2 _ 4:|T _ 1|2H+2 + |T _ 2|2H+2)

where
fi(A) = Cu{2(1 = cos A)} Zm

with Cy := 2n)"'T(2H + 1) sin(rtH). The following Lemma shows that the stationary Gaussian sequence
{G’t”}tez satisfies Assumption 1 in [19], see Section 4.2 in [19].

Lemma A.1. The spectral density f(A, H) satisfies the following relations.

(1) Forany H € ®, A = f(A,H), A € [-7, ]/{0}, is a non-negative integrable even function with 2m-periodicity.
Moreover, it satisfies that
feC* (©x[-nr, n]/{0}).

(2) If (H1,m) and (Ha, 12) are distinct elements of @ X L, a set {A € [-7t, t] : m f(A, H1) # n2f (A, H2)} has a positive
Lebesgue measure.

(3) Let a(H) :=2H — 1 with H € (0,1). There exist constants c1,c, > 0 and for any 1 > 0, there exists a constant c3,,
which only depends on 1, such that the following conditions hold for every (H, A) € ® X [-m, ]\{0}.
(@) c1lAI7* < £(A, H) < oo A|72ED)
(b) Forany je{1,2,3},

<C3 |)\| a(H)—t <C3 |/\| a(H)lL

f()\ H)

7
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A.1.2 Spectral Density of Stationary Gaussian Sequence {G}}cz

We derive a spectral density of the stationary sequence {G}'};cz in this subsection. Since {€}'};cz is an i.i.d.
sequence, {Ae}'}iez is a MA(1) process and its auto-covariance function is given by

4/m, (t=0)
ya(r) = Cov [Ael, Ael, | = 4 -2/m, (1t =1)
0 (otherwise)

Then its spectral density ¢, is given by the Fourier series

Cu(A) = o Z]/n(”[)erﬂ\ = —f(/\) where €(A) := %(1—(205)\), A€ [-m, m].

TeZ



Since { G:"Jr} tez and {€}'};cz are independent, the covariance function of {G}'};cz is characterized by

t+t t+1

Cov [G}, Gl ] = Cov |G, GIE] + Cov[Ael, ] = f eV £ (1) dA,
where the spectral density f{ is given by
2
fAA) = f(A, H,n,n) = 7702 fu(A) + — (), Ael-mml, 9= (Hn

A.2 Approximation of Data

The following proposition gives a precise statement of the approximation (12) in Remark 2.6, which follows
from a Taylor expansion of Y, around the Gaussian vector G, under high-frequency observations, i.e.
6, — 0.

Proposition A.2. Forany ¢ € (0,H) and | € IN, there exists a positive random variable M = M(, ], T, 9), which is
independent of the asymptotic parameter n € IN, such that

max |Y! - G — i 2]: (Vi Z lAW"’p
tea, | £ =k o

j=2 peNt |pl=j ©

< M . 6,I1nin{1’(]+1)H_lJ}] (44)

holds P-a.s. for sufficiently small b,,.

Note that the lhs of the inequality in Proposition B.1 is dominated as follows:

J ] (_1)k71 1 n
mo-G- BN S ¥ faw -
" =2 k=1 peNF |pl=§ P
J k-1
nt _ ym _ (_1) l P
<max|Y;" -V, ZZ k 2. P
=2 k=1 peNK |pl=j
J k-1
+ (_1) 1 n,p n,p
emax[vi -0 emax Y Y 0 YT Lo wer).
=2 k=1 pelNK |pl=/

In the rest of this section, we evaluate the asymptotic order of the three terms in the rhs of (45) when 6, — 0.
At first, we treat the first term in (45) in the following lemma.

Lemma A.3. For any i € (0,H) and ] € IN, there exists a positive random variable M = M, |, T, 9), which is
independent of the asymptotic parameter n € IN, such that

| _
Yty - Z Z Hk)k 1 Z %AZZ”P

j=2 k=1 pe]N“,|p|:]'

< M- UrVHEY

holds P-a.s. for sufficiently small 6,,.

Proof. At first, Taylor’s theorem yields that any infinitely differentiable function f on an e-open ball B.(a) at



the point of a € R is expanded by

() 11 _
f]j!(a)xj+(x—a)]+1jo‘ (1]_!Z)Jf(,+1) (a+z(x —a)) dz

J
f&) = f@+ )
=1

for each x € Bc(a) and | € IN. Moreover, if the function f and its derivatives of any order are also continuous
on B¢(a), then it holds that

1
f (1;—|Z)j FUD (2 4 2(x — ) dz| < oo (46)
O .

sup
Xx€Be(a)

Therefore, using the Holder continuity of log 02, we can derive the following Taylor’s expansion:

o] £ [ 2] <togo_y, +1og| L [ dorsioi g
08|53~ | oudu|=logoy y, +logie | e -
n J(t=1)o, " (D0

J
1 -
_ 2 np (J+1)H-¢
=loga(;_y;, +10g [1 + E ;!Zt + 0<6n )
p=1

1 £6, ) 1
=logo? ... +—f log 02 — log o2, du + —zm
8 O(t-1)s, o, (H)én( &0 &0t 1)5,,) ;p! t
L) NS 1, (J+DH-y ] J+DH-
+Z - l;Zt’ +o(6n ) +o(6n )

=2

]

p=1 "

1™ L (1) 1 _n (+)H-y
= log o2 du + Z . Z —Z,? +o(6n ) (47)

J
(E=1)0n /=2 k=1 peNpl=j

Note that the Holder continuity property also implies that all reminder terms in the above equality are
independent of t € A, and w € Q if §, is sufficiently small, see also (46). Therefore, the conclusion follows
from taking a difference of both sides of (47). O

The second term is also negligible because the following inequality holds.
Lemma A.4. The following inequality holds:
n _ ~nt < S
max |V = G, | < [usegg] |Ku|] On

Finally, we show the negligibility of the third term. In order to achieve this purpose, it suffices to prove
that the error between Z} and W}, is negligible for each p € INK by using the triangle inequality of || - |-
Therefore, we show the following result.

Lemma A.5. Foreach p = (p1,p2,- -, px) € NK with |p| > 2, the following relation holds for any ¢ € (0, H),

Ipl
(Ipl-1) 1) (H-
max |Z:f’p - th’P| < (2'P| — 1) (AH_W, v 1) P sup |, V1 '6,11+(|P| D#H=y)
t€An ue[0,1]



where Ay, = Ay (T, 9) given by

Wy — Wl

Ag_yp = su
H lr,)/n p |u _SlH_"‘b

s,u€l0,T]

Proof. At first, consider the case where K = 1, i.e. p € IN with p > 2. Note that the binomial theorem yields
that the integrand of Z;'? is given by

I(p +1) N /
(loga” logat 1)571 Z TSI 1)17 (W - Wi 1)6) (j(;—non Ksds| .

Then Z;"” is represented by

o : T(p+1)
np _ L H ‘
Zt - 6}1 f n (W W(t 1)6 du + ]_Zl F(P — ] I 1)r(] n 1)Rtr”/]/

where )
1 tOn . p_] U )
R;:H L= — np_] (WH WI;I 15 ) (f Ks ds) du.
O -, " (=15,
Therefore, the conclusion when K = 1 follows from the Holder continuity of the fractional Brownian motion
WH. Next, we consider the case where K > 2. Then the multinomial theorem yield that

max |Z,"? —
tEAnH

max

”,P| —
¢ =
tEAnH

:lw

”Pk "Pk _ Wﬂ,rik)} — WP
t t

k:l

Z ax
tEA,,H
JjK

Juja,

n pk n pk _ Wn,pk)l_jr
t

:x
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k=1

where the last sum is taken overall ji, - - -, jx € {0, 1} satisfying that there exists i € {1, --- , K} such that j; = 0.
As a result, the conclusion when K > 2 follows from (18) and the conclusion when K = 1. O

A.3 Asymptotic Decay of Covariance Function for Stationary Process Associated with
Some Functionals of Fractional Brownian Motion

In this section, we will show an asymptotic decay of covariance function for the stationary process W¥
appeared in the reminder terms of the Taylor approximation given in Proposition A.2. This result plays a
key role in order to prove that the reminder terms WY are asymptotically negligible in the case where the
consistency of the adapted Whittle estimator holds. We will state the key result in Section A.3.1, several
preliminary results used in its proof are summarized in Section A.3.2 and its proof is given in Section A.3.3.

