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Abstract

This is a review report on non-linear expectations, G-Brownian motions and related
stochastic calculus under uncertainty, which were introduced by Peng [6, 13].
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1 Introduction

In this report, we review recent developments on stochastic calculus based on the so-called
nonlinear expectations, in particular, sublinear expectations, which were introduced by Peng
[6, 7]. A non-linear expectation E is a monotone and constant-preserving functional defined on
a linear space of random variables. We are particularly interested in sublinear expectations,
i.e., E[X + Y ] ≤ E[X] + E[Y ] and E[λX] = λE[X] for any random variables X, Y and any
constant λ ≥ 0. Sublinear expectations in this sense is consistent with the notion of coherent
risk measures. Furthermore, each sublinear expectation can be represented by the supremum
of a subset of linear expectations, and thus it is also consistent with the upper expectation
under uncertainty of probability measures.

In order to investigate problems of probability model uncertainty, Peng [6, 7] focused on
“expectations” rather than the well-accepted classical notion of “probability measures”, and
introduced the notion of nonlinear expectation spaces and sublinear expectation spaces. The
classical notions of the distributions and independence of random variables are generalized to
nonlinear expectation spaces. Peng [11, 12] proved the corresponding law of large numbers
(LLN) and the central limit theorem (CLT) for an “i.i.d.” sequence of random variables under
a sub-linear expectation. In the new CLT, the limit distribution becomes the so-called G-
normal distribution which is a generalization of the classical normal distribution to the case
of variance uncertainty. The G-normal distribution is characterized by a nonlinear parabolic
partial differential equation (PDE, for short) of the following form:

∂tu−G(D2u) = 0,

where G is a sublinear and monotone function defined on the set of d×d symmetric matrices.
From this fact, we see that the stochastic calculus under non-linear expectations is strongly
related to the theory of fully nonlinear PDEs. We emphasize that if the function G is
linear, then the G-heat equation is reduced to the classical heat equation, and the G-normal
distribution becomes the classical normal distribution.

Based on the G-normal distribution, a G-Brownian motion is formulated by Peng [8, 9]
in a similar way to the classical Brownian motion. Roughly speaking, a G-Brownian motion
is a stochastic process with stationary and independent increments under a given sublinear
expectation. On a canonical space of continuous paths from R+ to Rd, we can define a
sublinear expectation called G-expectation which is analogous to Wiener’s law. Under the
G-expectation, the canonical process becomes a G-Brownian motion. The related Itô-type
stochastic integral and the quadratic variation process of a G-Brownian motion are defined
by Peng [13, 10]. An interesting phenomenon is that the quadratic variation process of a
G-Brownian motion is also a stochastic process with stationary and independent increments,
and thus can still be regarded as a G-Brownian motion. The corresponding Itô’s formula
is obtained. Furthermore, the notion of G-martingales is introduced, and the corresponding
representation theorem is presented; this is based on the papers [4, 15, 16, 17, 14]. Also, a
Girsanov’s type formula for G-Brownian motion is presented, which is based on the results
of the papers [18, 5].

In the end of this report, based on Hu et al. [2], we apply the G-expectation theory to
mathematical finance with volatility uncertainty. The notion of arbitrage is formulated. It
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turns out that the no-arbitrage prices of a given European contingent claim are characterized
by an interval. The bounds of this interval are the upper and lower arbitrage prices vup and
vlow, which are obtained as the expected value of the claim’s discounted payoff with respect
to the G-expectation Ê. Generally speaking, because Ê is a sublinear expectation, we have
vup 6= vlow. This verifies the market’s incompleteness. No arbitrage will be generated when
the price is in the interval (vlow, vup) for a European contingent claim.

2 Sublinear expectations

2.1 Definitions of nonlinear expectations and sublinear expecta-
tions

Let Ω be a given set and let H be a vector lattice of real valued functions defined on Ω. We
assume that H contains any constant c. Each element in the space H is called a random
variable.

Definition 2.1. A non-linear expectation E is a functional E : H → R satisfying

(i) Monotonicity :
E[X] ≤ E[Y ] if X ≤ Y ;

(ii) Constant preserving :
E[c] = c for c ∈ R.

The triplet (Ω,H,E) is called a nonlinear expectation space. We call E a sublinear expectation
if E is a non-linear expectation such that the following conditions hold:

(iii) Sub-additivity :
E[X + Y ] ≤ E[X] + E[Y ] for X, Y ∈ H;

(iv) Positive homogeneity :

E[λX] = λE[X] for X ∈ H and λ ≥ 0.

In this case, the triplet (Ω,H,E) is called a sublinear expectation space.

Definition 2.2. Let E1 and E2 be two nonlinear expectations defined on (Ω,H). We say
that E1 is dominated by E2, or E2 dominates E1, if

E1[X]− E1[Y ] ≤ E2[X − Y ] for X, Y ∈ H.

Remark 2.3. If E1 is dominated by E2, then we have

|E1[X]− E1[Y ]| ≤ E2[|X − Y |] for X, Y ∈ H.

From (iii), a sublinear expectation is dominated by itself. If the inequality in (iii) becomes
equality, then E is a linear expectation.
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Remark 2.4. The combination of Properties (iii) and (iv) is called sublinearity. This sub-
linearity implies

(v) Convexity :

E[αX + (1− α)Y ] ≤ αE[X] + (1− α)E[Y ] for X, Y ∈ H and α ∈ [0, 1].

Conversely, the combination of Properties (iv) and (v) implies sub-additivity (iii). On the
other hand, the combination of Properties (ii) and (iii) implies

(vi) Cash translatability :

E[X + c] = E[X] + c for X ∈ H and c ∈ R.

For Property (iv), an equivalent form is

E[λX] = λ+E[X] + λ−E[−X] for X ∈ H and λ ∈ R.

A sublinear expectation can be expressed as a supremum of linear expectations. The
following representation theorem was proved by using the Hahn–Banach extension theorem.

Theorem 2.5 ([13]). Let E be a functional defined on a linear space H satisfying sub-
additivity (iii) and positive homogeneity (iv). Then there exists a family of linear functionals
Eθ : H → R, indexed by θ ∈ Θ, such that

E[X] = max
θ∈Θ

Eθ[X] for X ∈ H.

Moreover, for each X ∈ H, there exists θX ∈ Θ such that

E[X] = EθX [X].

Furthermore, if E is a sublinear expectation, then the corresponding Eθ is a linear expectation.

The above linear expectation Eθ is only finitely additive in general. The following theorem,
which can be proved by using the well-known Daniell–Stone theorem, gives an important
sufficient condition for the σ-additivity of Eθ.

Theorem 2.6 ([13]). Assume that (Ω,H,E) is a sublinear expectation space satisfying

lim
i→∞

E[Xi] = 0

for each sequence of random variables {Xi}i∈N ⊂ H such that Xi(ω) ↓ 0 for each ω ∈ Ω. Then
there exists a family of (σ-additive) probability measures {Pθ}θ∈Θ defined on the measurable
space (Ω, σ(H)) such that

E[X] = max
θ∈Θ

∫
Ω

X(ω) dPθ(ω) for X ∈ H.

Here σ(H) denotes the σ-field on Ω generated by H.
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Remark 2.7. In the above theorem, the family {Pθ}θ∈Θ represents the uncertain probability
measures associated to the sublinear expectation E. In this case, the sublinear expectation
E can be seen as an upper expectation under the uncertainty of the probability measures
{Pθ}θ∈Θ.

The following property is very useful in the sublinear expectation theory.

Proposition 2.8 ([13]). Let (Ω,H,E) be a sublinear expectation space and Y ∈ H be a
random variable such that E[Y ] = −E[−Y ]. Then we have

E[X + αY ] = E[X] + αE[Y ], ∀X ∈ H, α ∈ R.

In particular, if E[Y ] = −E[−Y ] = 0, then E[X + αY ] = E[X].

Proof. We have, for each α ∈ R,

E[αY ] = α+E[Y ] + α−E[−Y ] = α+E[Y ]− α−E[Y ] = αE[Y ].

Thus, for each X ∈ H and α ∈ R,

E[X + αY ] ≤ E[X] + E[αY ] = E[X] + αE[Y ] = E[X]− E[−αY ] ≤ E[X + αY ].

More generally, for nonlinear expectations, the following holds.

Proposition 2.9 ([13]). Let Ẽ be a nonlinear expectation on (Ω,H) dominated by a sublinear
expectation E. Let Y ∈ H be a random variable such that E[Y ] = −E[−Y ]. Then we have

Ẽ[X + αY ] = Ẽ[X] + αẼ[Y ], ∀X ∈ H, α ∈ R. (2.1)

In particular, Ẽ satisfies the cash translatability:

Ẽ[X + c] = Ẽ[X] + c, ∀X ∈ H, c ∈ R.

Proof. By the above proposition, we have E[αY ] = −E[−αY ] = αE[Y ] for each α ∈ R. Thus,
for any X ∈ H and α ∈ R, we have

Ẽ[X + αY ]− Ẽ[X] ≤ E[αY ],

Ẽ[X]− Ẽ[X + αY ] ≤ E[−αY ] = −E[αY ],

showing that
Ẽ[X + αY ]− Ẽ[X] = E[αY ] = αE[Y ].

In particular, we have Ẽ[Y ] = E[Y ]. Consequently, we get (2.1).

An n-dimensional random variable X = (X1, . . . , Xn) with Xi ∈ H, i = 1, . . . , n, is often
called an n-dimensional random vector and denoted by X ∈ Hn. We define the corresponding
nonlinear expectation by a component-wise sense:

E[X] := (E[X1], . . . ,E[Xn]) ∈ Rn for X = (X1, . . . , Xn) ∈ Hn.
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2.2 Distributions and independence of random variables

We denote by Cl,Lip(Rn) the space of functions ϕ satisfying the local Lipschitz condition:

|ϕ(x)− ϕ(y)| ≤ C(1 + |x|m + |y|m)|x− y| for x, y ∈ Rn,

where the constant C > 0 and the integer m ∈ N may depend on ϕ. Also, we denote by
Cb,Lip(Rn) the set of all uniformly Lipschitz continuous functions ϕ:

|ϕ(x)− ϕ(y)| ≤ C|x− y| for x, y ∈ Rn,

where the constant C > 0 may depend on ϕ. In the following, unless otherwise stated, we
consider a sublinear expectation space (Ω,H,E) satisfying the following property: for any
X1, . . . , Xn ∈ H and any ϕ ∈ Cl,Lip(Rn), we have ϕ(X1, . . . , Xn) ∈ H. Similar results in
this subsection hold for the case where E is a nonlinear expectation dominated by another
sublinear expectation satisfying the above property.

We now give the notion of distributions of random variables under sublinear expectations.

Definition 2.10. Let X = (X1, . . . , Xn) be a given n-dimensional random vector defined on
a sublinear expectation space (Ω,H,E). We define a functional FX on Cl,Lip(Rn) by

FX [ϕ] := E[ϕ(X)] for ϕ ∈ Cl,Lip(Rn).

FX is called the distribution of X under E.

Note that the triplet (Rn, Cl,Lip(R
n),FX) forms a sublinear expectation space. The dis-

tribution of a (1-dimensional) random variable X ∈ H has the following typical parameters:

µ := E[X], µ := −E[−X].

By the sub-additivity and the constant preserving property of E, we see that µ ≤ µ. The
interval [µ, µ] characterizes the mean-uncertainty of X. Assume µ = µ = 0 and consider the
following parameters:

σ2 := E[X2], σ2 := −E[−X2].

Then we have 0 ≤ σ2 ≤ σ2. The interval [σ2, σ2] characterizes the variance-uncertainty of
X.

The following lemma is a consequence of Theorem 2.6.

Lemma 2.11 ([13]). Let (Ω,H,E) be a sublinear expectation space and let X ∈ Hn be an n-
dimensional random vector. Denote the distribution of X by FX . Then there exists a family
of probability measures {FX

θ }θ∈ΘX defined on (Rn,B(Rn)) such that

FX [ϕ] = sup
θ∈ΘX

∫
Rn
ϕ(x)FX

θ (dx), ϕ ∈ Cl,Lip(Rn).

Remark 2.12. The above lemma tells us that the distribution FX of X under a sublinear
expectation characterizes the uncertainty of the distribution of X which is a family of classical
distributions {FX

θ }θ∈ΘX .
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Definition 2.13. Let X1 and X2 be two n-dimensional random vectors defined on (possibly
different) sublinear expectation spaces (Ω1,H1,E1) and (Ω2,H2,E2), respectively. They are

called identically distributed, denoted by X1
d
= X2, if

E1[ϕ(X1)] = E2[ϕ(X2)], ∀ϕ ∈ Cb,Lip(Rn).

Note that, in the above definition, the test function ϕ is taken from Cb,Lip(Rn)⊂Cl,Lip(Rn).
However, the identically distributed can also be characterized by the following.

Proposition 2.14 ([13]). Suppose that X1 and X2 are identically distributed n-dimensional
random vectors defined on sublinear expectation spaces (Ω1,H1,E1) and (Ω2,H2,E2), respec-
tively. Then we have

E1[ϕ(X1)] = E2[ϕ(X2)], ∀ϕ ∈ Cl,Lip(Rn).

Thus, X1
d
= X2 if and only if their distributions coincide.

Proof. For simplicity of notation, we assume that n = 1. For each ϕ ∈ Cl,Lip(R) and N ∈ N,
we define

ϕN(x) := ϕ((x ∧N) ∨ (−N)), x ∈ R.

Then we have ϕN ∈ Cb,Lip(R). Moreover, there exists a constant C,m > 0 such that

|ϕN(x)− ϕ(x)| ≤ C(1 + |x|m)(|x| −N)+ ≤ C(1 + |x|m)
|x|2

N
.

Note that, under our framework, for i = 1, 2, we have (1 + |Xi|m)|Xi|2 ∈ Hi. Thus, we get

|Ei[ϕN(Xi)]− Ei[ϕ(Xi)]| ≤ Ei[|ϕN(Xi)− ϕ(Xi)|]

≤ C

N
Ei[(1 + |Xi|m)|Xi|2]→ 0 as N →∞, i = 1, 2,

where we used the sub-additivity, monotonicity and positive homogeneity of the sublinear
expectation Ei. Consequently,

E1[ϕ(X1)] = lim
N→∞

E1[ϕN(X1)] = lim
N→∞

E2[ϕN(X2)] = E2[ϕ(X2)],

which is the desired result.

Definition 2.15. A sequence of n-dimensional random vectors {ηi}i∈N defined on a sublinear
expectation space (Ω,H,E) is said to converge in distribution (or converge in law) under E
if for each ϕ ∈ Cl,Lip(Rn), the sequence {E[ϕ(ηi)]}i∈N converges.

Proposition 2.16 ([13]). Let {ηi}i∈N converge in law in the above sense. Then the mapping
F : Cl,Lip(Rn)→ R defined by

F[ϕ] := lim
i→∞

E[ϕ(ηi)] for ϕ ∈ Cl,Lip(Rn)

is a sublinear expectation defined on (Rn, Cl,Lip(Rn)).
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Next, we define the notion of independence of random variables.

Definition 2.17. Let (Ω,H,E) be a sublinear expectation space. A random vector Y ∈ Hn

is said to be independent from another random vector X ∈ Hm under E if for each test
function ϕ ∈ Cb,Lip(Rm+n) we have

E[ϕ(X, Y )] = E[E[ϕ(x, Y )]|x=X ].

Remark 2.18. By a similar way to the proof of Proposition 2.14, we see that we can
replace Cb,Lip(Rn) by Cl,Lip(R

n) in the above definition. By using the sub-additivity, positive
homogeneity and monotonicity of the sublinear expectation E, we see that, for each ϕ ∈
Cl,Lip(Rm+n) and Y ∈ Hn, the function x 7→ E[ϕ(x, Y )] is in Cl,Lip(Rm).

Let X, X̄ be two n-dimensional random vectors on a sublinear expectation space (Ω,H,E).

X̄ is called an independent copy of X if X̄
d
= X and X̄ is independent from X. An interesting

and important phenomenon is that, under a nonlinear expectation, “Y is independent from
X” does not imply that “X is independent from Y ” in general.

Example 2.19 ([13]). Let (Ω,H,E) be a sublinear expectation space andX ∈ H be a random
variable such that E[X] = E[−X] = 0, σ2 := E[X2] > σ2 := −E[−X2], and E[|X|] > 0. Let
Y be an independent copy of X. By using Proposition 2.8, we see that

E[XY 2] = E[X+σ2 −X−σ2] = E
[σ2 − σ2

2
|X|+ σ2 + σ2

2
X
]

=
σ2 − σ2

2
E[|X|] > 0.

However, if X is independent from Y , then we have

E[XY 2] = 0,

which is a contradiction.

The following example is a non-trivial case.

Example 2.20 ([3]). Let Ω = R2, H = Cb,Lip(R2) and let K1 and K2 be two closed sets in
R. We define

E[ϕ] = sup
(x,y)∈K1×K2

ϕ(x, y) for ϕ ∈ Cb,Lip(R2).

It is easy to check that ξ(x, y) := x is independent from η(x, y) := y and η is independent
from ξ.

Hu–Li [3] showed that this is the only case.

Theorem 2.21 ([3]). Suppose that X ∈ H has distribution uncertainty and Y ∈ H is not
a constant on a sublinear expectation space (Ω,H,E). If X is independent from Y and Y is
independent from X, then X and Y must be maximally distributed (defined later).
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Remark 2.22. Let X ∈ Hm and Y ∈ Hn be two random vectors on a sublinear expectation
space (Ω,H,E). Suppose the distributions are represented by

FX [ϕ1] = sup
θ1∈ΘX

∫
Rm

ϕ1(x)FX
θ1

(dx) for ϕ1 ∈ Cl,Lip(Rm),

FY [ϕ2] = sup
θ2∈ΘY

∫
Rn
ϕ2(y)F Y

θ2
(dy) for ϕ2 ∈ Cl,Lip(Rn),

for some families of probability measures {FX
θ1
}θ1∈ΘX on (Rm,B(Rm)) and {F Y

θ2
}θ2∈ΘY on

(Rn,B(Rn)), respectively. In this case, “Y is independent from X” means that the joint
distribution of the random vector (X, Y ) ∈ Hm+n is represented by

F(X,Y )[ψ] = sup
θ1∈ΘX

∫
Rm

{
sup
θ2∈ΘY

∫
Rn
ψ(x, y)F Y

θ2
(dy)

}
FX
θ1

(dx) for ψ ∈ Cl,Lip(Rm+n).

Definition 2.23. Let (Ωi,Hi,Ei), i = 1, 2, be two sublinear expectation spaces. We denote

H1 ⊗H2 :=

{
Z(ω1, ω2) = ϕ(X(ω1), Y (ω2))

∣∣∣∣∣ (ω1, ω2) ∈ Ω1 × Ω2, X ∈ Hm
1 , Y ∈ Hn

2 ,

ϕ ∈ Cl,Lip(Rm+n), m, n ∈ N

}
,

and, for each random variable of the above form Z(ω1, ω2) = ϕ(X(ω1), Y (ω2)),

(E1 ⊗ E2)[Z] := E1[E2[ϕ(x, Y )]|x=X ].

We call (Ω1 × Ω2,H1 ⊗ H2,E1 ⊗ E2) the product space of sublinear expectation spaces
(Ω1,H1,E1) and (Ω2,H2,E2).

It is easy to see that the product space (Ω1 × Ω2,H1 ⊗ H2,E1 ⊗ E2) forms a sublinear
expectation space. In this way, we can define the product space(

n∏
i=1

Ωi,
n⊗
i=1

Hi,
n⊗
i=1

Ei

)
of given sublinear expectation spaces (Ωi,Hi,Ei), i = 1, . . . , n. The sublinear expectation⊗n

i=1 Ei is defined recursively by( n⊗
i=1

Ei
)

[Z] :=
(n−1⊗
i=1

Ei
)[

En[ϕ(x1, . . . , xn−1, Xn)]|(x1,...,xn−1)=(X1,...,Xn−1)

]
for a random variable Z ∈

⊗n
i=1Hi of the form Z(ω1, . . . , ωn) = ϕ(X1(ω1), . . . , Xn(ωn)) for

Xi ∈ Hmi
i , i = 1, . . . , n, and ϕ ∈ Cl,Lip(R

∑n
i=1 mi). When (Ωi,Hi,Ei) = (Ω,H,E) for all i, we

have the product space of the form (Ωn,H⊗n,E⊗n).

Proposition 2.24 ([13]). Let Xi be an ni-dimensional random vectors on a sublinear expec-
tation space (Ωi,Hi,Ei) for each i = 1, . . . , n, respectively. Define

Yi(ω1, . . . , ωn) := Xi(ωi), i = 1, . . . , n.

Then Yi, i = 1, . . . , n, are random vectors on the product space (
∏n

i=1 Ωi,
⊗n

i=1Hi,
⊗n

i=1 Ei).

Moreover we have Yi
d
= Xi and Yi+1 is independent from (Y1, . . . , Yi) under

⊗n
i=1 Ei for each

i = 1, . . . , n− 1.
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2.3 Banach spaces of random variables

Let (Ω,H,E) be a sublinear expectation space. We can extend the well-known Young’s
inequality and Hölder’s inequality to our setting.

Proposition 2.25 ([13]). For each X, Y ∈ H, we have

E
[
|X + Y |r

]
≤ max{1, 2r−1}

(
E
[
|X|r

]
+ E

[
|Y |r

])
, for r > 0;

E[|XY |] ≤ E
[
|X|p

]1/pE[|Y |q]1/q, for 1 < p, q <∞, 1

p
+

1

q
= 1;

E
[
|X + Y |p

]1/p ≤ E
[
|X|p

]1/p
+ E

[
|Y |p

]1/p
, for p ≥ 1.

Let p ≥ 1 be fixed. It is easy to see that Hp
0 := {X ∈ H |E[|X|p] = 0} is a linear

subspace of H. We take Hp
0 as a null space, and consider the quotient space H/Hp

0. For
each {X} ∈ H/Hp

0 with a representation X ∈ H, we can define E[{X}] := E[X] which is a
sublinear expectation on (Ω,H/Hp

0). In the following, we use the same notation X for an
element {X} of H/Hp

0 and its representation X ∈ H. Define

‖X‖p := E
[
|X|p

]1/p
for X ∈ H/Hp

0.

By the above results, we see that ‖ · ‖p forms a norm on H/Hp
0. Denote the completion of

H/Hp
0 under the norm ‖ · ‖p by Ĥp, then (Ĥp, ‖ · ‖p) is a Banach space. For p = 1, we denote

it by (Ĥ, ‖ · ‖).
Observe that the mappings

·+ : H 3 X 7→ X+ ∈ H and ·− : H 3 X 7→ X− ∈ H

satisfy
|X+ − Y +| ≤ |X − Y | and |X− − Y −| ≤ |X − Y | for X, Y ∈ H.

Thus, they are both contraction mappings under ‖ · ‖p and can be continuously extended to

the Banach space (Ĥp, ‖ · ‖p).

Definition 2.26. An element X in (Ĥ, ‖ · ‖) is said to be nonnegative, or X ≥ 0, 0 ≤ X, if
X = X+. We also write X ≥ Y , or Y ≤ X, if X − Y ≥ 0.

It is easy to check that X ≥ Y and Y ≥ X imply X = Y in (Ĥp, ‖ · ‖p).
For each X, Y ∈ H, we have

|E[X]− E[Y ]| ≤ E[|X − Y |] ≤ ‖X − Y ‖p.

Thus, the sublinear expectation E[·] : H/Hp
0 → R can be continuously extended to the

Banach space (Ĥp, ‖ · ‖p), on which it is still a sublinear expectation. We still denote it by

(Ω, Ĥp,E).

Remark 2.27. Note that X1, . . . , Xn ∈ Ĥp does not imply in general that ϕ(X1, . . . , Xn) ∈
Ĥp for ϕ ∈ Cl,Lip(Rn). Thus, we talk about the notions of distributions, independence and

product spaces on (Ω, Ĥ,E), the space Cb,Lip(Rn) cannot be replaced by Cl,Lip(Rn).
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3 G-normal distributions and limit theorems

In this section, we define special types of distributions called the maximal distribution and the
G-normal distribution under a sublinear expectation space. In the classical probability theory,
the maximal distribution corresponds to constants and the G-normal distribution corresponds
to the normal distribution. The related limit theorems, the law of large numbers (LLN) and
the central limit theorem (CLT) are considered. In the theory of sublinear expectations, it
turns out that the limit in LLN is a maximal distribution and the limit of CLT is a G-normal
distribution.

3.1 Maximal distributions and G-normal distributions

Firstly we define the maximal distribution.

Definition 3.1. A d-dimensional random vector η = (η1, . . . , ηd) on a sublinear expectation
space (Ω,H,E) is called maximally distributed if there exists a bounded, closed and convex
subset Γ ⊂ Rd such that

E[ϕ(η)] = max
y∈Γ

ϕ(y) for ϕ ∈ Cl,Lip(Rd).

Remark 3.2. The distribution of η is given by

Fη[ϕ] = E[ϕ(η)] = max
y∈Γ

∫
Rd
ϕ(x) δy(dx) for ϕ ∈ Cl,Lip(Rd),

where δy denotes the Dirac measure centered at y. This means that the maximally distributed
random variable η has the uncertainty of distributions among the Dirac measures centered
at y in the set Γ. When d = 1, we have Γ = [µ, µ] where µ := E[µ] and µ := −E[−η]. In this
case, the distribution of η is characterized by

Fη[ϕ] = E[ϕ(η)] = max
µ≤y≤µ

ϕ(y) for ϕ ∈ Cl,Lip(R).

Remark 3.3. A maximally distributed random vector η ∈ Hd satisfies the relation

aη + bη̄
d
= (a+ b)η for a, b ≥ 0,

where η̄ is an independent copy of η. Indeed, for each test function ϕ ∈ Cl,Lip(Rd), we have

E[ϕ(aη + bη̄)] = E
[
max
y2∈Γ

ϕ(aη + by2)
]

= max
y1∈Γ

max
y2∈Γ

ϕ(ay1 + by2)

= max
y∈Γ

ϕ((a+ b)y) = E[ϕ((a+ b)η)],

where in the third equality we used the convexity of Γ. We will see later that in fact the
above relation characterizes a maximal distribution.
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Next, we define the G-normal distribution. Recall that the classical characterization of a

normal distribution; X
d
= N(0, Q) if and only if

aX + bX̄
d
=
√
a2 + b2X for a, b ≥ 0,

where X̄ is an independent copy of X. The covariance matrix Q is defined by Q = E[XX>].
We will see that, within the framework of sublinear expectations, this normal distribution is
just a special type of the G-normal distribution.