A.3.1 Notation and Statement of Key Result

At first, we prepare notation in order to state a general result for Proposition C.1. Denote by Cr a set of real-
valued continuous functions on R and by 8(Cr) a Borel o-algebra on Cr generated by a topology associated
with the compact convergence. Let uy be the distribution of the two-sided standard fractional Brownian
motion with the Hurst parameter H € (0, 1] on (Cr, B(Cr)), and a continuous shift operator 6 = {0,},cr be
defined by 0,x. := x..,, — x, for (4, x) € Rx Cr. Note that yy is O-invariant, i.e. upy o 0! = py for eachu € R



since the fractional Brownian motion enjoys the stationary increments property. Moreover, U = {U,}uer
denotes the canonical process on (Cr, B(Cr)), i.e. U, (x) := x, for each (1, x) € Rx Cr. Furthermore, for each
p=(p1, -+, px) € NX, K€ R, and compact set A, C R, we define a functional FP by

FP(x) :=fA ﬁxﬁidul---duKzf ﬁ{uuk(x)}pk duy - - - dug

P k=1 Ap k=1

for x = {x,}.er € Cr and a stochastic process {GP}cr on (CRr, B(CRr), Uw) by GP(x) := FP(0,x) for u € R and
x € CR.
Next, let us recall the following definition, e.g. see Tudor [37], p.172.

Definition A.6. A filter of length | € IN and order r € IN is a (] + 1)-dimensional vector a := {ag,a1,--- ,a;} such
that for any k € N U {0} with k <,

/
Y aiff =0, (48)
j=0
where we use 0° := 1 for convenience, and
J
Z ajj’ #0. (49)
j=0

Moreover, we also call a = {ag, a1, -+ ,aj} as a filter of length | and order O if it satisfies (49) for r = 0.

Remark A.7. For any filter a = {ag, a1, - - - ,aj} of order r € IN, the property (48) yield that for any k € IN U {0}

with k < 2r,
]

Y aiai(j-if = 0. (50)

i,j=0

For afilter a = {ag, a1, --- , a5} and a stochastic process X = {X,},er, we define

]
AuXy:= ) X,y j, ueR. (51)
j=0
For example, if we set a = (a9,a1) with a9 = =1, a1 = 1, then a is a filter of length 1 and order 1, and

AX =X -X_4.
Finally, we will state a main result in this section.

Proposition A.8. Let a be a filter of length | € IN and order r € N U {0}. Then for any p € INX with K € N, the
stochastic process {A,GY }uer is stationary and for any p € NK, q € Nt with K,L € Nand u € R,

Covyy, [AaGE, AWGE, | = O(ItPH2) as f1] — oo (52)

u+t

As a corollary of Proposition A.8, we can obtain the following result from the self-similarity property of
the fractional Brownian motion.

Proposition A.9. For any p € NX, q € INL with K, L € N, the stochastic process {W,®}ez is stationary for each
n € N and the following relation holds for any t € IR:

sup 6;(|P|+\q|)HCOV [AW;LP, AWn'q

t+t
nelN

= O(ITIZH_4) as |t| — co.



A.3.2 Preliminary Results

We summarize several preliminary results used in the proof of Proposition A.8 in this subsection. The first
result is proven in the similar way to that in Billingsley [7], p.230-231.

Proposition A.10. Let A € B(RX) with K € N and f be a measurable function on RX. For x = {x,},ecr € Cr, we
define a functional F by

F(x) := ff(xm,-‘- , Xy ) duq - - - dug. (53)
A

Then the functional F is B(Cr)-measurable if (u1,--- ,ug) = f(Xu,, -+, Xuy) is integrable on A. Furthermore, if A is
compact and f is continuous, then x — F(x) is also continuous.

Since the shift operator 0 is continuous and pp is 0-invariant, we can obtain the following result using
Proposition A.10.

Corollary A.11. Let us consider a functional F of the form (53) with a continuous function f and a compact set
A € B(RX). Then a stochastic process G = {G,}uer defined by G (x) := F(0,x) for (u,x) € R X Cr is continuous and
strong stationary on the probability space (Cr, B(Cr), in).

The following result is a consequence of the well-know Wick formula which expresses the higher
moments of centered multivariate Gaussian vectors in terms of its second moments, e.g. see Nourdin and
Peccati [33]. Given a finite set b the number of which is even, we denote by $(b) the class of all partitions of
b such that each block of a partition @ contains exactly two elements, and recall Ay :={1,2,--- , M}.

Lemma A.12. For any Ko, Ly € IN and (Ko + Lo)-dimensional centered Gaussian vector (X1, -+ , Xky+L,),

Ko Lo
H Xk, H XKo+t
=1

k=1

Cov

_ L= ttks ), kvt sy NePo(harsy) COVIXi, Xy 1+ - CovIXiy,, Xeyy 1 if Ko + Lo s even,
0 lfKo +Lgis Odd,

where My := (Ko+Lo)/2 and Po(Aom, ) denotes the subset of P(Aom, ) whose elements are partitions m = {{ky, €1}, - -+ , {km,, €my )} €
P(Aom,) such that there exists m € Ay, satisfying ky, < Ko < .

Proof. Let us consider only the case that both Ky and Ly are even since the other cases are trivial from the
Wick formula. Since Ky and Ly are even, the Wick formula yields that

Ko+Lg
E H Xk = Z Cov[X,, X ] -- Cov[Xy, , Xey, ]
k=1 {tk, 61}, Akng Latg HEP(Aany)
= Y, Cov[Xe, Xo ]+~ Cov[Xiy . Xer, o]
k1, Eab, Ak 26Ky 2 EP(Aky)
X Z COV[XKQ+k1/ XK0+K1] e COV[XKO-H(LO/z/ XKOJrfLO/z]
k1, €1}, Akg 2. CLy 2P (ALy)
+ Y, Cov[Xy,, Xz, ]+ Cov[X, , Xo, ]
({1, €1}, Akng mg HEPo(Aany )
Ky Ly
=E | [ %e|E (] ] Xcore |+ Y Cov[Xy,, Xz, ]+~ Cov[X, , Xe, I
k=1 =1 (k1 €1}, Akng iy HEPo(Aany )
Therefore, the conclusion follows. O



A.3.3 Proof of Proposition A.8

Before proving Proposition A.8, we will show the following twolemmas. Denoteby y; (1) := Cov,,, [Us(6o), U, (0:)]
fors,u,7 € R.

Lemma A.13. Foreachs,u € R, © v y;,,(7) is infinitely differentiable a.e. and, for any k € IN U {0} and compact set
A C R, its kth derivative satisfies

Fysu
otk

sup (T)‘ = O(I7*=27%) as |1] = co.

S,UEA

Proof. Fixs,u € R and a compact set A C R. Since uy is a distribution of the two-sided standard fractional
Brownian motion with the Hurst parameter H, we have

1
Vou(T) = =5 (It +u—sP" = r+uf —|r = sP + 17), TR

As a result, the first assertion is obvious and for any k € IN, we obtain

ok i k k
ai—k’ (1) = - S8 ( ) H(2H O (1 +u = 5P — |z 4+ uPHF — o — s 4 o) (54)

if |7 is sufficiently large, where sgn(-) denotes the sign function defined by
1 T2>0,
sgn(t) =
-1 7<0.
Then the second assertion follows from (54) because Taylor’s theorem yields that for any L € IN,

|T +u— s|2H—k _ |T + u|2H—k _ |T _ s|2H—k + |T|2H_k

_ o\2H-k 2H-k 2H-k
=|T|2H—k{(1+”T S) —(1+%) (1+?) +1}

L £o—1
=[tH* Z %' {H(zH —k- é’)} {(u —5)f0 — (=s)0 + ut’o} 770 4 o(|rPHK-LY
" =0

l=1

as || — oo uniformly in's,u € A and (u — s)% — (=s)% + u‘ = 0 for £ = 1. O

Lemma A.14. Let a = (ag,a1,--- ,ay) be a filter of length | € N and order r € N U {0}. For any compact set A C R
andp = (p1,--- ,px) € NK, q= (g1, ,q1) e Nt with K,L € N,

K L
[THus@)y, [T {u ;)"

k=1 =1

J
sup Z a;a;Cov

= O(ITlZH‘Z‘ZV) as |t| — oo.
S1.1, So €A 1520

Proof. By using Lemma A.12 in the case that K := |p|, Ly := |q| and (Ko + Lo)-dimensional centered Gaussian
vector X = (Xy, -+, Xk,+1,) given by

X:= (u51 (6,‘), Tty usl(ei)/ Tty usK(Gf)/ Tty usk(ei)r uu1(6j+”[)r Tty uu1(9j+”[)r Tty uuL(6j+T)/ Tty ultL(6j+T))/

p1 times px times q1 times qr times



it suffices to prove that for any compact set A c Rand v € N,

)
sup Z aia; HCOV#H [USW(G) uuw(9]+”[)] ( e zr) as |t| = oo (55)

51,11, S0, g €A i,j=0 w=1

since the stationary increments property of the fractional Brownian motion implies

COV,UH [USU ] COVHH [usl (9 )/ LISz(6 )]
COVHH [uu1/ uuz] = COVyH [uu1 j+'[)/ uuz( j+‘[)]
for any s1, sp, 11, U2 € R.