Definition 3.4. A d-dimensional random vector X = (X1, . . . , Xd) on a sublinear expecta-
tion space (Ω,H,E) is called G-normally distributed if

aX + bX̄
d
=
√
a2 + b2X for a, b ≥ 0,

where X̄ is an independent copy of X.

Remark 3.5. If X is G-normal distributed, we have E[X + X̄] = 2E[X] and E[X + X̄] =√
2E[X]. Thus we see that E[X] = 0. Similarly, we can show that E[−X] = 0. Therefore X

has no mean-uncertainty.

Proposition 3.6 ([13]). Let X ∈ Hd be a d-dimensional G-normally distributed random
variable. Then for each matrix A ∈ Rm×d, AX ∈ Hm is an m-dimensional G-normally
distributed random variable. In particular, for each a ∈ Rd, 〈a, X〉 ∈ H is a 1-dimensional
G-normally distributed random variable. The converse is not true in general.

Definition 3.7. A pair of d-dimensional random vectors (X, η) on a sublinear expectation
space (Ω,H,E) is called G-distributed if

(aX + bX̄, a2η + b2η̄)
d
=
(√

a2 + b2X, (a2 + b2)η
)

for a, b ≥ 0,

where (X̄, η̄) is an independent copy of (X, η).

Remark 3.8. If (X, η) is G-distributed, then X is G-normally distributed and η is maximally
distributed.

We denote by S(d) the collection of all d × d symmetric matrices. Let (X, η) be G-
distributed random vectors on a sublinear expectation space (Ω,H,E). The following function
is basically important to characterize their distributions:

G(p,A) := E
[1

2
〈AX,X〉+ 〈p, η〉

]
for (p,A) ∈ Rd × S(d). (3.1)

It is easy to check that G is a sublinear function, monotone in A ∈ S(d) in the following
sense: for each p, p̄ ∈ Rd and A, Ā ∈ S(d),

G(p+ p̄, A+ Ā) ≤ G(p,A) +G(p̄, Ā),

G(λp, λA) = λG(p,A), ∀λ ≥ 0,

G(p,A) ≤ G(p, Ā), if A ≤ Ā.

(3.2)
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Clearly, G is also a continuous function. Thus, by Theorem 2.5, there exists a bounded,
closed and convex subset Γ ⊂ Rd × Rd×d such that

G(p,A) = sup
(q,Q)∈Γ

[1

2
tr
[
AQQ>] + 〈p, q〉

]
for (p,A) ∈ Rd × S(d).

The pair (X, η) is characterized by the following parabolic PDE defined on [0,∞)×Rd×Rd:

∂tu−G(Dyu,D
2
xu) = 0, (3.3)

with Cauchy condition u|t=0 = ϕ, where Dyu = (∂yiu)di=1 and D2
xu = (∂xixju)di,j=1. The

PDE (3.3) is called a G-equation.

Proposition 3.9 ([13]). Assume that the pair (X, η) is a pair of d-dimensional G-distributed
random vectors on a sublinear expectation space (Ω,H,E). For any given function ϕ ∈
Cl,Lip(Rd × Rd), we define

u(t, x, y) := E[ϕ(x+
√
tX, y + tη)] for (t, x, y) ∈ [0,∞)× Rd × Rd.

Then we have

u(t+ s, x, y) = E[u(t, x+
√
sX, y + sη)], ∀ t, s ∈ [0,∞), x, y ∈ Rd. (3.4)

Furthermore, for each T > 0, there exist constants C, k > 0 such that, for all t, s ∈ [0, T ] and
x, x̄, y, ȳ ∈ Rd,

|u(t, x, y)− u(t, x̄, ȳ)| ≤ C(1 + |x|k + |x̄|k + |y|k + |ȳ|k)(|x− x̄|+ |y − ȳ|) (3.5)

and
|u(t, x, y)− u(t+ s, x, y)| ≤ C(1 + |x|k + |y|k)(s+ s1/2). (3.6)

Moreover, u is the unique viscosity solution, continuous in the sense of (3.5) and (3.6), of
the G-equation (3.3) with Cauchy condition u|t=0 = ϕ.

Sketch of the proof. Let (X̄, η̄) be an independent copy of (X, η). Then we have

u(t+ s, x, y) = E[ϕ(x+
√
t+ sX, y + (t+ s)η)]

= E[ϕ(x+
√
sX +

√
tX̄, y + sη + tη̄)]

= E
[
E[ϕ(x+

√
sx̃+

√
tX̄, y + sỹ + tη̄)]|(x̃,ỹ)=(X,η)

]
= E[u(t, x+

√
sX, y + sη)],

we thus obtain the dynamic programming principle (3.4).
By using the sub-additivity of E, the local Lipschitz continuity of ϕ and the relation (3.4),

we can show the estimates (3.5) and (3.6).
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Next, we show that u is a viscosity solution of the PDE (3.3). For a fixed (t, x, y) ∈
[0,∞)×Rd×Rd, let ψ ∈ C2,3

l,Lip([0,∞)×Rd×Rd) be such that ψ ≥ u and ψ(t, x, y) = u(t, x, y).
By the relation (3.4) and Taylor’s expansion, it follows that, for δ ∈ (0, t),

0 ≤E[ψ(t− δ, x+
√
δX, y + δη)− ψ(t, x, y)]

≤C̄(1 + |x|m + |y|m)(δ3/2 + δ2)− ∂tψ(t, x, y)δ

+ E
[
〈Dxψ(t, x, y), X〉

√
δ + 〈Dyψ(t, x, y), η〉δ +

1

2
〈D2

xψ(t, x, y)X,X〉δ
]

=− ∂tψ(t, x, y)δ + E
[
〈Dyψ(t, x, y), η〉δ +

1

2
〈D2

xψ(t, x, y)X,X〉δ
]

+ C̄(1 + |x|m + |y|m)(δ3/2 + δ2)

=− ∂tψ(t, x, y)δ +G(Dyψ,D
2
xψ)(t, x, y) + C̄(1 + |x|m + |y|m)(δ3/2 + δ2),

where C̄,m > 0 depend on ψ. Consequently, by letting δ ↓ 0, we see that[
∂tψ −G(Dyψ,D

2
xψ)
]
(t, x, y) ≤ 0.

Thus u is a viscosity subsolution of (3.3). Similarly we can prove that u is a viscosity super-
solution of (3.3). The uniqueness of the viscosity solution of (3.3) satisfying the regularity
properties (3.5) and (3.6) comes from a general theory of PDEs.

Observe that u(1, 0, 0) = E[ϕ(X, η)] characterizes the distribution of (X, η). Thus, we
have the following consequence.

Corollary 3.10 ([13]). If both (X1, η1) and (X2, η2) are pairs of d-dimensional G-distributed
random vectors on sublinear expectation spaces (Ω1,H1,E1) and (Ω2,H2,E2), respectively,
with the same G, i.e.,

G(p,A) = E1

[1

2
〈AX1, X1〉+ 〈p, η1〉

]
= E2

[1

2
〈AX2, X2〉+ 〈p, η2〉

]
for (p,A) ∈ Rd × S(d),

then (X1, η1)
d
= (X2, η2). In particular, X1

d
= −X1.

Example 3.11. Let X be a d-dimensional G-normally distributed random vector on a sub-
linear expectation space (Ω,H,E). The distribution of X is characterized by the function

u(t, x) = E[ϕ(x+
√
tX)], (t, x) ∈ [0,∞)× Rd,

with a given function ϕ ∈ Cl,Lip(Rd). We see that u is the (unique) viscosity solution of the
following parabolic PDE defined on [0,∞)× Rd:

∂tu−G(D2
xu) = 0 (3.7)

with Cauchy condition u|t=0 = ϕ, where G = GX : S(d) → R is a sublinear and monotone
function defined by

G(A) :=
1

2
E[〈AX,X〉] for A ∈ S(d).
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The parabolic PDE (3.7) is called a G-heat equation. By Theorem 2.5, there exists a bounded,
closed and convex subset Σ ⊂ S(d) such that

1

2
E[〈AX,X〉] = G(A) =

1

2
sup
Q∈Σ

tr[AQ], A ∈ S(d).

Since G is monotone, we see that Σ ⊂ S+(d), where S+(d) is the set of d × d nonnegative
definite symmetric matrices. If Σ is a singleton: Σ = {Q} for some Q ∈ S+(d), then X
is classical zero-mean normally distributed with the covariance matrix Q. In general, Σ

characterizes the covariance uncertainty of X. We denote X
d
= N({0} × Σ).

When d = 1, we have X
d
= N({0} × [σ2, σ2]), where σ2 := E[X2] and σ2 := −E[−X2].

The function G can be written as

G(α) =
1

2

(
σ2α+ − σ2α−

)
for α ∈ R,

and the corresponding G-heat equation (3.7) becomes

∂tu−
1

2

(
σ2(∂2

xxu)+ − σ2(∂2
xxu)−

)
= 0 (3.8)

with u|t=0 = ϕ. In this case, when ϕ ∈ Cl,Lip(R) is convex or concave, E[ϕ(X)] can be
calculated as follows:

E[ϕ(X)] =


1√

2πσ2

∫∞
−∞ ϕ(y) exp

(
− y2

2σ2

)
dy if ϕ is convex,

1√
2πσ2

∫∞
−∞ ϕ(y) exp

(
− y2

2σ2

)
dy if ϕ is concave.

(3.9)

Indeed, it is easy to check that

ū(t, x) :=
1√

2πσ2t

∫ ∞
−∞

ϕ(x+ y) exp
(
− y2

2σ2t

)
dy

is the unique smooth solution of the following classical linear heat equation:

∂tū(t, x) =
σ2

2
∂2
xxū(t, x), (t, x) ∈ (0,∞)× R,

with limt→0 ū(t, x) = ϕ(x). It is also easy to check that, if ϕ is a convex function, then ū(t, x)
is also a convex function in x, thus ∂2

xū(t, x) ≥ 0. Consequently, ū is also the unique smooth
solution of the G-heat equation (3.8). We then have ū(t, x) = E[ϕ(x+

√
tX)] and thus (3.9)

holds. The proof for the concave case is similar.

Example 3.12. Let η be a d-dimensional maximally distributed random vector on a sublinear
expectation space. The distribution of η is characterized by the function

u(t, y) = E[ϕ(y + tη)], (t, y) ∈ [0,∞)× Rd,
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with a given function ϕ ∈ Cl,Lip(Rd). We see that u is the (unique) viscosity solution of the
following parabolic PDE defined on [0,∞)× Rd:

∂tu− g(Du) = 0 (3.10)

with Cauchy condition u|t=0 = ϕ, where g = gη : Rd → R is a sublinear function defined by

g(p) := E[〈p, η〉] for p ∈ Rd.

By Theorem 2.5, there exists a bounded, closed and convex subset Γ ⊂ Rd such that

E[〈p, η〉] = g(p) = sup
q∈Γ
〈p, q〉, p ∈ Rd.

If Θ̄ is a singleton: Γ = {q} for some q ∈ Rd, then η = q is a constant. We denote

η
d
= N(Γ× {0}).

When d = 1, we have η
d
= N([µ, µ] × {0}), where µ := E[η] and µ := −E[−η]. The

function g can be written as

g(p) = µp+ − µp− for p ∈ R,

and the corresponding PDE (3.10) becomes

∂tu−
(
µ(∂yu)+ − µ(∂yu)−

)
= 0.

The following proposition guarantees the existence of G-distributed random variables.
We omit the proof; see Peng [13].

Proposition 3.13 ([13]). Let G : Rd × S(d) → R be a given continuous function satisfying
(3.2). Then there exists a pair of d-dimensional G-distributed random vectors (X, η) on a
sublinear expectation space (Ω,H,E) satisfying

G(p,A) = E
[1

2
〈AX,X〉+ 〈p, η〉

]
for (p,A) ∈ Rd × S(d).

From now on, when we mention the sublinear expectation space (Ω,H,E), we suppose
that there exists a pair of random vectors (X, η) on (Ω,H,E) such that (X, η) is G-normally
distributed.

3.2 The law of large numbers and the central limit theorem

In this subsection, we provide statements of the law of large numbers (LLN) and the central
limit theorem (CLT) under the framework of sublinear expectations without proofs. For
more detailed discussions, see Peng [13].

Theorem 3.14 (Law of large numbers [13]). Let {Yi}i∈N be a sequence of d-dimensional

random vectors on a sublinear expectation space (Ω,H,E). We assume that Yi
d
= Y1 and Yi+1
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is independent from {Y1, . . . , Yi} for each i ∈ N. Then the sequence { 1
n

∑n
i=1 Yi}n∈N converges

in distribution to η:

lim
n→∞

E
[
ϕ
( 1

n

n∑
i=1

Yi

)]
= E[ϕ(η)],

for all ϕ ∈ C(Rd) satisfying linear growth condition, i.e., |ϕ(x)| ≤ C(1 + |x|), where η
d
=

N(Γ× {0}) with Γ ⊂ Rd satisfying

E[〈p, Y1〉] = max
q∈Γ
〈p, q〉 for p ∈ Rd.

Remark 3.15. If we take in particular ϕ(y) = dΓ(y) := inf{|x − y| |x ∈ Γ}, then we have
the following generalized law of large numbers:

lim
n→∞

E
[
dΓ

( 1

n

n∑
i=1

Yi

)]
= sup

γ∈Γ
dΓ(γ) = 0.

If Y1 has no mean-uncertainty, or in other words, Γ is a singleton: Γ = {γ0} for some γ0 ∈ Rd,
then we have

lim
n→∞

E
[∣∣∣ 1
n

n∑
i=1

Yi − γ0

∣∣∣] = 0.

Theorem 3.16 (Central limit theorem with zero-mean [13]). Let {Xi}i∈N be a sequence
of Rd-valued random vectors on a sublinear expectation space (Ω,H,E). We assume that

Xi
d
= X1 and Xi+1 is independent from {X1, . . . , Xi} for each i ∈ N. We further assume that

E[X1] = E[−X1] = 0. Then the sequence { 1√
n

∑n
i=1Xi}n∈N converges in distribution to X:

lim
n→∞

E
[
ϕ
( 1√

n

n∑
i=1

Xi

)]
= E[ϕ(X)],

for all ϕ ∈ C(Rd) satisfying linear growth condition, where X ∈ N({0}×Σ) with Σ ⊂ S+(d)
satisfying

E[〈AX,X〉] = sup
Q∈Σ

tr[AQ] for A ∈ S(d).

More generally, the following form of limit theorem holds.

Theorem 3.17 (Central limit theorem with law of large numbers [13]). Let {(Xi, Yi)}i∈N be
a sequence of Rd×Rd-valued random vectors on a sublinear expectation space (Ω,H,E). We

assume that (Xi, Yi)
d
= (X1, Y1) and (Xi+1, Yi+1) is independent from {(X1, Y1), . . . , (Xi, Yi)}

for each i ∈ N. We further assume that E[X1] = E[−X1] = 0. Then we have

lim
n→∞

E
[
ϕ
( 1√

n

n∑
i=1

Xi,
1

n

n∑
i=1

Yi

)]
= E[ϕ(X, η)],

for all ϕ ∈ C(Rd ×Rd) satisfying linear growth condition, where (X, η) is G-distributed with
the function G : S(d)× Rd → R characterized by

G(p,A) = E
[1

2
〈AX1, X1〉+ 〈p, Y1〉

]
for (p,A) ∈ Rd × S(d).
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4 G-Brownian motions and G-expectations

In this section we review the concept of G-Brownian motions and G-expectations. This G-
Brownian motion has a very rich and interesting structure which non-trivially generalizes the
classical one. The corresponding path-wise properties of the G-Brownian motion in view of
the quasi-sure analysis are also presented.

4.1 G-Brownian motions on sublinear expectation spaces

Definition 4.1. Let (Ω,H,E) be a sublinear expectation space. (Xt)t≥0 is called a d-
dimensional stochastic process if for each t ≥ 0, Xt is a d-dimensional random vector on
(Ω,H,E).

Definition 4.2. A d-dimensional stochastic process (Bt)t≥0 on a sublinear expectation space
(Ω,H,E) is called a G-Brownian motion if the following properties are satisfied:

(i) B0(ω) = 0 for any ω ∈ Ω;

(ii) For each t, s ≥ 0, Bt+s−Bt
d
= Bs and Bt+s−Bt is independent from (Bt1 , . . . , Btn), for

each n ∈ N and 0 ≤ t1 ≤ · · · ≤ tn ≤ t;

(iii) limt↓0 E
[
|Bt|3

]
t−1 = 0.

Moreover, if E[Bt] = E[−Bt] = 0 for each t ≥ 0, then (Bt)t≥0 is called a symmetric G-
Brownian motion.

In sublinear expectation spaces, the symmetric G-Brownian motion is an important case
of G-Brownian motions. The following theorem gives a characterization of the symmetric
G-Brownian motion.

Theorem 4.3 ([13]). Let (Bt)t≥0 be a given d-dimensional symmetric G-Brownian motion
on a sublinear expectation space (Ω,H,E). Define, for each ϕ ∈ Cb,Lip(Rd), the function

u(t, x) := E[ϕ(x+Bt)], (t, x) ∈ [0,∞)× Rd.

Then u is uniformly Lipschitz continuous in x ∈ Rd and uniformly 1/2-Hölder continuous in
t ∈ [0,∞). Furthermore, u is the viscosity solution of the G-heat equation (3.7):

∂tu−G(D2u) = 0

with Cauchy condition u|t=0 = ϕ, where G : S(d)→ R is defined by

G(A) :=
1

2
E[〈AB1, B1〉] for A ∈ S(d). (4.1)

In particular, Bt is G-normally distributed and Bt
d
=
√
tB1 for each t ≥ 0.
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Sketch of the proof. We only show that u is a viscosity solution of the G-heat equation (3.7).
First of all, we show that, for each fixed t ≥ 0,

1

2
E[〈ABt, Bt〉] = G(A)t for A ∈ S(d).

For each A ∈ S(d), we set b(t) = E[〈ABt, Bt〉]. Then b(0) = 0 and |b(t)| ≤ |A|E
[
|Bt|3

]2/3 → 0

as t ↓ 0. Let t, s ≥ 0 be fixed. Since Bt+s − Bt is independent from Bt and Bt+s − Bt
d
=

Bs, noting that E[Bs] = E[−Bs] = 0, we see that E[〈A(Bt+s − Bt), Bt〉] = E[−〈A(Bt+s −
Bt), Bt〉] = 0. Thus,

b(t+ s) = E[〈ABt+s, Bt+s〉] = E[〈A(Bt+s −Bt +Bt), Bt+s −Bt +Bt〉]
= E

[
〈A(Bt+s −Bt), Bt+s −Bt〉+ 〈ABt, Bt〉+ 2〈A(Bt+s −Bt), Bt〉

]
= E

[
〈A(Bt+s −Bt), Bt+s −Bt〉+ 〈ABt, Bt〉

]
= b(t) + b(s),

and hence b(t) = b(1)t = 2G(A)t. Furthermore, we have, for each t, s ≥ 0 and x ∈ Rd,

u(t+ s, x) = E[ϕ(x+ (Bt+s −Bt) +Bt)]

= E
[
E[ϕ(y + (Bt+s −Bt))]|y=x+Bt

]
= E[u(s, x+Bt)].

Fix (t, x) ∈ (0,∞)×Rd and let v ∈ C2,3
b ([0,∞)×Rd) be such that v ≥ u and v(t, x) = u(t, x).

Then we have, for each δ ∈ (0, t),

v(t, x) = E[u(t− δ, x+Bδ)] ≤ E[v(t− δ, x+Bδ)].

Thus, by Taylor’s expansion,

0 ≤ E[v(t− δ, x+Bδ)− v(t, x)]

= E
[
−∂tv(t, x)δ + 〈Dv(t, x), Bδ〉+

1

2
〈D2v(t, x)Bδ, Bδ〉+ Iδ

]
≤ −∂tv(t, x)δ +

1

2
E[〈D2v(t, x)Bδ, Bδ〉] + E[|Iδ|]

= −∂tv(t, x)δ +G(D2v(t, x))δ + E[|Iδ|]

where Iδ ∈ H is defined by the remaining term of Taylor’s expansion. In view of (iii) in
Definition 4.2, we can show that limδ↓0 E[|Iδ|]δ−1 = 0, from which we get

∂tv(t, x)−G(D2v(t, x)) ≤ 0,

hence u is a viscosity subsolution of the G-heat equation (3.7). Similarly we can prove that
u is a viscosity supersolution.

Remark 4.4. Let (Bt)t≥0 be a symmetric G-Brownian motion on a sublinear expectation
space (Ω,H,E). It is easy to see that, for each fixed t0 ≥ 0 and λ > 0, the stochastic processes
(Bt+t0 − Bt0)t≥0 and (λ−1/2Bλt)t≥0 are also symmetric G-Brownian motions with the same
generator G : S(d)→ R given by (4.1) on (Ω,H,E).
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Let (Bt)t≥0 be a symmetric G-Brownian motion on a sublinear expectation space (Ω,H,E).
For each a ∈ Rd, we denote

Ba
t := 〈a, Bt〉 for t ≥ 0,

σ2
aa> := 2G(aa>) = E

[
〈a, B1〉2

]
,

σ2
−aa> := −2G(−aa>) = −E

[
−〈a, B1〉2

]
.

Proposition 4.5 ([13]). Let (Bt)t≥0 be a symmetric G-Brownian motion on a sublinear
expectation space (Ω,H,E). Then (Ba

t )t≥0 is a 1-dimensional symmetric Ga-Brownian motion
for each a ∈ Rd with the generator Ga : R→ R given by

Ga(α) :=
1

2

(
σ2
aa>α

+ − σ2
−aa>α

−) for α ∈ R.

In particular, for each t, s ≥ 0, Ba
t+s −Ba

t
d
= N({0} × [sσ2

−aa> , sσ
2
aa> ]).

Next, we consider the G-Brownian motion without the symmetric condition E[Bt] =
E[−Bt] = 0 on a sublinear expectation space (Ω,H,E). The following proposition can be
shown by a similar argument as in the proof of Theorem 4.3.

Proposition 4.6 ([13]). Let (bt)t≥0 be a d-dimensional G-Brownian motion on a sublinear
expectation space (Ω,H,E). Assume furthermore that limt↓0 E

[
|bt|2

]
t−1 = 0. Define, for each

ϕ ∈ Cb,Lip(Rd), the function

u(t, x) := E[ϕ(x+ bt)], (t, x) ∈ [0,∞)× Rd.

Then u is uniformly Lipschitz continuous in x ∈ Rd and uniformly 1/2-Hölder continuous in
t ∈ [0,∞). Furthermore, u is the viscosity solution of the following parabolic PDE defined
on [0,∞)× Rd:

∂tu− g(Du) = 0

with Cauchy condition u|t=0 = ϕ, where g : Rd → R is defined by

g(p) := E[〈p, b1〉] for p ∈ Rd.

In particular, bt is maximally distributed and bt
d
= tb1 for each t ≥ 0.

Theorem 4.7 ([13]). Let (Bt)t≥0 be a d-dimensional G-Brownian motion on a sublinear
expectation space (Ω,H,E). Define, for each ϕ ∈ Cb,Lip(Rd), the function

u(t, x) := E[ϕ(x+Bt)], (t, x) ∈ [0,∞)× Rd.

Then u is uniformly Lipschitz continuous in x ∈ Rd and uniformly 1/2-Hölder continuous in
t ∈ [0,∞). Furthermore, u is the viscosity solution of the following parabolic PDE defined
on [0,∞)× Rd:

∂tu−G(Du,D2u) = 0

with Cauchy condition u|t=0 = ϕ, where G : Rd × S(d)→ R is defined by

G(p,A) := lim
t↓0

E
[1

2
〈ABt, Bt〉+ 〈p,Bt〉

]
for (p,A) ∈ Rd × S(d).
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Remark 4.8. In many situations we are interested in a 2d-dimensional G-Brownian motion
(Bt, bt)t≥0 such that E[Bt] = E[−Bt] = 0 and limt↓0 E

[
|bt|2

]
t−1 = 0. In this case (Bt)t≥0 is in

fact a symmetric G-Brownian motion. Moreover, the process (bt)t≥0 satisfies the properties
in Proposition 4.6. Define, for each ϕ ∈ Cb,Lip(Rd × Rd), the function

u(t, x, y) := E[ϕ(x+Bt, y + bt)], (t, x, y) ∈ [0,∞)× Rd × Rd.

By Theorem 4.7, it follows that u is the viscosity solution of the G-equation (3.3):

∂tu−G(Dyu,D
2
xu) = 0

with Cauchy condition u|t=0 = ϕ, where G : Rd × S(d)→ R is defined by

G(p,A) := E
[1

2
〈AB1, B1〉+ 〈p, b1〉

]
for (p,A) ∈ Rd × S(d).

In particular, (Bt, bt) is G-distributed.

4.2 The G-expectation on a canonical space

In this section, we consider a canonical space of functions from [0,∞) to Rd and construct
a sublinear expectation called G-expectation under which the canonical process becomes a
symmetric G-Brownian motion.

Let Ω = Cd
0 (R+) be the space of all Rd-valued continuous functions (ωt)t≥0 with ω0 = 0,

equipped with the distance

ρ(ω(1), ω(2)) :=
∞∑
i=1

2−i
[
max
t∈[0,i]

|ω(1)
t − ω

(2)
t | ∧ 1

]
for ω(1), ω(2) ∈ Ω.

For each fixed T ∈ [0,∞), we set ΩT := {ω·∧T |ω ∈ Ω}. We will consider the canonical
process Bt(ω) := ωt, t ∈ [0,∞), for each ω ∈ Ω.

For each fixed T > 0, define

Lip(ΩT ) := {ϕ(Bt1∧T , . . . , Btn∧T ) |n ∈ N, t1, . . . , tn ∈ [0,∞), ϕ ∈ Cl,Lip(Rd×n)}.

It is clear that Lip(Ωt) ⊂ Lip(ΩT ) for each t ≤ T . We set also

Lip(Ω) :=
∞⋃
n=1

Lip(Ωn).

Note that Lip(ΩT ) and Lip(Ω) are vector lattices containing all constants. Furthermore, for
each X1, . . . , Xn ∈ Lip(ΩT ) and ψ ∈ Cl,Lip(Rn), we have ψ(X1, . . . , Xn) ∈ Lip(ΩT ). Thus,
we can regard the sets Lip(ΩT ) and Lip(Ω) as the spaces of random variables satisfying the
conditions in Section 2.2. In particular, for each t ∈ [0,∞), Bt ∈ Lip(Ωt).