Fix a compact set A C R and recall y,,(1) := Cov,,[Us(6o), U,(0;)]. Since Taylor’s theorem and
Lemma A.13 yield that for any K € IN,

=o([P") as ] — o, (56)

ysum(]—z))—z ,

sup
S,UEA
i,j=0,,]

(;—z)aysu()|

(55) in the case of v = 1 follows from (50) if we take K € IN satisfying K > 2r. Moreover, the Taylor
approximation (56), the multinomial theorem and Lemma A.13 yield that

H - - (j — iyt 2 oy, _ 2H-2-K
V(T G=0) = Y, e [ 5 @) = o) (57)

Ky, k=0 o w=1

S1U1, Sv U,€A
]—0 ]

as |t| = oo, and (50) and Lemma A.13 yield that

J F aNketk, P 9k
( — l) 1 v a w S0t
sup E aia; ]k1!- | | Y (7) (58)
7=0

ke K
S1,11, So v €A |7 52 kv' w=1 It

=0 if Yipmr ko <2,
= O(ITIZ?vﬂQH’z’kw)) as |t » oo if Yo _iky >2r.

Then (55) in the case of v > 2 follows from (57) and (58) if we take K € IN satisfying K > 2r. Therefore, we
finish the proof. ]

Proof of Proposition A.8. Since GP is stationary from Corollary A.11, the bilinearity of covariance functions
and Fubini’s theorem yield that

K L
[THus@)y, [ [{tu @0 | dsi -+ dsidr - du..

J
Cov,, [AaGE, G, | = f Y aiaCovy,
ApxA k=1 =1

q4,j=0

Therefore, the conclusion follows from the above equality and Lemma A.14. m|



B Extension of Some Results in Fox and Taqqu [13, 14]

We will show several extended lemmas and theorem developed in Fox and Taqqu [13, 14] in the case where
functions appeared in their results depend on the asymptotic parameter n € IN. They can be easily proven
in the similar way to the corresponding results in Fox and Taqqu [13, 14]; we will however give their concise
proofs in Section B.1 and Section B.2 for convenience. The following two results are extensions of Lemma 4
and Lemma 5 in [13] which show an asymptotic decay of the Fourier coefficient.

Lemma B.1 (cf. Lemma 4 and Lemma 5 in [13]). Let B € (=1,0) U (0,1) and n € IN. Suppose a sequence of
2n-periodic functions k" : R — [—o0, 0], n € N, satisfies the following conditions:

(1) If B € (0,1), k" is continuously differentiable on [—-m, ©]\{0} for each n € IN and

sup AP K(A)] < oo, sup AP+
neN,Ae[—mn,m]\{0} neN,Ae[—n,7]\{0}

%(A)' < oo,

(2) If B € (-1,0), k" is integrable and twice continuously differentiable on [—7t, w]\{0} for each n € N and

i

sup AP+ 2

nelN,Ae[—m,t]\{0}

aﬂ@)' < o0 sup AP+
ER " peN el \0)

(1)

< 00,

Then the sequence of the Fourier coefficients I@(T), T € Z, satisfies

sup
nelN

125(1)| =0 (1) as ] - co.

Lemma B.2. Suppose a sequence of 2m-periodic functions k" : R — [—oc0,00], n € IN, is continuously differentiable
on [-m, t]\{0} for each n € IN and

Jk"
swp  W(I<eo sup |5
neN,Ae[—m,m]\{0} nelN,Ae[—m,m]\{0}

< 00,

Then the sequence of the Fourier coefficients l@(’[), T € Z, satisfies

sup Ilcz(’c)| = O(|T|_1 logITI) as |t| — oo.

nelN

The following result is an extension of Theorem 1 in [14] in the case where functions appeared in
Theorem 1 in [14] depend on the asymptotic parameter n € IN; they however have the same asymptotic
behavior at the origin as that assumed in Theorem 1 in [14] uniformly to the asymptotic parameter n € IN
and they uniformly converge to some functions almost everywhere as n — oo.

Theorem B.3 (cf. Theorem 1 in [14]). Let a;, a0 < 1 and p € IN. Suppose sequences of even functions ki, k :
[-7t, ] = [—00, oo] satisfy the following two conditions:

(1) The following relations hold:

sup AT [KE(A)| < o0, sup A2 [KE(A)| < oo
neN,Ae[—mn,m]\{0} neN,Ae[—mn,n]\{0}

10



(2) There exist functions ky, ky : [-1, 1] — [—00, o] such that

lim ess sup [k} (A) —ki(A)] = 0, lim ess sup |k;(A) — kz(A)] = 0.

=0 hel-nm) =0 Jel-nm)
Moreover, the discontinuities of ki and k, have the Lebesgue measure 0.
Under the above conditions, we have
@) Ifplar +az) <1,
tim e[, 062, ) ] = 2! [ (kP d1.

n—oo N
(b) Ifplar + ) = 1, then for any ¢ > 0,
Tr [(Zn(k'f)zn(kg))p] =0 (np(“””)*‘l’) asn — oo,

B.1 Proof of Lemma B.1 and Lemma B.2

Proof of Lemma B.1 in Case (1). Consider the case of 8 € (0,1). Let 7 € Z\{0}. Since k" is 2m-periodic, we have

- T+7t/ |7
k(1) = f e V1T 1) dA

n+7/|1|
+n/lt|
- [T e an = [T (s T an
-7+t /7| - |T|

As a result, we obtain

2

P = ’f o V1T [k”(/\) _ K (A ; 1)] A

X
7T
</
—Tt

T —27/] 7/l 7l
K'(A) - k" (/\+ —)‘ dA =f +f +f . (59)
Il -n =2/l Jn/ld
The assumption implies that

6= sup {wﬁ )]+ AP

nelN,Ae[—m,t]\{0}

%(/\)‘} < oo,

By the mean value theorem,

—27/|7| —27t/|7] -p-1
f k”(/\)—k”()\+£)‘ dA3c11f )\+£‘ A
n || 1Tl J_n |7l
- -7t/
= AP dA

c1—
|T| —nt+7t/|7|

(It]-1)m
= cymifrfft f APF1dA = o(mﬁ-l)
T

as |t| — oo. Note that § > 0 is necessary to obtain the last asymptotic behavior. A similar argument shows

that
e
sup f
nelN Jn/lt|

4
K'(A —k"()\+—)‘d/\=0 7IP1) as|t| - 0.
) = (17F) asirl

11



We also have

/|t - /|| /|| -
f k(M) — k" (/\ + —)‘ A < f K" (A)] dA + f K (A ; —) i
21/l |7l —21/In| —21/In| |7
/7| /7| n -B
Sclf |/\|‘ﬁd/\+c1f A+—| dA
—2n/In| —2n/In| |7

/7|
=20, f AP dA = o(mﬁ-l) as |7| — oo.

2n/l1|
This completes the proof in the case of § € (0, 1). m]

Proof of Lemma B.1 in Case (2). Consider the case of § € (-1,0). Let T € Z\{0}. Since the continuity of k" on
[-7, n]\{0} implies k"' (1t) = k"*(—m), the integration by parts formula yields

TC

— 1
kn - ——
@=-7= .

‘/j’f/\%
T EE () dA.

Moreover, since the derivative ‘% is also 2m-periodic from the assumption, the argument in the case (1) can
be applied so that we obtain

-~ 1 1) -
sup k”(T)‘ = |—O(|T|(ﬁ D 1) = O(|T|’B 1) as |7| = oo.
neN Tl
This completes the proof in the case of § € (-1, 0). ]

Proof of Lemma B.2. The same argument in Lemma B.1 shows the inequality (59). The assumption implies
that

= sup {|kn(A)| +IAl '%(/\)‘} < oo,

nelN,Ae[—m,]\{0}

By the mean value theorem, the similar argument in Lemma B.1 yields

—27/|1|
L.

as |t| = oo. A similar argument shows that

e
sup f
nelN Jn/|t|

Since k"(A) is bounded a.e. from the assumption, the same argument in Lemma B.1 yields

7/|1]
sup f
nelN J-2mn/|1|

This completes the proof of Lemma B.2. O

(It]-1)7
K'(A) — K" (/\ + 1)' dA <o, f A1dA
|| Il Jx

=27 llog((1tl = 1)) ~ log ) = O (|el ™ log )

K'(A) — K" (A ; %)‘ dA = O (it log rl) as [t] — co.

n
I7|

K'(A) - k" (/\ + )‘ dA = O(ftl™) st - oo,

12



B.2 Proof of Theorem B.3
B.2.1 Outline of Proof of Theorem B.3

Fix p € N and note that

Te (SR () ]
-1 n—-1 .
:{: Z (1 = K5 (2 = o) -+ Ki (jap-1 = jap 3oy = )
j1=0
n—-1 Tl
= Z(f f eﬁ(ﬁ‘ﬁ)yleﬁ(ﬁ‘ﬁ)yz---e‘m(fzﬁ‘fl)yz%’k’{(yl)k’z’(yz)--~k§’(yzp_1)k§(y2p)dy1---
7=0 j2p=0 -7 —T
- [ Py,

where U, := [~t,t]? for t € (0, ] and

Pu(y) = hy(y1 — yop)h (2 — y1) -~ -y (y2p — yop-1), 1, (y):= ) eV,

Qu(y) = ki (y)ky (y2) - - - K} (Y2p-1)k5 (y2p)-

dyzp

Following the arguments of Fox and Taqqu [14], we divide U, into three disjoint sets E;, F;, G given by

E; = U \{U UWY, Fri=U\W, G:=UNW,
where t € (0, 7] and

Iy;+1|

Wj:{yz(yl/”'/]/Zp)ER2P3|]/j|5 }/ j=1/"'/2p/

WZ=W1UW2U“'W2p.

Note that we use the notation y,,.1 = y; for simplicity.

In order to prove the first result of Theorem B.3, it suffices to prove that p(a; + a2) < 1 implies the

following three results:

lim & m@gmw=w&”f [F@g@P dz, ¥t e (0,11,

n—oo 1

E, t<|z|<m
1
ltlm limsup — - f Py(y)Qnu(y) dy =0,
— n—oo F;

1
tim + [ P, dy =0,

Remark B.4. In order to prove (61), we will show that p(a; + az) < 1 implies

lim lim sup ;11 f Pu(y)Qu(y)dy = 0.
o

=0 n—oo
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Remark B.5. Since G = U?ﬁ [Uz N Wj], the relation (62) will hold if we prove that p(a; + az) < 1 implies
.1 ,
lim — IPa(y)Qu(y)ldy =0, j=1,---,2p. (64)
n—oo 1 W,

From the definition of P,, and Q,, it is clear that

f IPo(y)Qu(y)] dy = f IPu(y)Qu(y)ldy = - = f 1P, (y)Qu(y)ldy
UnNW; U W5 UnWay

and

f |Pn(Y)Qn(Y)| dy = f |Pn(Y)Qn(Y)| dY == f |Pn(Y)Qn(Y)| dY'
UW, U W U Wy,

Because of the symmetry between a7 and a; in the hypothesis of theorem, it is clear that we prove that
p(ar + ap) < 1implies

lim ~ IP(y)Qu(y)l dy =0, (65)

n=>0 1 Ji aw,

then we will have also established

lim IP(y)Qu(y)l dy = 0.

n=0 N Junw,
Thus (64) will follow from (65).

In conclusion, the first result of Theorem B.3 will be proven if we show that p(a; + a2) < 1 implies (60),
(63) and (65). Moreover, the second result of Theorem B.3 will be proven if we show that p(a; + az) > 1
implies

Vi > 0, f IP(y)Qu(y)l dy = O(nP@1#9*¥) as n — oo, (66)

Ux
These results will be proven in Section B.2.3. In the next subsection, we summarize several preliminaries
used in the proof of Theorem B.3 following with Fox and Taqqu [14].

B.2.2 Preliminaries

To state the lemma, introduce the diagonal

Di={y=@1, -, yp) €Un: 1 =Y2 =" =Ygl

Let u be the measure on U, which is concentrated on D and satisfies u({y :a < y1 = yo = -+ =y < b}) = b—a
forall -m < a < b < m. Thus p is Lebesgue measure on D, normalized so that (D) = 2.

Lemma B.6 (cf. Lemma 7.1. in [14]). Define a (signed) measure u,, on Uy by

1
tn(A) = (Zn)Tlnj;P”(y)dy (67)

for each measurable set A C Uy,. Then p,, converges weakly to u as n — oo.

14



For each n € IN, define the function

min(# n) if 2m <z < -m,

Tl
hu(z) :={ min (ll—l,n) if-n<z<m,
. 1 .

min (—|272n|,n> if 1<z <2m.

and the function f, : R?¥ — R by

Fuy) =h (1= yap) B (92 = y0) B (y3 = y2) -+ b (92 = y2p1)

Xyl ™yl a7 - y2pl ™2,

where aq, ap < 1.

Lemma B.7. There exists a constant ¢ > 0 such that for eachn € N and y € Uy,

P (y)Qu()| < cfuly).

Proof. As shown in [14], p.237, we have

|Pn(Y)| < 42phn (yl - yZP)hn (yZ - yl)hn (yS - yZ) o 'hn (y2p - ]/Zp—l)
for each n € N and y € U,,. Therefore, the conclusion follows from the assumption. m|
Proposition B.8 (cf. Proposition 6.1. in [14]). Let ai,ar < 1and Wy = {y € R% : |y4] < Iy_zz\}_

a) If a1 + ay <0, then for any ¢ > 0,
f fuly)dy = O(n¥) as n — co.
Uu,nWy
b) If a1 + an > 0, then for any 1 > 0,

[ iy = o) wsn— .
U,NnWy

Proposition B.9 (cf. Proposition 6.2. in [14]). Let a1, ap < 1.
a) If p(ar + az) < 1, then
T 1
1t1_>rr01 lim sup - fa(y)dy = 0.

n—oo L[f
b) If p(ay + az) > 1, then for any ¢ > 0,

f fuly)dy = O(nP@+a*¥) s — co,
Ux

B.2.3 Proof of Theorem B.3

As mentioned in Fox and Taqqu [14], p.237-238, the results (63), (65) and (66) immediately follow from
Proposition 6.1., Proposition 6.2. in [14] in addition to Lemma B.7. In the rest of this section, we will prove
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(60). Note that
1
n fg P, (y)Qu(y) dy = 2n)*! fE Qu(y) pa(dy),

where 1, is given in (67), and set

Q(y) == ki(y)ka(y2) - - - k1 (y2p-k2(y2p), Yy = (Y1, , y2p) € Er.

Since the assumptions imply
lim ess sup |Q"(1) — Q(A)| =0

n—e0 A€[-n,m]

and the limit function Q is continuous a.e. and bounded on E; for each t € (0, 7], see Fox and Taqqu [14],
p-237, for more detail, Lemma 7.1. in Fox and Taqqu [14] yields

1
L] Pwemay= e [ 0wy
- o f (Qu(y) = Q) 1n(dy) + 2! f Q) 1n(dy)
E; E;

" Q! fE Q(y) u(dy) = 2y f[ ()@ dz.

-7, t)\[4,]

Therefore, the conclusion follows.

C Limit Theorems of Quadratic Forms
In this section, we derive several limit theorems of the quadratic form of random sequence which are used
in the proof of Proposition 4.1 and Proposition 4.2 under the following assumptions.

Assumption C.1. Recall ® := Oy X ©, is a compact set of the form Oy := [H_,H,] c (0,1] and ©, :=
[n-,1+] € (0, 0). Let us consider a function k : [-71, 1] X ® X N — [—00, 00], denoted by kg(/\) =k(A,9,n), be
even and integrable on [-7, 7] for each ¥ € ® and n € IN and assume there exist monotonically increasing
continuous functions By, f1 : Oy — (=1, 1) such that the function k satisfies the conditions (C.1)-(C.3) below
on a restricted parameter space Gy() := Opo(E) X K, where K be a compact interval of (0, oo) and

Ono(&) :={H € Oy : —po(H) —a(Ho) > -1+ &, —p1(H) —a(Hy) 2 -1+ &}, £€(0,1).