Let G : S(d) → R be a given continuous, sublinear and monotone function in the sense
of (3.2). By Theorem 2.5, there exists a bounded, convex and closed subset Σ ∈ S+(d) such
that

G(A) =
1

2
sup
Q∈Σ

tr[AQ], ∀A ∈ S(d).
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By Proposition 3.13, we know that there exists a sequence of d-dimensional random vectors

(ξi)i∈N on a sublinear expectation space (Ω̃, H̃, Ẽ) such that ξi
d
= N({0} × Σ) and ξi+1 is

independent from (ξ1, . . . , ξi) for each i ∈ N.
We now construct a sublinear expectation Ê on (Ω,Lip(Ω)) under which the canonical

process (Bt)t≥0 is a symmetric G-Brownian motion. For each X ∈ Lip(Ω) with

X = ϕ(Bt1 −Bt0 , Bt2 −Bt1 , . . . , Btn −Btn−1) (4.2)

for some ϕ ∈ Cl,Lip(Rd×n) and 0 = t0 < t1 < · · · < tn <∞, we set

Ê[X] := Ẽ[ϕ(
√
t1 − t0ξ1, . . . ,

√
tn − tn−1ξn)].

Ê consistently defines a sublinear expectation on (Ω,Lip(Ω)). Since Lip(ΩT ) ⊂ Lip(Ω), Ê
is also a sublinear expectation on Lip(ΩT ) for each T ∈ [0,∞). Furthermore, it is easy to
see that, under the sublinear expectation space (Ω,Lip(Ω), Ê), the canonical process (Bt)t≥0

satisfies the conditions (i) and (ii) in Definition 4.2. Also, since

Ê
[
|Bt|3]t−1 = t1/2Ẽ[|ξ1|3]→ 0 as t ↓ 0

and
Ê[Bt] =

√
tẼ[ξ1] = 0, Ê[−Bt] =

√
tE[−ξ1] = 0, ∀ t ∈ [0,∞),

we see that (Bt)t≥0 is a symmetric G-Brownian motion with the generator

1

2
Ê[〈AB1, B1〉] =

1

2
Ẽ[〈Aξ1, ξ1〉] = G(A) for A ∈ S(d).

Definition 4.9. The sublinear expectation Ê on the canonical space (Ω,Lip(Ω)) defined
through the above procedure is called a G-expectation.

For each X ∈ Lip(Ω) of the form (4.2), the related conditional G-expectation under Ωtj

is defined by
Ê[X|Ωtj ] := ψ(Bt1 −Bt0 , . . . , Btj −Btj−1

),

where the function ψ ∈ Cl,Lip(Rd×j) is defined by

ψ(x1, . . . , xj) := Ẽ[ϕ(x1, . . . , xj,
√
tj+1 − tjξj+1, . . . ,

√
tn − tn−1ξn)].

The following is a list of fundamental properties of the conditional G-expectation.

Proposition 4.10 ([13]). For each X, Y ∈ Lip(Ω), the following hold:

(i) If X ≤ Y , then Ê[X|Ωt] ≤ Ê[Y |Ωt];

(ii) Ê[η|Ωt] = η, for each t ∈ [0,∞) and η ∈ Lip(Ωt);

(iii) Ê[X|Ωt]− Ê[Y |Ωt] ≤ Ê[X − Y |Ωt];

(iv) Ê[ηX|Ωt] = η+Ê[X|Ωt] + η−Ê[−X|Ωt], for each t ∈ [0,∞) and η ∈ Lip(Ωt);
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(v) Ê[Ê[X|Ωt]|Ωs] = Ê[X|Ωt∧s], in particular, Ê[Ê[X|Ωt]] = Ê[X];

(vi) If X ∈ Lip(Ωt), then Ê[X|Ωt] = Ê[X], where Lip(Ωt) is the linear space of random
variables of the form

ϕ(Bt2 −Bt1 , Bt3 −Bt2 , . . . , Btn+1 −Btn),

for n ∈ N, ϕ ∈ Cl,Lip(Rd×n), t1, . . . , tn, tn+1 ∈ [t,∞).

Remark 4.11. Properties (ii) and (iii) imply the conditional cash translatability:

Ê[X + η|Ωt] = Ê[X|Ωt] + η for X ∈ Lip(Ω), η ∈ Lip(Ωt).

The following property is very useful in the stochastic calculus under the G-expectation.
The proof is similar to that of Proposition 2.8.

Proposition 4.12 ([13]). Let Y ∈ Lip(Ω) be such that Ê[Y |Ωt] = −Ê[−Y |Ωt] for some
t ∈ [0,∞). Then we have

Ê[X + ηY |Ωt] = Ê[X|Ωt] + ηÊ[Y |Ωt] for X ∈ Lip(Ω), η ∈ Lip(Ωt).

In particular, if Ê[Y |Ωt] = Ê[−Y |Ωt] = 0, then Ê[X + ηY |Ωt] = Ê[X|Ωt].

Example 4.13. For each a ∈ Rd and 0 ≤ t ≤ T <∞, we have

Ê[Ba
T −Ba

t |Ωt] = Ê[Ba
T −Ba

t ] = 0,

Ê[−(Ba
T −Ba

t )|Ωt] = Ê[−(Ba
T −Ba

t )] = 0.

Thus, for each X ∈ Lip(Ω) and η ∈ Lip(Ωt), we have

Ê[X + η(Ba
T −Ba

t )|Ωt] = Ê[X|Ωt].

We also have

Ê[η(Ba
T −Ba

t )2|Ωt] = η+Ê[(Ba
T −Ba

t )2] + η−Ê[−(Ba
T −Ba

t )2]

=
(
η+σ2

aa> − η
−σ2
−aa>

)
(T − t), for η ∈ Lip(Ωt),

and

Ê[(Ba
T )2 − (Ba

t )2|Ωt] = Ê[(Ba
T −Ba

t )2 + 2Ba
t (Ba

T −Ba
t )|Ωt]

= σ2
aa>(T − t).

Similarly, we have
−Ê
[
−
(
(Ba

T )2 − (Ba
t )2
)
|Ωt

]
= σ2

−aa>(T − t).
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We now consider the completion of the sublinear expectation space (Ω,Lip(Ω), Ê). For
each p ≥ 1, we denote by LpG(Ω) the completion of the space of Lip(Ω) under the norm

‖X‖p := Ê
[
|X|p

]1/p
for X ∈ Lip(Ω).

Similarly, we can define LpG(ΩT ), LpG(Ωt
T ) and LpG(Ωt). It is clear that for each 0 ≤ t ≤ T <∞,

LpG(Ωt) ⊂ LpG(ΩT ) ⊂ LpG(Ω).

According to Section 2.3, Ê can be continuously extended to a sublinear expectation on
(Ω, L1

G(Ω)) and still denoted by Ê. Furthermore, for each 0 ≤ t ≤ T < ∞, the conditional
G-expectation Lip(ΩT )→ Lip(Ωt) is a continuous mapping under ‖ · ‖1. Indeed, we have

|Ê[X|Ωt]− Ê[Y |Ωt]| ≤ Ê[|X − Y ||Ωt],

and hence ∥∥Ê[X|Ωt]− Ê[Y |Ωt]‖1 ≤ ‖X − Y ‖1.

Thus, Ê[·|Ωt] can also be extended as a continuous mapping

Ê[·|Ωt] : L1
G(ΩT )→ L1

G(Ωt).

Remark 4.14. Similar properties in Propositions 4.10 and 4.12 also hold for X, Y ∈ L1
G(Ω).

But in (iv) of Proposition 4.10 and Proposition 4.12, η ∈ L1
G(Ωt) should be bounded, since

X, Y ∈ L1
G(Ω) does not imply that XY ∈ L1

G(Ω).

Definition 4.15. An n-dimensional random vector Y ∈ (L1
G(Ω))n is said to be independent

from Ωt for some given t ∈ [0,∞) if for each ϕ ∈ Cb,Lip(Rn) we have

Ê[ϕ(Y )|Ωt] = Ê[ϕ(Y )] in L1
G(Ω).

Remark 4.16. Just as in the classical situation, the increments of the symmetricG-Brownian
motion (Bt+s − Bt)s≥0 is independent from Ωt, for each t ∈ [0,∞). It is easy to see that if
Y ∈ (L1

G(Ω))n is independent from Ωt and X ∈ (L1
G(Ωt))

m for some given t ∈ [0,∞), then Y
is independent from X under Ê in the sense of Definition 2.17.

4.3 Representations of the G-expectation

The following theorem gives a useful representation of the G-expectation.

Theorem 4.17 ([13]). There exists a weakly compact family of probability measures P on
(Ω,B(Ω)) such that

Ê[X] = max
P∈P

EP [X] for X ∈ Lip(Ω),

where EP denotes the classical expectation under a probability measure P .

Now we introduce a more explicit representation formula for the G-expectation proved
by [1].
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Let W be a standard (classical) d-dimensional Brownian motion under a probability
measure P on Ω, and let FW be the natural filtration generated by W :

FWt := σ(Wu, 0 ≤ u ≤ t) ∨N , FW := (FWt )t≥0,

where N is the collection of all P -null sets. Let Θ ⊂ Rd×d be the bounded and closed subset
such that

G(A) =
1

2
sup
γ∈Θ

tr[Aγγ>] for A ∈ S(d).

For a fixed T ∈ [0,∞), we denote by AΘ
0,T the set of all Θ-valued FW -progressively measurable

processes on the interval [0, T ]. We identify two elements θ, θ̄ ∈ AΘ
0,T if they are equivalent,

i.e.,
θt(ω) = θ̄t(ω) dt⊗ P -a.e. (t, ω) ∈ [0, T ]× Ω.

The quotient set of AΘ
0,T by this equivalent relation is still denoted by AΘ

0,T . For each θ ∈ AΘ
0,T ,

let Pθ be the law of the process (
∫ t

0
θs dWs)t≥0 on Ω.

Remark 4.18. For each θ, θ′ ∈ AΘ
0,T with θ 6= θ′, the probability measures P θ and P θ′ are

mutually singular.

Now we define the capacity c : B(Ω)→ [0, 1] by

c(A) := sup
θ∈AΘ

0,T

Pθ(A) for A ∈ B(Ω).

We introduce the capacity-related terminology.

• A property holds quasi-surely (q.s.) if it holds outside a set A with c(A) = 0.

• A mapping X : Ω→ R is said to be quasi-continuous (q.c.) if for all ε > 0, there exists
an open set O ⊂ Ω with c(O) < ε such that X|Oc is continuous.

• We say that X : Ω → R has a q.c. version if there exists a q.c. function Y : Ω → R
with X = Y q.s.

For t ≥ 0, we denote Ft = B(Ωt) = σ(Bs, 0 ≤ s ≤ t). Also, we denote by L0(Ωt) the space
of all Ft-measurable real-valued functions. For each X ∈ L0(ΩT ) such that EP θ [X] exists for
all θ ∈ AΘ

0,T , we set the upper expectation of X with respect to {P θ}θ∈AΘ
0,T

by

Ē[X] := sup
θ∈AΘ

0,T

EP θ [X].

Then the following holds.

Theorem 4.19 ([1]). The family of probability measures {P θ}θ∈AΘ
0,T

is tight. Furthermore,

it holds that

L1
G(Ωt) = {X ∈ L0(Ωt) |X has a q.c. version, lim

n→∞
Ē
[
|X|1l{|X|>n}

]
= 0},

and
Ê[X] = Ē[X] = sup

θ∈AΘ
0,T

EP θ [X], ∀X ∈ L1
G(ΩT ).
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Next, we investigate the conditional G-expectation. For each θ ∈ AΘ
0,T and t ∈ [0, T ], set

A(t, θ) := {θ′ ∈ AΘ
0,T | θ′ = θ on [0, t]},

where the identity between θ′ and θ is to be understood as

θ′s(Ω) = θs(ω) ds⊗ P -a.e. (s, ω) ∈ [0, t]× Ω.

Note that for each θ′ ∈ A(t, θ), we have P θ′ = P θ on Ft. We have the following proposition.

Proposition 4.20 ([5]). For each θ ∈ AΘ
0,T , X ∈ L1

G(ΩT ) and t ∈ [0, T ], it holds that

Ê[X|Ωt] = ess sup
θ′∈A(t,θ)

EP θ′ [X|Ft] P θ-a.s.

Under the non-degeneracy condition of the generator, theG-expectation Ê can also be rep-
resented as the upper expectation in terms of a family of “martingale measures” on (Ω,B(Ω)).
A probability measure P on (Ω,B(Ω)) is called a martingale measure if the canonical pro-
cess B is a martingale with respect to FB under P , where FB is the P -augmented filtration
generated by B:

FBt := σ(Bu; 0 ≤ u ≤ t) ∨N P , FB := (FBt )t≥0,

where N P is the collection of all P -null subsets. Let PΘ
mart be the family of all martingale

measures P satisfying

d〈B〉Pt
dt

∈ {γγ> | γ ∈ Θ} a.e. t ∈ [0, T ], P -a.s.,

where 〈B〉P is the (classical) quadratic variation process of B under P .

Proposition 4.21 ([5]). Assume that there exists σ0 > 0 such that

γγ> ≥ σ0Id, ∀ γ ∈ Θ.

Then it holds that
Ê[X] = sup

P∈PΘ
mart

EP [X], ∀X ∈ Lip(ΩT ).