Here Hj denotes the true value of H € Oy, the function @ : ®y — (-1,1) is given in Lemma A.1 and we only
consider sufficiently small & € (0, 1) such that @H,o(é) # 0, where éH,o(é) is the set of all interior points of
Opo(&).

(C.1) For each 9 € ©y(&), there exists a function kg such that

lim ess sup [ky(A) —kg(A)] =0,

- A€[-n,m]
and the discontinuities of kg has the Lebesgue measure 0 for each 3 € ©y(&).

(C.2) For each 9 € ©y(¢), the following relations hold:

neN,Ae[—n,m]\{0}
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(C.3) For each A € [-m, m]\{0}, k§(A) is differentiable with respect to § € ©y(¢) and its partial derivatives
satisfy

n
sup AP ) %(/\)
nelN Ae[-m,m]\(0}, 99
9=(81,92)€@ (&)

<o, j=1,2.

C.1 Basic Properties of Bilinear and Quadratic Forms

At first, we summarize several basic properties of the bilinear form B, and the quadratic form Q, as
functionals on L'[-7, 1] without proofs.

Lemma C.2. Let x,y € C". The functionals B,(x,y, ) and Q,(x, ) on L[—7t, 7t] satisfy the following properties.
(1) For each x,y € C", the functional B,(x,y, ) is linear on L'[-m, ).

(2) For each x € C", the functional Q,(x, -) is non-decreasing on L[-m, 7T, ie. for each ky,ky € L'[-7, 7],

Qu(x k1) < Qu(x, ko) if k1 <k,
where ki < ky means k1(A) < ka(A) forae. A € [-7, 7.
(3) Foreach x € C", Q,(x, k) > 0ifk € L'[—m, ] satisfies k > 0.

(4) Foreachx € C" withx # 0, Qu(x,k) > 0ifk € L'[-m, 7] satisfies k > 0 and the set {A € [-n, 7] : k(A) > 0} has
a positive Lebesgue measure.

Next lemma is useful to evaluate asymptotic behaviors of bilinear forms.

Lemma C.3. Suppose a sequence of functions k%, n € IN, satisfies the condition (C.2) in Assumption C.1. Then there
exists an even and 2m-periodic function kY, which is independent of the asymptotic parameter n € N, such that

sup s < kb )| and sup (AP )|} < oo
9€®y,Ae[—m, 7] \{0}

Moreover, the following two inequalities hold for each x,y € C" and § € ©y:

1Qn 3| < Qu(x S()sQno«,k;), (68)
k)| < 24/Qu (6 K2) @ (v, K (69)

Proof. Define a function k', by

K5(A) = cl2(1 - cos A)) Z A + 27| FolH)2
jeZ

. IAI? H
with ¢:= su {—-wﬁo( Mkt b
SE@U,/\E[—H,E]\{O],nEN 2(1—cos ) | 9 |

Then it is obvious that the function kf satisfies all conditions mentioned at the beginning. Moreover, the
first inequality immediately follows from Lemma C.2 (2). In the rest of this proof, we will prove the second
inequality. Decompose kj into the following two non-negative functions:

Ki(A) = K3, (1) — K} _(1), where K3, (A) := max(K3(1),0), k}_(A) := max(~K}(),0).
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Note that both of k§ , and kf _ are even functions and satisfy the condition (C.2) from the assumptions of k7.
At first, consider the case where both of kg , and k _ are positive almost everywhere. Since Lemma C.2 (4)
yields the matrix X, (k) is positive definite, Lemma C.2 (1), Schwartz’s inequality of bilinear forms and (68)
yield that for each x,y € C",

B, (x,y,k’;) <|B, (x,y,kg,+) +|B, (X,y,k” 7)‘

< Y (o kL) Qu (1K) = 24/Q (k) Qi (3 KL)
T

Note that the above inequalities also follows evenifk§y . = Oork} _ = 0. Therefore, the conclusion follows. O

The following result immediately follows from Lemma C.2 and Lemma C.3.

Corollary C.4. Let | € IN and suppose a sequence of functions k', n € IN, satisfies the condition (C.2) in Assump-

tion C.1. For any n-dimensional vector of the form y := Y/ ajw; with wj € C" and aj € C for j € {0,1,2,---, ]},

j=0
the following inequality holds:

J ]
Qu (¥, K2) = Qu (aowo, k)| < 3" Y lailasl[B

i=0 ]:1

J
22 o 3 il \JQu (wi k) /Qu (wy k),

=0 j=

w,,w],k )|

where kY, is given in Lemma C.3.

C.2 Pointwise Convergence of Gaussian Quadratic Form

Denote by G, := 6,"°G,,. In the next lemma, we show a pointwise convergence of the quadratic form of the
stationary Gaussian sequence G, n € IN.

Lemma C.5. Suppose a sequence of functions k', n € IN, satisfies the conditions (C.1) and (C.2) in Assumption C.1.
Under the conditions (H.1) and (H.3), the following convergence holds for each 9 € ®y(&):

lim |0 (Go k) = Qo ()], =0,
where kg is the limit function given in (C.1) and
Qutks)i= [ i (Dks(D A 70)

Proof. At first, we obtain

[0 (G ke) — Qs o), = Var [Qu (G k)] + {E[Qu (o 2)] - Qs o))

2 1 2
- G (20 (2, 2o (k0] + (s T [ ) 2 (R0)] — @ 60

where h% = h}, - is given in (15). Note that go == (Hy, 6,;H°v0) = 9. Since ¥ = (H,v) € ©y(&) implies
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Bo(H) + a(Hp) < 1 and under the conditions (H.1) and (H.3), we have

1 _
sup |1} (A) = M fu, (M)l = — sup (D) "=
A€[-m,m] nnéno A€[-n,m]
the conclusion follows from the conditions (C.1), (C.2) and Theorem B.3. O

The following result is easily proven in the similar way to the proof of Lemma C.5.

Corollary C.6. Suppose a sequence of functions k%, n € IN, satisfies the condition (C.2) in Assumption C.1.
Under the conditions (H.1) and (H.3), the following convergence holds for each 8 = (H,v) € ©y(&) satisfying
0((H0) + ﬁo(H) < 1/2 _ _

Qn (Gn/kg) -E [Qn (G,,,kg)] =0Op (1/ \/ﬁ) as n — oo,
C.3 Pointwise Convergence of Quadratic Form of Observation Y,

Denote by (n = 0Oy ™y,. Our goal in this subsection is to prove that the quadratic form of the rescaled
observation Y, and that of the Gaussian vector G, are asymptotically equivalent as 06, — 0. Namely, we
show the following result.

Proposition C.7. Suppose a sequence of functions ky, n € IN, satisfies the condition (C.2) in Assumption C.1.
Under the conditions (H.1) — (H.3), there exists a constant ¥ > 0 such that the following convergence holds for each
9 € ©(&):

Qn (Yn/ kn) Qn (Gn/ kn) +o0p (62H0+lp) as n — oo.

Proof. From Proposition A.2, Corollary C.4 and Lemma C.5, it suffices to prove the following two results
for the non-negative function k given in Lemma C.3 and each 9 € ©y(&) x (0, o0):

(R1) Forany Ke Nand p = (p1,--- ,pk) € INK, the following relation holds:

Qn (AWE,k:g) =Op (631‘le°) as 1 — oo.

(R.2) Assume that there exists a positive random variable A, which is independent of the asymptotic

parameter n € N, such that a random vector R, := (RQ’, R;’, -+, R") satisfies

sup [RY| <A -5, (71)
teA,

Then there exists a constant i > 0 such that the following relation holds:

Qn (Rn,kj;) = 0<6iH°+4}) as n — oo.

In the rest of this proof section, we prove (R.1) and (R.2). m]

Proof of (R.1). Fix § € ©y(&) x (0,00). At first, Chebyshev’s inequality and Lemma C.2 (3) yield that the
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following inequality holds for any M > 0:

d

Qu (AW? K5)[ > M] SAl/IE Q. (AWE, &2)]

1 1vgs np p
_m.as;ks(s—t)Cov[AWS AW} P]

1 1T\ 5 " "
:2nM Z (1 B ;)k;(T)COV [Awl p’AWHlTﬂ] ’ (72)

|T|<n

where the stationarity property of {W,?}icz is used in the last equality, see Proposition A.9. Since the
function k} satisfies the all assumptions in Lemma B.1 and Lemma B.2 with respect to = Bo(H), we obtain

Ki(x) = O (171 as || — oo. (73)

As aresult, (73) and Proposition A.9 yield that there exists a constant ¢ > 0 such that the last quantity of (72)
is dominated by

2|plHo
L it v P coy (H)~1+(2Hy—4)
ZnMZ|k9(T)||COV [AWVAWth = 2nM Zmﬁo T
|t|<n ftlen
2[plHo
cby,
<t |T|ﬁ0(H)+a(Ho)—4' (74)
2nM é

Note that the series in (74) converges because H € O (&) implies fo(H) + a(Hp) — 4 < —1. Since the last
quantity of (74) is independent of the asymptotic parameter n € N, the conclusion followsas M — co. O

Proof of (R.2). Fix & € (0,1). At first, (71) and (73) yield that there exists a constant ¢ > 0 such that
1 v 3
Ty
Qu(Ry, kg) - ; k(s = HRIRY

<5 2 Y[

s,t=1
A, T\ |5 cA? _
- . 1= ) |kt < X252 po(H)-1 7
= 6HZ( o] < 5 %2 75)

Moreover, for sufficiently small ¢ > 0 satisfying ¢ < 1-a(H,) = 2—2H), the last quantity of (75) is dominated

by
2 Bo(H)-1 2 T a(Ho)-1+yp Bo(H)-1 2Ho+1) -2—2Ho—y a(Ho)+Bo(H) -2+
2 Y 1 <2y ‘n Il < o2y p2 Y 1l . (76)
l<n |tl<n 1€Z
Note that the series in (76) converges because ¢ € (0,&) and H € ®Oyo(&) imply a(Hop) + fo(H) =2 + ¢ <
-1+ 1 — & < —1. Then the conclusion follows from (75), (76) and the assumptions (H.1) and (H.2). O

We can obtain the following result from Lemma C.5 and Proposition C.7.

Corollary C.8. Suppose a sequence of functions k', n € IN, satisfies the conditions (C.1) and (C.2) in Assumption C.1.
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Under the conditions (H.1) — (H.3), the following convergence holds for each 3 € ®y(<):
Qu (Y, k3) = Qoy(ks) + 0p(1) as 1 — co.

Furthermore we can show the following result.

Proposition C.9. Suppose a sequence of functions k., n € IN, satisfies the condition (C.2) in Assumption C.1 with
B(H) := a(H) + ¢ for an arbitrarily small € > 0. Under the same assumptions in Theorem 2.12,

Vi Qu (Y ki) = ViiQu (Gur k3, ) + 0p (620 as 1 — oo,

Proof. The outline of the proof is similar to the one in Proposition C.7. At first consider the case of x = 0.
Note that if Hy € (1/2,1), then

VinQ, (AW, k! ) = 0p (57%) as n — oo (77)

for any p € NX with K € N and [p| > 3 thanks to (R.1) in Proposition C.7 since \/ﬁél,,{” =0(1) as n — oo from
the assumptions. Furthermore, if Hy = 1/2, we can also show that

VnQ, (AWE,k:gO) =op ((ﬁH“) as n — oo (78)
for any p € NX with [p| > 4 thanks to (R.1) in Proposition C.7 again, and
VnB, (AWEl,AWEZ,kgo) =op ((ﬁHO) as n — oo (79)

for any p1, p2 € NX with |p1|+|p2| = 3. Indeed, the stationary and independent increments properties of the
Brownian motion W yield that

E b, (awe, awe k)| = —— Gy DK = )RS, (13 = ELAW, P AWL P AW P AW, P,

where the above sum is taken over all ¢y, --- ,t4 € {1,--- ,n} satisfying |t; — 1| < 1 for all i = 2,3,4. Thus the
number of terms in the above sum is proportional to the sample size 1 so that, thanks to the scaling property
of WP, we obtain

E [an (Awgl,Awgz,kgo)z] = 0p (53™) as n - co.

Thus the conclusion under the first condition follows from (77), (78) and (79) in the similar way to the proof
of Proposition C.7. Furthermore the conclusion under the second condition also follows from (77), (78) and
(79) in the similar way to the above proof once we have proven that

\/ﬁQn (Rn, k§0> = 0(6?{0) as n — oo

under the same assumption in (71) when Hy € (0, 3/4). The above result can be easily proven in the similar
way to the proof of (R.2) because, instead of (76), we can show that

Vg2 Y [t < HAmH g a=20-H) § jgj2Hie < o (30 as 1 . (80)
[tl<n |T|<n

2(1-Hy)

Indeed, (80) follows from the absolute convergence of the sum in (80) and /nd, =o0(l) asn — oo if
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Hy € (1/2,3/4), and from the upper estimate

T ZH[)—l—L X X
113-2(1-Ho) Z 7|72 < p2Ho-3 Z ‘_‘ g 2Ho+e = 3+ Z "4 = o (1) as 1 — oo
n

|t|<n |T|<n |t|<n

for € (¢,1/2) if Hy € (0,1/2]. This completes the proof. O

C.4 Uniform Convergence of Quadratic Form of Observations Y,

In this subsection, we prove a uniform convergence of the quadratic form of Y, which is an extension of
Corollary C.8 given in the previous subsection.

Proposition C.10. Suppose a sequence of functions k, n € N, satisfies the conditions (C.1)-(C.3) in Assumption C.1.
Under the conditions (H.1) — (H.3), the following uniform convergence holds:

sup |Qu (Yo Ks) = Qs (ks)| = 0p(1) a5 1 = co.

9eO@p(&)

Proof. Fix & € (0,1). At first, the compactness of Oy(&) yields that for each r > 0, there exists j(r) € N and a
finite open covering {B,(9;)}ie A given by

B,(9i) :={9 € ©g(&) : I — Sillge <} for §; = (H;, 1;) € Oo(E),i € Ajy.

Then we obtain the following inequality:

sup [Qu (Y k2) = Qulko)| < sup  |Qu (Y K3) - Qs (ko)

V€@ (&) iE/\]‘(,),SEBr(S,')

< max|Qu(Ya k) = Qu (k)|
€A )
+  sup  |Qs,(ks,) — Qs ks,)|
[191=92llg2 <r

91,9260y (E)XK

T n oo 1Q (Y, k) = Qu (Y 2 )

. (81)

Here Corollary C.8 yields that for each r > 0, the first term of the last quantity of (81) converges to 0 as
n — oo. Moreover, the second term of it also converges to 0 as | 0 because § = Qjy,(ky) is uniformly
continuous on Oy(&) under the condition (C.3). As a result, it suffices to show that the third term of it is
negligible for sufficiently small r > 0 and large n € IN.

Without loss of generality, we assume r € (0, £/2) and

sup B1(HY) — pr(HIl < £/2
H} H}e®r(&) [Hf ~H]|<r

since B is uniformly continuous on @ o(&). Here the condition (C.3) implies

a= sup  APOYVEQD)| < o
nelN,Ae[-n, 7]\ {0},
9=(H,n)eB(&)

Then the mean value theorem and Schwartz’s inequality yield that for any \9;’1, \9:.“2 € B,(3),1 € Ajp) and
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Ae [_n/ n]\{()},

kg:rl (A) - kgjz (A)

< |[vrs ]| 197 =91 2lge < rer D < ey a0, (82)
where ¢ := ¢ and 81 = (H!,1}) € B.(9)) is determined by the relation 87 = 97! + (8" — 8%) with

t= (8", 97%) € (0,1). Since 8t = (H!, ") € (&) implies —p1(H') — a(Hp) — £/2 > 1, Lemma C.2 and (82)
yield that the third term of the last quantity of (81) is dominated by

max Q, (?n, sup |k} - kgi|] <r=2 max f "I (4, X, ) A -si2 g

€A 9€B,(9)) TUieAjn J—n
(%]
<r— |max H;) + max R, «(H; 83
2 (ieA,-(,) Qny,c(Hi) €A gy n( 1))r (83)

where
Qnoe(Hi) := f 2 fia (1) APEIE12 4
Rye(Hi) = ’ f I, (A,Yn)| APBEIE2 40 O (Hi)'-

Moreover, Lemma A.1 and Sf = (H;f, n;r) € ©(&), i € Ajy, yield that there exists a constant c3 = ¢3(&) > 0,
which is independent of r € IN, such that the first term of the last quantity of (83) is dominated by

TT
C2 C _ e _
r—= - max Qp, ¢ (H;) < r— f A2 dA = reamt/2 L
Z'R ZEA]‘(,) 27-( —n

As a result, the first term of the last quantity of (83) converges to 0 as r | 0 irrespectively of the asymptotic
parameter n € IN. Moreover, Corollary C.8 yields that for each r € (0,&/2), the second term of the last
quantity of (83) converges to 0 as n — co. Therefore, the conclusion follows. ]

D Proof of Theorem 2.1

In this appendix, we give a proof of Theorem 2.1 in the original article. Actually, we will show the following
limit theorem that is a stronger version of Theorem 2.1.