5 Stochastic analysis under G-expectations

In this section, we define the stochastic integral with respect to the d-dimensional G-Brownian
motion (Bt)t≥0 on the G-expectation space (Ω, LpG(Ω), Ê). Some fundamental results of
stochastic analysis are presented.
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5.1 Stochastic integrals with respect to G-Brownian motions

For T ∈ [0,∞), a partition πT is a finite ordered subset πT = {t0, t1, . . . , tN} such that
0 = t0 < t1 < · · · < tN = T . We denote the mesh size by µ(πT ) := maxi=0,...,N−1(ti+1−ti). We
use πNT = {tN0 , . . . , tNN} to define a sequence of partitions of [0, T ] such that limN→∞ µ(πNT ) = 0.

Let p ≥ 1 be fixed. We let Mp,0
G (0, T ) be the set of the following type of simple processes:

for a given partition πT = {t0, . . . , tN} of [0, T ],

ηt(ω) =
N−1∑
k=0

ξk(ω)1l[tk,tk+1)(t), t ∈ [0, T ],

where ξk ∈ LpG(Ωtk), k = 0, 1, . . . , N − 1.

Definition 5.1. For an η ∈ Mp,0
G (0, T ) with ηt(ω) =

∑N−1
k=0 ξk(ω)1l[tk,tk+1)(t), the related

Bochner integral is ∫ T

0

ηt(ω) dt :=
N−1∑
k=0

ξk(ω)(tk+1 − tk).

For each η ∈Mp,0
G (0, T ), we set

ẼT [η] :=
1

T
Ê
[∫ T

0

ηt dt
]

=
1

T
Ê
[N−1∑
k=0

ξk(tk+1 − tk)
]
.

Then ẼT : Mp,0
G (0, T )→ R forms a sublinear expectation. We can define the associated norm

by

‖η‖Mp
G(0,T ) := ẼT [|η|p]1/p =

( 1

T
Ê
[∫ T

0

|ηt|p dt
])1/p

.

We denote by Mp
G(0, T ) the completion of Mp,0

G (0, T ) under the norm ‖ · ‖Mp
G(0,T ). For each

η ∈ Mp
G(0, T ), we can define the Bochner integral

∫ T
0
ηt dt ∈ LpG(ΩT ). Furthermore, the

following holds:

Ê
[∫ T

0

ηt dt
]
≤
∫ T

0

Ê[ηt] dt, ∀ η ∈Mp
G(0, T ).

It is clear that Mp
G(0, T ) ⊂M q

G(0, T ) for 1 ≤ q ≤ p. We also denote by Mp
G(0, T ;Rn) the space

of all n-dimensional stochastic processes ηt = (η1
t , . . . , η

n
t ), t ≥ 0, such that ηi ∈Mp

G(0, T ) for
each i = 1, . . . , n.

We now give the definition of stochastic integral with respect to a G-Brownian motion.
For simplicity, we first consider the case of 1-dimensional G-Brownian motion. Namely,
(Bt)t≥0 is a 1-dimensional G-Brownian motion with the generator

G(α) =
1

2
Ê[αB2

1 ] =
1

2

(
σ2α+ − σ2α−) for α ∈ R,

where σ2 := Ê[B2
1 ] and σ2 := −Ê[−B2

1 ].
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Definition 5.2. For each η ∈M2,0
G (0, T ) with ηt(ω) =

∑N−1
k=0 ξk(ω)1l[tk,tk+1)(t), we define

I(η) =

∫ T

0

ηt dBt :=
N−1∑
k=0

ξk(Btk+1
−Btk).

Clearly the mapping I : M2,0
G (0, T ) → L2

G(ΩT ) is a linear mapping. Furthermore, the
following holds.

Lemma 5.3 ([13]). We have, for each η ∈M2,0
G (0, T ),

Ê
[∫ T

0

ηt dBt

]
= 0 (5.1)

and

Ê
[(∫ T

0

ηt dBt

)2]
≤ σ2Ê

[∫ T

0

η2
t dt
]
. (5.2)

Proof. Let η ∈ M2,0
G (0, T ) be fixed. Noting that Ê[Bt − Bs|Ωs] = Ê[−(Bt − Bs)|Ωs] = 0 for

each 0 ≤ s ≤ t <∞, by Proposition 4.12, we see that

Ê
[∫ T

0

ηt dBt

]
= Ê

[∫ tN−1

0

ηt dBt + ξN−1(BtN −BtN−1
)
]

= Ê
[∫ tN−1

0

ηt dBt

]
.

Then we can repeat this procedure to obtain (5.1).
Next, we prove the estimate (5.2). Observe that

Ê
[(∫ T

0

ηt dBt

)2]
= Ê

[(∫ tN−1

0

ηt dBt + ξN−1(BtN −BtN−1
)
)2]

= Ê
[(∫ tN−1

0

ηt dBt

)2

+ ξ2
N−1(BtN −BtN−1

)2

+ 2
(∫ tN−1

0

ηt dBt

)
ξN−1(BtN −BtN−1

)
]

= Ê
[(∫ tN−1

0

ηt dBt

)2

+ ξ2
N−1(BtN −BtN−1

)2
]

= · · · = Ê
[N−1∑
k=0

ξ2
k(Btk+1

−Btk)
2
]
.

For each k = 0, . . . , N − 1, we have

Ê[ξ2
k(Btk+1

−Btk)
2 − σ2ξ2

k(tk+1 − tk)] =Ê
[
Ê[ξ2

k(Btk+1
−Btk)

2 − σ2ξ2
k(tk+1 − tk)|Ωtk ]

]
=Ê[σ2ξ2

k(tk+1 − tk)− σ2ξ2
k(tk+1 − tk)] = 0.
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Thus, we obtain

Ê
[(∫ T

0

ηt dBt

)2]
= Ê

[N−1∑
k=0

ξ2
k(Btk+1

−Btk)
2
]

≤
N−1∑
k=0

Ê[ξ2
k(Btk+1

−Btk)
2 − σ2ξ2

k(tk+1 − tk)] + E
[N−1∑
k=0

σ2ξ2
k(tk+1 − tk)

]
= E

[N−1∑
k=0

σ2ξ2
k(tk+1 − tk)

]
= σ2Ê

[∫ T

0

η2
t dt
]
.

This completes the proof.

Thus, we see that the mapping I : M2,0
G (0, T )→ L2

G(ΩT ) is a continuous linear mapping,
and thus can be extended to I : M2

G(0, T )→ L2
G(ΩT ). For each η ∈ M2

G(0, T ), we define the
stochastic integral by ∫ T

0

ηt dBt := I(η).

It is clear that (5.1) and (5.2) still hold for η ∈M2
G(0, T ).

We denote, for each η ∈M2
G(0, T ) and 0 ≤ s ≤ t ≤ T ,∫ t

s

ηu dBu :=

∫ T

0

1l[s,t)(u)ηu dBu.

The following is a list of fundamental properties of the stochastic integral.

Proposition 5.4 ([13]). Let η, θ ∈M2
G(0, T ) and let 0 ≤ s ≤ r ≤ t ≤ T . Then we have

(i)
∫ t
s
ηu dBu =

∫ r
s
ηu dBu +

∫ t
r
ηu dBu;

(ii)
∫ t
s
(αηu + θu) dBu = α

∫ t
s
ηu dBu +

∫ t
s
θu dBu, if α is bounded and in L1

G(Ωs);

(iii) Ê
[
X +

∫ T
r
ηu dBu|Ωs

]
= Ê[X|Ωs] for all X ∈ L1

G(Ω).

We now consider the multi-dimensional case. Let (Bt)t≥0 be a d-dimensional G-Brownian
motion with the generator G : S(d)→ R. Recall the notation Ba

t := 〈a, Bt〉 for a ∈ Rd. Then
(Ba

t )t≥0 is a 1-dimensional Ga-Brownian motion with the generator

Ga(α) =
1

2

(
σ2
aa>α

+ − σ2
−aa>α

−) for α ∈ R

with σ2
aa> := 2G(aa>) = Ê[〈a, B1〉2] and σ2

−aa> := −2G(−aa>) = −Ê[−〈a, B1〉2]. We can
define the stochastic integral by

I(η) :=

∫ T

0

ηt dB
a
t for η ∈M2

G(0, T ).
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We still have, for each η ∈M2
G(0, T ),

Ê
[∫ T

0

ηt dB
a
t

]
= 0

and

Ê
[(∫ T

0

ηt dB
a
t

)2]
≤ σ2

aa>Ê
[∫ T

0

η2
t dt
]
.

Furthermore, Proposition 5.4 still holds for the integral with respect to (Ba
t )t≥0.

5.2 Quadratic variation processes of G-Brownian motions

We first consider the quadratic variation process of a 1-dimensional symmetric G-Brownian

motion (Bt)t≥0 with B1
d
= N({0} × [σ2, σ2]). Let πNt , N ∈ N, be a sequence of partitions of

[0, t]. Observe that

B2
t =

N−1∑
k=0

(B2
tNk+1
−B2

tNk
)

=
N−1∑
k=0

2BtNk
(BtNK+1

−BtNk
) +

N−1∑
k=0

(BtNk+1
−BtNk

)2.

As µ(πN)→ 0, the first term of the right hand side converges to 2
∫ t

0
Bs dBs in L2

G(Ω). The
second term must be convergent, and we denote the limit by 〈B〉t, i.e.,

〈B〉t := lim
µ(πN )→0

N−1∑
k=0

(BtNk+1
−BtNk

)2 = B2
t − 2

∫ t

0

Bs dBs in L2
G(Ω).

By the definition, we see that (〈B〉t)t≥0 is an increasing process with 〈B〉0 = 0. Furthermore
〈B〉t ∈ L2

G(Ωt) for each t ∈ [0,∞). We call (〈B〉t)t≥0 the quadratic variation process of the
G-Brownian motion (Bt)t≥0. The interesting and important phenomenon is that, unlike the
case of the classical Brownian motion, the quadratic variation process of the G-Brownian
motion is not a deterministic process in general. In fact, 〈B〉 itself is a typical process with
independent and stationary increments having mean-uncertainty.

Theorem 5.5 ([13]). (〈B〉t)t≥0 is a G-Brownian motion on (Ω, L1
G(Ω), Ê), and satisfies

lim
t↓0

Ê
[
〈B〉2t

]
t−1 = 0. (5.3)

In particular, for each t ∈ [0,∞), 〈B〉t is maximally distributed:

〈B〉t
d
= t〈B〉1

d
= N([tσ2, tσ2]× {0}).
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Proof. For each fixed s, t ≥ 0, we have

〈B〉s+t − 〈B〉s = B2
s+t − 2

∫ s+t

0

Br dBr −
(
B2
s −

∫ s

0

Br dBr

)
= (Bs+t −Bs)

2 − 2

∫ s+t

s

(Br −Bs) d(Br −Bs)

= (Bs
t )

2 − 2

∫ t

0

Bs
r dB

s
r = 〈Bs〉t,

where 〈Bs〉 is the quadratic variation process of the G-Brownian motion Bs
t = Bs+t − Bs,

t ≥ 0. This implies that 〈B〉s+t − 〈B〉s is independent from Ωs and identically distributed
with 〈B〉t. Observe that

Ê[〈B〉2t ] = Ê
[(
B2
t − 2

∫ t

0

Bu dBu

)2]
≤ 2Ê[B4

t ] + 8Ê
[(∫ t

0

Bu dBu

)2]
≤ 6σ4t2 + 8σ2Ê

[∫ t

0

B2
u du

]
≤ 6σ4t2 + 8σ2

∫ t

0

Ê[B2
u] du

= 10σ4t2,

in particular, (5.3) holds. Thus, (〈B〉t)t≥0 is a G-Brownian motion on (Ω, L1
G(Ω), Ê). Noting

that

Ê[〈B〉1] = Ê
[
B2

1 − 2

∫ 1

0

Bu dBu

]
= Ê[B2

1 ] = σ2

and

−Ê[−〈B〉1] = −Ê
[
−B2

1 + 2

∫ 1

0

Bu dBu

]
= −Ê[−B2

1 ] = σ2,

by Proposition 4.6, we get the conclusion.

Corollary 5.6 ([13]). For each 0 ≤ s ≤ t <∞, we have

σ2(t− s) ≤ 〈B〉t − 〈B〉s ≤ σ2(t− s) in L1
G(Ω).

Proof. Since 〈B〉t − 〈B〉s
d
= N([(t− s)σ2, (t− s)σ2]× {0}), we have

Ê
[(
〈B〉t − 〈B〉s − σ2(t− s)

)+]
= sup

σ2≤y≤σ2

(
y − σ2

)+
(t− s) = 0

and
Ê
[(
〈B〉t − 〈B〉s − σ2(t− s)

)−]
= sup

σ2≤y≤σ2

(
y − σ2

)−
(t− s) = 0.
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Corollary 5.7 ([13]). We have, for each s, t ≥ 0 and n ∈ N,

Ê[(〈B〉s+t − 〈B〉s)n|Ωs] = Ê[〈B〉nt ] = σ2ntn

and
−Ê[−(〈B〉s+t − 〈B〉s)n|Ωs] = −Ê[−〈B〉nt ] = σ2ntn.

Proposition 5.8 ([13]). Let 0 ≤ s ≤ t <∞, ξ ∈ L2
G(Ωs), X ∈ L1

G(Ω). Then

Ê[X + ξ(B2
t −B2

s )] = Ê[X + ξ(Bt −Bs)
2] = Ê[X + ξ(〈B〉t − 〈B〉s)].

Proof. By Proposition 5.4, we have

Ê[X + ξ(B2
t −B2

s )] = Ê
[
X + ξ

(
〈B〉t − 〈B〉s + 2

∫ t

s

Bu dBu

)]
= Ê[X + ξ(〈B〉t − 〈B〉s)].

We also have

Ê[X + ξ(B2
t −B2

s )] = Ê[X + ξ((Bt −Bs)
2 + 2Bs(Bt −Bs))]

= Ê[X + ξ(Bt −Bs)
2].

Now we define the integral with respect to (〈B〉t)t≥0. For each η ∈ M1,0
G (0, T ) with

ηt(ω) =
∑N−1

k=0 ξk1l[tk,tk+1)(t), define

∫ T

0

ηt d〈B〉t :=
N−1∑
k=0

ξk(〈B〉tk+1
− 〈B〉tk).

Then we have ∣∣∣∫ T

0

ηt d〈B〉t
∣∣∣ ≤ ∫ T

0

|ηt| d〈B〉t in L1
G(ΩT ) (5.4)

and

σ2

∫ T

0

|ηt| dt ≤
∫ T

0

|ηt| d〈B〉t ≤ σ2

∫ T

0

|ηt| dt in L1
G(ΩT ). (5.5)

In particular, M1,0
G (0, T ) 3 η 7→

∫ T
0
ηt d〈B〉t ∈ L1

G(ΩT ) is a continuous linear mapping, and

hence can be continuously extended toM1
G(0, T ). We still denote this mapping by

∫ T
0
ηt d〈B〉t.

Clearly, the inequalities (5.4) and (5.5) still hold for each η ∈M1
G(0, T ).

We have the following isometry.

Proposition 5.9 ([13]). For each η ∈M2
G(0, T ), we have

Ê
[(∫ T

0

ηt dBt

)2]
= Ê

[∫ T

0

η2
t d〈B〉t

]
(5.6)

32



Proof. It suffices to show (5.6) for η ∈M2,0
G (0, T ) of the form ηt(ω) =

∑N−1
k=0 ξk(ω)1l[tk,tk+1)(t).

We have
∫ T

0
ηt dB(t) =

∑N−1
k=0 ξk(Btk+1

−Btk). By Proposition 4.12, we see that

Ê[X + 2ξj(Btj+1
−Btj)ξi(Bti+1

−Bti)] = Ê[X]

for any X ∈ L1
G(Ω) and i 6= j. Thus,

Ê
[(∫ T

0

ηt dBt

)2]
= Ê

[(N−1∑
k=0

ξk(Btk+1
−Btk)

)2]
= Ê

[N−1∑
k=0

ξ2
k(Btk+1

−Btk)
2
]
.

From this and Proposition 5.8, it follows that

Ê
[(∫ T

0

ηt dBt

)2]
= Ê

[N−1∑
k=0

ξ2
k(〈B〉tk+1

− 〈B〉tk)
]

= Ê
[∫ T

0

η2
t d〈B〉t

]
.

This shows that (5.6) holds for η ∈M2,0
G (0, T ).

The following is the Burkholder–Davis–Gundy inequality for a G-Brownian motion.

Proposition 5.10 ([13]). For each p ≥ 2, there exists a constant Cp > 0 such that, for any

η ∈Mp
G(0, T ), we have

∫ T
0
βt dBt ∈ LpG(ΩT ) and

Ê
[∣∣∣∫ T

0

ηt dBt

∣∣∣p] ≤ CpÊ
[∣∣∣∫ T

0

η2
t d〈B〉t

∣∣∣p/2].
Proof. It suffices to consider the case where η is a step process of the form

ηt(ω) =
N−1∑
k=0

ξk(ω)1l[tk,tk+1)(t)

with ξk ∈ Lip(Ωtk) for k = 0, 1, . . . , N − 1. Recall that, by Theorem 4.17, the G-expectation
has the following representation:

Ê[X] = sup
P∈P

EP [X] for X ∈ Lip(Ω),

where P is a weakly compact family of probability measures on (Ω,B(Ω)). For each ξ ∈
Lip(Ωt) with t ∈ [0, T ], we have

Ê
[
ξ

∫ T

t

ηs dBs

]
= 0.

From this we can easily get EP

[
ξ
∫ T
t
ηs dBs

]
= 0 for each P ∈ P , which implies that

(
∫ t

0
η dBs)t∈[0,T ] is a (P, (Ft)t≥0)-martingale (recall that Ft := B(Ωt) = σ(Lip(Ωt)) for each

t ≥ 0). Similarly we can prove that(∫ t

0

ηs dBs

)2

−
∫ t

0

ηs d〈B〉s, t ∈ [0, T ],
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is a (P, (Ft)t≥0)-martingale for each P ∈ P . By the classical Burkholder–Davis–Gundy
inequality, we have

EP

[∣∣∣∫ T

0

ηt dBt

∣∣∣p] ≤ CpEP

[∣∣∣∫ T

0

η2
t d〈B〉t

∣∣∣p/2] ≤ CpÊ
[∣∣∣∫ T

0

η2
t d〈B〉t

∣∣∣p/2],
for each P ∈ P . Thus we get the assertion.

We now consider the multi-dimensional case. Let (Bt)t≥0 be a d-dimensional G-Brownian
motion with the generator G : S(d)→ R. Recall the notation Ba

t := 〈a, Bt〉 for a ∈ Rd. Then
(Ba

t )t≥0 is a 1-dimensional Ga-Brownian motion with the generator

Ga(α) =
1

2

(
σ2
aa>α

+ − σ2
−aa>α

−) for α ∈ R

with σ2
aa> := 2G(aa>) = Ê[〈a, B1〉2] and σ2

−aa> := −2G(−aa>) = −Ê[−〈a, B1〉2]. We can
define the quadratic variation process of (Ba

t )t≥0 by

〈Ba〉t := lim
µ(πNt )→0

N−1∑
k=0

(Ba
tk+1
−Ba

tk
)2 = (Ba

t )2 − 2

∫ t

0

Ba
s dB

a
s in L2

G(Ω).

We see that (〈Ba〉t)t≥0 is a real-valued process with stationary and independent increments.
Furthermore, we have

〈Ba〉t
d
= t〈Ba〉1

d
= N([tσ2

−aa> , tσ
2
aa> ]× {0}).

We can define the integral
∫ T

0
ηt d〈Ba〉t for each η ∈M1

G(0, T ). Then we have

σ2
−aa>

∫ T

0

|ηt| dt ≤
∫ T

0

|ηt| d〈Ba〉t ≤ σ2
aa>

∫ T

0

|ηt| dt in L1
G(Ω)

for η ∈M1
G(0, T ), and

Ê
[(∫ T

0

ηt dB
a
t

)2]
= Ê

[∫ T

0

η2
t d〈Ba〉t

]
for η ∈M2

G(0, T ).
Let a, ā ∈ Rd be two given vectors. We can define their mutual variation process by

〈Ba, Bā〉t :=
1

4

(
〈Ba+ā〉t − 〈Ba−ā〉t

)
.

Since 〈Ba−ā〉t=〈Bā−a〉t, we see that 〈Ba, Bā〉t=〈Bā, Ba〉t. In particular, we have 〈Ba, Ba〉t =
〈B〉t. Let πNt , N ∈ N be a sequence of partitions of [0, t]. Observe that

N−1∑
k=0

(Ba
tNk+1
−Ba

tNk
)(Bā

tNk+1
−Bā

tNk
) =

1

4

N−1∑
k=0

(
(Ba+ā

tNk+1
−Ba+ā

tNk
)2 − (Ba−ā

tNk+1
−Ba−ā

tNk
)2
)
.
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As µ(πNt )→ 0, we obtain

lim
N→∞

N−1∑
k=0

(Ba
tNk+1
−Ba

tNk
)(Bā

tNk+1
−Bā

tNk
) = 〈Ba, Bā〉t in L1

G(Ω).

We also have

〈Ba, Bā〉t =
1

4

(
〈Ba+ā〉t + 〈Ba−ā〉t

)
=

1

4

(
(Ba+ā

t )2 − 2

∫ t

0

Ba+ā
s dBa+ā

s − (Ba−ā
t )2 + 2

∫ t

0

Ba−ā
s dBa−ā

s

)
= Ba

t B
ā
t −

∫ t

0

Ba
s dB

ā
s −

∫ t

0

Bā
s dB

a
s .

For each η ∈M1
G(0, T ), we can consistently define∫ T

0

ηt d〈Ba, Bā〉t :=
1

4

(∫ T

0

ηt d〈Ba+ā〉t −
∫ T

0

ηt d〈Ba−ā〉t
)
.

Then the following holds.

Lemma 5.11 ([10]). Let ηN ∈M2,0
G (0, T ), N ∈ N, be of the form

ηNt (ω) =
N−1∑
k=0

ξNk (ω)1l[tNk ,tNk+1)(t)

with µ(πNT ) → 0 and ηN → η in M2
G(0, T ) as N → ∞. Then we have the following conver-

gence in L2
G(ΩT ):

N−1∑
k=0

ξNk (Ba
tNk+1
−Ba

tNk
)(Bā

tNk+1
−Bā

tNk
)→

∫ T

0

ηt d〈Ba, Bā〉t.

In the following, for notational simplicity, we write by Bi := Bei with a given orthogonal
basis (e1, . . . , ed) in Rd. We denote

〈B〉i,jt := 〈Bi, Bj〉t, 〈B〉t :=
(
〈B〉i,jt

)d
i,j=1

.

Then (〈B〉t)t≥0 is an S(d) -valued process with stationary and independent increments. For
each A = (ai,j)

d
i,j=1 ∈ S(d), we have

Ê[(〈B〉t, A)] = Ê
[ d∑
i,j=1

ai,j〈B〉i,jt
]

= Ê
[ d∑
i,j=1

aij

(
Bi
tB

j
t −

∫ t

0

Bi
s dB

j
s −

∫ t

0

Bj
s dB

i
s

)]
= Ê

[ d∑
i,j=1

aijB
i
tB

j
t

]
= 2G(A) t.
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5.3 Itô’s formula

Now we provide Itô’s formula for a “G-Itô process” X = (X1, . . . , Xn)> of the following form:

Xν
t = Xν

0 +

∫ t

0

ανu du+

∫ t

0

ηνiju d〈B〉iju +

∫ t

0

βνju dBj
u, t ≥ 0, ν = 1, . . . , n,

where, for ν = 1, . . . , n, i, j = 1, . . . , d, αν , βνj and ηνij are bounded processes in M2
G(0, T )

and X0 = (X1
0 , . . . , X

n
0 )> ∈ Rn is a given vector. Here we adopt the Einstein convention, i.e.,

the repeated indices mean the summation.

Theorem 5.12 ([10]). Let Φ ∈ C2(Rn) with ∂2
xµxνΦ satisfying polynomial growth condition

for µ, ν = 1, . . . , n. Then for each t ≥ s we have in L2
G(Ωt)

Φ(Xt)− Φ(Xs) =

∫ t

s

∂xνΦ(Xu)β
νj
u dBj

u +

∫ t

s

∂xνΦ(Xu)α
ν
u du

+

∫ t

s

(
∂xνΦ(Xu)η

νij
u +

1

2
∂2
xµxνΦ(Xu)β

µi
u β

νj
u

)
d〈B〉iju .

(5.7)

Sketch of the proof. We only prove the theorem in the case where ∂xνΦ, ∂
2
xµxνΦ ∈ Cb,Lip(Rn)

for µ, ν = 1, . . . , n, and X is of the form

Xν
t = Xν

s + αν(t− s) + ηνij
(
〈B〉ijt − 〈B〉ijs

)
+ βνj(Bj

t −Bj
s), t ≥ s, ν = 1, . . . , n.

Here, for ν = 1, . . . , n, i, j = 1, . . . , d, αν , βνj and ηνij are bounded elements in L2
G(Ωs) and

Xs = (X1
s , . . . , X

n
s )> is a given random vector in L2

G(Ωs). The general case can be proved by
approximation arguments.

For each N ∈ N, we set δ = (t − s)/N and take the partition πN[s,t] = {tN0 , tN1 , . . . , tNN} =

{s, s+ δ, . . . , s+Nδ = t}. Then

Φ(Xt)− Φ(Xs) =
N−1∑
k=0

(
Φ(XtNk+1

)− Φ(XtNk
)
)

=
N−1∑
k=0

{
∂xνΦ(XtNk

)(Xν
tNk+1
−Xν

tNk
)

+
1

2

(
∂2
xµxνΦ(XtNk

)(Xµ

tNk+1
−Xµ

tNk
)(Xν

tNk+1
−Xν

tNk
) + ρNk

)}
,

(5.8)

where

ρNk :=
(
∂2
xµxνΦ(XtNk

+ θk(XtNk+1
−XtNk

))− ∂2
xµxνΦ(XtNk

)
)
(Xµ

tNk+1
−Xµ

tNk
)(Xν

tNk+1
−Xν

tNk
)

with θk ∈ [0, 1]. Observe that

Ê
[
|ρNk |2

]
≤ cÊ

[
|XtNk+1

−XtNk
|6
]
≤ C(δ6 + δ3),
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where c is the Lipschitz constant of {∂2
xµxνΦ}nµ,ν=1 and C is a constant independent of k.

Thus

Ê
[∣∣∣N−1∑

k=0

ρNk

∣∣∣2] ≤ N

N−1∑
k=0

Ê
[
|ρNk |2

]
→ 0 as N →∞.