Theorem D.1. Under the same assumption in Theorem 2.1, a sequence of cadlag processes
(+1)6n
Vmy, (log 62 - logf o2 du)

converges in law to a continuous Gaussian process G = {Gs}seo,0) given by G, = \/Q(Bsﬂ —B,), s € [0,00), as
n — oo, where B is a standard Brownian motion independent of F .

We recall the martingale functional central limit theorem in Section D.1, a preliminary result used in the
proof of Theorem D.1 is summarized in Section D.2 and we prove Theorem D.1 in Section D.3.
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D.1 Summary of Martingale Functional Central Limit Theorem

In this subsection, we recall the well-known martingale functional central limit theorem and give its concise
proof in the case where local martingales are continuous.

Theorem D.2 (Martingale Functional Central Limit Theorem). Let (Q, ¥, P) be a probability space, F" =
{F)sef0,00) be a sequence of filtrations on (QQ, F) satisfying the usual conditions and {Z"},en be a sequence of
continuous [F"-local martingales. If there exists a continuous function v : [0,00) — [0, 00) such that for any
s € [0, ),

(Z"s =5 v, in probability, (84)

then a sequence of the Cjo,)-valued random variables {Z"},en converges in law to the time-changed Brownian motion
B, where B is a standard Brownian motion and Co ) is the set of all continous functions on [0, 0) endowed with the
topology of the uniform convergence on compact sets.

Proof. At first, Dambis-Dubins-Schwarz’s theorem, see Karatzas and Shreve [29], Theorem 3.4.6, yields that
there exists a sequence of standard Brownian motions {B"},en such that for each n € IN,

7" =B

@ P-a.s..

Note that, since (Z") is non-negative and non-decreasing for each n € IN and v is continuous, the assumption
(84) implies that for any s € [0, o),

sup (Z")y — vyl = 0p(1) as n — oo (85)

0<u<s

by using Theorem VI.2.15 in Jacod and Shiryaev [27]. Moreover, (85) and the Slutsky’s theorem yield that

2
[0,00)

a standard Brownian motion, since the convergence (85) is equivalent to the convergence of the sequence

the sequence of C -valued random variables (B",{Z")) converges in law to (B, v) as n — oo, where Bis
of Cjoeo)-valued random variables (Z") to the continuous function v on [0, o) in probability. Therefore,
the conclusion follows from the above convergence in law and the continuous mapping theorem since
Y C%O,oo) — Clo,00) defined by ¢(z,v) := z o v is continuous in the similar argument to Billingsley [7],
p.145. o

Remark D.3. In Theorem D.2, it is always possible to take a standard Brownian motion B independent of F .

D.2 Notation and Preliminaries

In this subsection, we summarize notation and a preliminary result used in the proof of Theorem D.1. In the
rest of this section, we consider a sequence of filtrations IF" := {¥s, }s¢[0,0) and sequences of F*-martingales
M" = {Mse[0,00) and B" = {Bl}s¢[0,.0) defined by

1 1
n._ § 2 . n._ § 2 .
M :=5,2Mss,, B':=06,%Bss,.

Moreover, we set T? == j/my, for j € N U {0} and N;[7"] := max{j € N U {0} : T'; < s} for s € [0, ). In the
following lemma, we will show that the assumption of the asset price process S introduced in Section 2.1
in the original article implies the similar conditions introduced in Fukasawa [15]. Note that, by localization
argument, we can also assume without loss of generality that x is bounded and so the volatility process o>

is the Holder-continuous.
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Lemma D.4. Foranyk,n € Nands € [0,00),as n — oo,

1\ 1\
sup  [E[M, - MPYHFR] - o, (2k—1)!!(—) = op (—) ,
j=0L Nele"] " ! ! f” Mn Mn
1 k-1/2
sup  [EI(M, — M%7 =0p((—) )
j=0,1, Nilz"] s ! ! M

where !! denotes the double factorial operator defined by 1!! := 1 and n!! := H,Lc’;/(fj_l(n —2k) forn > 2.

Proof. Since we have

S0n
(Gu - Gvén)dBu/ 0<v<s< o,
00,

[SIE

M = M; = 0w, (BY — By) + 0,

S

the binomial theorem yields that for any k € IN,

ELM, | = M2)F ] = oty ELBL, — Bl 17

k " s

k—r n nyk-r | <=3 a0 r
W eng: o (04 = 015, dBy
j
r=1 T

"
j n

]

} (86)

Since the Brownian motion B enjoys stationary and independent increments properties, we have

1 k

EI(BY, Bl 1721 = (2k - 1)!1( ) , EIBl, - B IFa] =0 87)

My

for any k € IN. Moreover, the Burkholder-Davis-Gundy inequality and the Holder-continuity of ¢ yield that
for any k € (0, o), there exists a constant Cy > 0 such that for each s € [0, o),

. k
-1 TjarOn "
sup E||5, (0u = 0ws,)dBy| |Fl (88)
j=1, Ny[1] T, ! j
. k/2
) T]v+16n 9 " 1 k/2
<Ct sup E||5, (au—oT}lb") du| |Flh|l=op|{—
=1, Nol] ", / M

as n — oo. Then the conclusion follows from (87) and (88) by using Cauchy-Schwarz’s inequality to the rhs
of (86). O

D.3 Proof of Theorem D.1
Before proving Theorem D.1, we will show the following theorem.

Theorem D.5. Consider sequences of continuous IF"-local martingales Z" = {Z}}se[0,00) And continuous stochastic
processes X' = {L1}se[0,00) T€SpeECtively given by

o0 2 S50 (s+1)0,
n n n 1 2 n 1 2
Z! = \m, E (Mryﬂm _MT]'?/\S) ~ 5 ; o,dul, I := 5, . o;, du.
SOp

j=0

Then a sequence of the Cio«)-valued random variables Y" = {Y{}se[o,c0) given by Y? := (22, — ZY)/LE, s € [0, 0),
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converges in law to the continuous Gaussian process G = {Gs}se[0,0) defined in Theorem D.1.

Proof. Since we have

1 50
—f af, du = (M")s, s€]0,00),
On Jo

to6’s formula yields that

o T'].’H/\S
- 2\/_ng f 5 (M, = M, ) dM.
j=0 Tj S

Since Taylor’s theorem yields that

1 1 (X -02%)
= - 2 P 2 dz
o S5 0 (Gsbn + Z(Zs - Osg) ))
2
1 1 (05511 - T (Zn - O-bf)
~ 2 _f (0%, +z(0% - Z_f (0%, +2z(Z} - 02 ))? dz,
T, 0 Ty SOy S0 O

we can decompose Y" into the following three parts:

(7" +1Vs)/\(s+1)

=2+m, Z f ot /\s) dM;,
”VS)/\ s+1)

(X -0%)

n _ 2
+ z(X] osé )

=", -7 —R! = (2", - ZV) f = dz (89)

50y

for each s € [0, ), where a sequence of continuous F"-local martingales 7n = {Zg}se[o,m) and continuous

process R" = {R!'}se[0,«) are given by

M- M",
~n T NS "
70 = 2\, Z f ——|am,
116
(TMVS A(s+1) sO "6 )
R! := 2\/m (M — ydM, - f dz.
: " (T VS)A(s+1) ! T /\S (G ”b + Z(Gsb - G ”b ))2
First of all, we will show that
Z" "= \2B in law. (90)

Then Theorem D.2 yields that, in order to prove (90), it suffices to prove that for each s € [0, o),

(Z"ys = 25+ 0p(1) as 1 — oo. (91)

By Itd’s formula, we have

- M, Ni[c"]
(Zn>s =4m, Zf [ : ] dM™y, = Z B;l + 0p(1) as n — oo,
i T”b,, j=0
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where .
M, - M) o
) ( " " "
B = S — gmnf;
T

j 1
3 Tars, " 0

(M - M)
4—/ dM;,.

'r;‘ On

Since Lemma D.4 and the Burkholder-Davis-Gundy inequality yield that as n — oo,

N;[7"] D) N,[7"] 1
Y, EIBIFE] = Sm ), ——EIMI, ML) =25+ 0n(1),
=0 =0 "o,
N;[7"]
E[B; 17711 = o (1)
j=0

hold, the convergence (91) follows from Lemma 2.3. in [15] and the above two convergences. Therefore, the
convergence (90) follows.

In the rest of this proof, we would like to show that the second and third terms of (89) are negligible as
n — oo. Namely, we will prove the following three convergences: for any s € [0,00) and ¢ > 0,

L)
sup | [ T el o (507 a5 oo ©
0<u<s |JO (aué,, + Z(Z‘u - O-uén )
sup |Z’;| =0p(1) as n — oo, (93)
0<s<u
sup |R';| =o0p(1) as n — oo. 94)
0<s<u

Indeed, if (92), (93) and (94) hold, then the continuous processes appeared in the second and third terms of
(89) converge in probability to the function that is identically zero as n — oo so that the convergence of Y"
follows from (90) and the continuous mapping theorem.

At first, (92) immediately follows from the Holder-continuity of the volatility process 2. Next, we will
prove (93). In the similar argument to the first term of (89), we can show that

s
(Z™Mys = Zf (73 du + op(1) as n — oo. (95)
0

Then (93) follows from (95) and Doob’s inequality. Finally, we will prove (94). By 1t6’s formula, we have

Nsya[t"]
R! = Z CZS +o0p(1) as n — oo,
=N [T]+1

where ) 5
T (05671 - GT;-’(SH)

n 1
j+1
C;’/S = 2+m, ) (M) - M';},)dMZ . f 7
T 0 T;lén

dz.
+ z(agén - af? 6n))2
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Since Lemma D.4 and the Burkholder-Davis-Gundy inequality yield

Nmi”] NM[T ] 0% ) o,
EICL =2V f i dzE f M - M) dMlFn | = 0
jstl T 2 2 u " ul/ 7" ’
j=N o]+ ! No[e"]+1 (o7 s, + Z(G 0775,1)) 7 ! !
Nsyal7"]
2
E[IC| |7"T'3;]
j=Ng[t"]+1
c+1[T ] S . - "6 ) 2 T;’H 2
= 4mn dzE (M - M” ) dM, Tl =op(l) as n — oo,
0 (0%, +2(0% — 02, ))>
‘["]+1 o "O z osé GT"O T'/’ 5

the convergence (94) follows from an easy modification of Lemma 2.3. in [15] and the above two conver-
gences. Therefore, we finish the proof. ]

Let us embed the realized variance 62 into a continuous-time stochastic process

my—1

2
A2
= S - 5 o0
ol Z ‘longnTﬁwml longnTrww , s€]0,00).
=0

Then we can obtain the following limit theorem.

Theorem D.6. A sequence of cadlag processes Y" = {}7;1}56[0,00) given by

) (s+1)5
— i- )y ondu
n n
= 4/ 00
Y7 m, G5, , s€[0,0),
o2 du
56, u

converges in law to the continuous Gaussian process G = {Gs)se[0,0) defined in Theorem D.1.

Proof. Note that we have

A/ 0 50
- Z(log Ser, ntson) 108 Seracssn)” = fo o, du]
j=0

= Zgl +2 N1y Z(M%’H AS MZ"AS)(AZ;‘H/\S 7 /\s) T ym Z(A”" As A?”/\s)2’
j=0

where Al := 6;1/ 2Ase>,,, s € [0, 00). By using Lemma D.4, we can show that
Vi Z<A¢;ﬂ = AL = 0p(1) as > o,
2 Vi Z(MT” As MZ”/\S)(AT" As T”/\s) = OP(l) as n— oo

uniformly in u € [0,s] for any s > 0 in the similar way to the proof of Lemma 3.9. and Theorem 3.10. in [15]
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respectively. Then we obtain

\/m— . (s+1)0, \/m— L (s+1)0,
5—nn o3 - oy du | = 5, - Z(log Ser lis+1)5,) — 108 Seraigssnp, 1)’ = | o, du
Si j=0

On

/_m ©0 SOy
5 . (Z(log Sv nGso,) — log ST;'/\(S(S,,))Z - f a2 du] +op(1)
n = 0

=z, - Z" +op(1)

5+1

as n — oo uniformly in s € [0, u] for any u > 0. Therefore, the conclusion follows from Theorem D.5 and the
continuous mapping theorem since 1/X] = Op(1) as n — oo uniformly in u € [0, s] for any s > 0. O

In the end of this appendix, we prove Theorem D.1 by using Theorem D.6.

Proof of Theorem D.1. By Taylor’s theorem, we obtain

(o415, 63 _ ;S+1)6n 02 du
Vmy, (log 62 - logf a2 du) = ymy,log|1+ (SH”
50, f On %d
1)y . 15, . 1)y -2
Az (5+) 2d g (5+) zd 03 _ s((;‘*') ,24d
=vm (s+1 " g2 +om (s+1 " g2 (1 —2)y1+z +1)o: o dz
[, " ondu [ " of du I o ondu
for each s € [0, o). Since we have
1oy
! 62— [F™ 62 du
sup f(l—z) 1+z Z dz| = Op(1) as n — o
- +1)on 5
0<s<s oy du
50 u
for each sj € [0, 0), the conclusion follows from Theorem D.6 and the continuous mapping theorem. m|

E Approximate Formula of Estimation Function U, (H,v)

In this appendix, we derive the approximate formula of the estimation function (15) in the original article.
Since the spectral density gp, (1) and the periodogram I,,(A) are symmetric with respect to A € [-m, 7], we
have

(A Y)
o ) a

1 (" WA, Yo
=5n L (loggH,v<A)+ ( ))dA+Bh,v () + By, (¥)

u,(H,v) =% f (log SHp(A) +

gH,v(/\)

for any ¢ € (0, t], where

1o 1 (YL, Y.)
1 _ 1 n 7 n
BH,V(I‘/}) - 27 f(; loggH/V(/\) d/\’ B (ll)) 27‘[](; gH,V(/\) dA.
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In the rest of this subsection, we will show By, () ~ Ay, () and B, () ~ A}, (¥) as ¢ | 0. At first, we
consider the first approximation. Note that the Taylor expansion yields that
AP

gin(A) = PCyA2 4 1

M 3+2H
- + O(JAP™) as|A| = 0. (96)

Then we obtain the first approximation from the Taylor expansion as ¢ | 0 as follows:
1 1 2 y1on, A
BH,V(IP) NEJO‘ IOg (V CyA + m—n) dA

lP
=% {1/’ log(szH) + Y(ogy —1)(1 - 2H) + jo‘ log (1 + ;AHZH) dA}

12Cymmt

¢2+2H }

1
zﬂ {l,b IOg(VZCH) + l)l)(lOgljl) - 1)(1 - 2H) + m

Next we consider the second approximation. Since gg, is an even function, B%{,V(I,D) is represented by

n-1
B () = o (bH,vm, O +2 Y b, Wn(f)],
=1

where

1 ¥ cos(T)
brss(t, ) = 5 fo =S

Since the Taylor expansion as ¢ | 0 yields that

1o (CDitE YA
bt =5 Y, [ S ")

1 ) (_1)]‘,[2]' fl,b A2 a
T @) Jo vacuiap-H 4 AL

. 1 & (_1)]‘,[2]' fw A-1+2j+2H (1 1 A1+2H) 4
Ton ey @ept Jo 12Cy v2Cymm

1 o0 (—1)jT2j 1 ¢2j+2H ¢1+2j+4H
“2m & @2 v*Cr (2]' +2H  v2Cymn(l +2j + 4H))’

(©8)
we obtain the second approximation when the series in (98) is truncated after finite terms. Note that the
truncation error of the Taylor expansion in (97) is dominated as follows:

1\ (Y @y ()t 1 v
-3 Y | e e 2,

sup
7€{0,1, ,n—1}

j=0

for any | € IN and ¢ > 0. As a result, for fixed n € IN, we can make the truncation error arbitrary small
uniformly with respecttot € {0,1,--- ,n—1} as | € N is taken sufficiently large even in the case of the finite
sample.
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