The remaining terms in the right hand side of (5.8) are ξNt + ζNt with

ξNt :=
N−1∑
k=0

{
∂xνΦ(XtNk

)
(
αν(tNk+1 − tNk ) + ηνij(〈B〉ij

tNk+1
− 〈B〉ij

tNk
) + βνj(Bj

tNk+1
−Bj

tNk
)
)

+
1

2
∂2
xµxνΦ(XtNk

)βµiβνj(Bi
tNk+1
−Bi

tNk
)(Bj

tNk+1
−Bj

tNk
)
}

and

ζNt :=
1

2

N−1∑
k=0

∂2
xµxνΦ(XtNk

)
{(
αµ(tNk+1 − tNk ) + ηµij(〈B〉ij

tNk+1
− 〈B〉ij

tNk
)
)

×
(
αν(tNk+1 − tNk ) + ηνlm(〈B〉lmtNk+1

− 〈B〉lmtNk )
)

+ 2
(
αµ(tNk+1 − tNk ) + ηµij(〈B〉ij

tNk+1
− 〈B〉ij

tNk
)
)
βνl(Bl

tNk+1
−Bl

tNk
)
}
.

Observe that, for each u ∈ [tNk , t
N
k+1),

Ê
[∣∣∣∂xνΦ(Xu)−

N−1∑
k=0

∂xνΦ(XtNk
)1l[tNk ,tNk+1)(u)

∣∣∣2]
= Ê

[
|∂xνΦ(Xu)− ∂xνΦ(XtNk

)|2
]

≤ c2Ê
[
|Xu −XtNk

|2
]
≤ C(δ + δ2),

where c is the Lipschitz constant of {∂xνΦ}nν=1 and C is a constant independent of k. Hence,
as N →∞,

N−1∑
k=0

∂xνΦ(XtNk
)1l[tNk ,tNk+1)(·)→ ∂xνΦ(X·) in M2

G(0, T ).

Similarly, we have

N−1∑
k=0

∂2
xµxνΦ(XtNk

)1l[tNk ,tNk+1)(·)→ ∂2
xµxνΦ(X·) in M2

G(0, T ).

From Lemma 5.11 and by the definitions of integration with respect to dt, dBt and d〈B〉t,
we see that

lim
N→∞

ξNt =

∫ t

s

∂xνΦ(Xu)β
νj dBj

u +

∫ t

s

∂xνΦ(Xu)α
ν du

+

∫ t

s

(
∂xνΦ(Xu)η

νij +
1

2
∂2
xµxνΦ(Xu)β

µiβνj
)
d〈B〉iju in L2

G(Ωt).
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Furthermore, we can easily show that

lim
N→∞

ζNt → 0 in L2
G(Ωt).

This shows that (5.7) holds in our setting.

5.4 G-Martingales and the G-martingale representation theorem

We now give the notion of G-martingales.

Definition 5.13. A process (Mt)t≥0 is called a G-supermartingale (resp., G-submartingale)
if for any t ∈ [0,∞), Mt ∈ L1

G(Ωt) and for any t ∈ [0, t], we have

Ê[Mt|Ωs] ≤Ms (resp.y, ≥Ms) in L1
G(Ωs).

(Mt)t≥0 is called a G-martingale if it is both G-supermartingale and G-submartingale. If
both (Mt)t≥0 and (−Mt)t≥0 are G-martingales, then M is called a symmetric G-martingale.

Remark 5.14. One essential difference from the classical situation is that here “M is a
G-martingale” does not imply that “−M is a G-martingale”.

Example 5.15. For any fixed X ∈ L1
G(Ω), it is clear that (Ê[X|Ωt])t≥0 is a G-martingale.

Example 5.16. For any fixed a ∈ Rd, it is easy to check that (Ba
t )t≥0 and (−Ba

t )t≥0 are
G-martingale, and hence Ba is a symmetric G-martingale.

Example 5.17. For each a ∈ Rd, the process (〈Ba〉t − σ2
aa>t)t≥0 is a G-martingale since

Ê[〈Ba〉t − σ2
aa>t|Ωs] = Ê[〈Ba〉s − σ2

aa>t+ (〈Ba〉t − 〈Ba〉s)|Ωs]

= 〈Ba〉s − σ2
aa>t+ Ê[〈Ba〉t − 〈Ba〉s|Ωs]

= 〈Ba〉s − σ2
aa>s.

Similarly, the process (−〈Ba〉t + σ2
−aa>t)t≥0 is a G-martingale. However, the processes

(−(〈Ba〉t−σ2
aa>t))t≥0 and (−(−〈Ba〉t +σ2

−aa>t))t≥0 are G-submartingales. Similar reasoning
shows that ((Ba

t )2 − σ2
aa>t)t≥0 and (−(Ba

t )2 + σ2
−aa>t)t≥0 are G-martingales.

Example 5.18. For each a ∈ Rd and η ∈M2
G(0, T ), the process (

∫ t
0
ηs dB

a
s )t≥0 is a symmetric

G-martingale. In particular, the process ((Ba
t )2 − 〈Ba〉t)t≥0 is a symmetric G-martingale.

By using Proposition 4.12, we can easily show the following lemma.

Lemma 5.19. If M and N are G-martingales, then M + N is a G-supermartingale. If
furthermore N is a symmetric G-martingale, then M+αN is a G-martingale for each α ∈ R.
If both M and N are symmetric G-martingales, then for each constants α, β ∈ R, αM + βN
is a symmetric G-martingale.

The following result gives a characterization of symmetric G-martingales. We use the
notation in Section 4.3.
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Proposition 5.20 ([5]). (Mt)t∈[0,T ] is a symmetric G-martingale if and only if Mt ∈ L1
G(Ωt)

for all t ∈ [0, T ] and M is a (P θ, (Ft)t≥0)-martingale for each θ ∈ AΘ
0,T .

Proof. We start with the “if” part. Assume that Mt ∈ L1
G(Ωt) for all t ∈ [0, T ] and M is a

(P θ, (Ft)t≥0)-martingale for each θ ∈ AΘ
0,T . Let θ ∈ AΘ

0,T be fixed. For each 0 ≤ s ≤ t ≤ T ,

and θ′ ∈ A(s, θ), noting that P θ′ = P θ on Fs, we have

Ms = EP θ′ [Mt|Fs] P θ-a.s.,

which implies that
Ms = ess sup

θ′∈A(s,θ)

EP θ′ [Mt|Fs] P θ-a.s.

By Proposition 4.20, it holds that Ms = Ê[Mt|Ωs] P
θ-a.s. and that

Ê
[
|Ms − Ê[Mt|Ωs]|

]
= 0.

Similarly, we can prove that −Ms = Ê[−Mt|Ωs] in L1
G(Ωs). Thus M is a symmetric G-

martingale.
Conversely, if M is a symmetric G-martingale, then Mt ∈ L1

G(Ωt) for all t ∈ [0, T ]. Since
M is a G-martingale, for each 0 ≤ s ≤ t ≤ T , we have

0 = Ê
[
|Ê[Mt|Ωs]−Ms|

]
= sup

θ∈AΘ
0,T

EP θ
[
|Ê[Mt|Ωs]−Ms|

]
.

Therefore, for each θ ∈ AΘ
0,T , we have by Proposition 4.20,

Ms = Ê[Mt|Ωs] = ess sup
θ′∈A(s,θ)

EP θ′ [Mt|Fs] ≥ EP θ [Mt|Fs] P θ-a.s.

Similarly, since −M is a symmetric G-martingale, we have

−Ms = Ê[−Mt|Ωs] = ess sup
θ′∈A(s,θ)

EP θ′ [−Mt|Fs] ≥ EP θ [−Mt|Fs] = −EP θ [Mt|Fs] P θ-a.s.

Hence, we have Ms = EP θ [Mt|Fs] P θ-a.s., and hence M is a (P θ, (Ft)t≥0)-martingale for each
θ ∈ AΘ

0,T .

In general, we have the following important property.

Proposition 5.21 ([10]). Let M0 ∈ R, ϕ = (ϕi)di=1 ∈ M2
G(0, T ;Rd) and η = (ηij)di,j=1 ∈

M1
G(0, T ;S(d)) be given and let

Mt = M0 +

∫ t

0

ϕiu dB
i
u +

∫ t

0

ηiju d〈B〉iju −
∫ t

0

2G(ηu) du, t ∈ [0, T ].

Then M is a G-martingale. As before, we follow the Einstein convention: the above repeated
indices meaning the summation.
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Proof. Since
∫ ·

0
ϕiu dB

i
u is a symmetric G-martingale, we only need to prove that

M̄t =

∫ t

0

ηiju d〈B〉iju −
∫ t

0

2G(ηu) du, t ∈ [0, T ], (5.9)

is a G-martingale. It suffices to consider the case of η ∈M1,0
G (0, T ;S(d)), i.e.,

ηt(ω) =
N−1∑
k=0

ξk(ω)1l[tk,tk+1)(t),

with ξk ∈ L1
G(Ωtk ;S(d)), k = 0, 1, . . . , N − 1. We have, for s ∈ [tN−1, tN ],

Ê[M̄t|Ωs] = M̄s + Ê[(ξN−1, 〈B〉t − 〈B〉s)− 2G(ξN−1)(t− s)|Ωs]

= M̄s + Ê[(A, 〈B〉t−s)]|A=ξN−1
− 2G(ξN−1)(t− s)

= M̄s.

We can repeat this procedure backwardly thus proving the result for s ∈ [0, tN−1].

Remark 5.22. The above is a surprising result because the G-martingale M̄ defined by (5.9)
is a continuous and non-increasing process.

Next, we provide a formal proof of the G-martingale representation theorem which shows
that a G-martingale can be decomposed into a sum of a symmetric G-martingale and a
non-increasing G-martingale.

Let us consider a generator G : S(d)→ R satisfying the uniformly elliptic condition, i.e.,
there exists β > 0 such that, for each A, Ā ∈ S(d) with A ≥ Ā,

G(A)−G(Ā) ≥ βtr[A− Ā].

For ξ = (ξi)di=1 ∈ M2
G(0, T ;Rd) and η = (ηij)di,j=1 ∈ M1

G(0, T ;S(d)), we use the following
notation: ∫ T

0

〈ξt, dBt〉 :=
d∑
i=1

∫ T

0

ξit dB
i
t;

∫ T

0

(ηt, d〈B〉t) :=
d∑

i,j=1

∫ T

0

ηijt d〈B〉
ij
t .

Let us first consider a G-martingale (Mt)t∈[0,T ] with terminal condition MT = ξ = ϕ(BT −
Bt1) for 0 ≤ t1 ≤ T .

Lemma 5.23 ([13]). Let ξ = ϕ(BT − Bt1), ϕ ∈ Cb,Lip(Rd). Then we have the following
representation:

ξ = Ê[ξ] +

∫ T

t1

〈βt, dBt〉+

∫ T

t1

(ηu, d〈B〉u)−
∫ T

t1

2G(ηu) du, t ≥ 0.
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Sketch of the proof. We know that the G-martingale Ê[ξ|Ωt], t ∈ [t1, T ], is given by

Ê[ξ|Ωt] = Ê[ϕ(x+BT −Bt1)|Ωt] = u(t, Bt −Bt1), t ∈ [t1, T ],

where the function u is the viscosity solution of the following PDE:

∂tu+G(D2u) = 0, (t, x) ∈ [0, T ]× Rd, u(T, x) = ϕ(x).

For any ε > 0, by the interior regularity of u (cf. Appendix C in [13]), we have

‖u‖C1+α/2,2+α([0,T−ε]×Rd) <∞ for some α ∈ (0, 1).

Applying Itô’s formula to u(t, Bt − Bt1), t ∈ [t1, T − ε], since Du is uniformly bounded, we
obtain

u(T − ε, BT−ε −Bt1) =u(t1, 0) +

∫ T−ε

t1

∂tu(t, Bt −Bt1) dt+

∫ T−ε

t1

〈Du(t, Bt −Bt1), dBt〉

+
1

2

∫ T

t1

(D2u(t, Bt −Bt1), d〈B〉t)

=Ê[ξ]−
∫ T−ε

t1

G(D2u(t, Bt −Bt1)) dt+

∫ T−ε

t1

〈Du(t, Bt −Bt1), dBt〉

+
1

2

∫ T−ε

t1

(D2u(t, Bt −Bt1), d〈B〉t).

Letting ε ↓ 0 (at least formally), we obtain the assertion with

βt = Du(t, Bt −Bt1) and ηt =
1

2
D2u(t, Bt −Bt1), t ∈ [t1, T ].

By applying the above method repeatedly we can treat a more general G-martingale M
with terminal condition

MT = ϕ(Bt1 , Bt2 −Bt1 , . . . , BtN −BtN−1
),

where ϕ ∈ Cb,Lip(Rd×N), 0 ≤ t1 < t2 < · · · < tN = T . In this case M has the following
representation:

Mt = Ê[MT ] +

∫ t

0

〈βs, dBs〉 −Kt

with Kt =
∫ t

0
2G(ηs) ds−

∫ t
0
(ηs, d〈B〉s) for t ∈ [0, T ].

We list the results of Song [16] of the G-martingale representation theorem which gen-
eralizes Lemma 5.23. Let H0

G(0, T ) be the family of simple processes of the form ηt(ω) =∑N−1
k=0 ξk1l[tk,tk+1)(t) where 0 = t0 < t1 < · · · < tN = T is a partition of [0, T ] and ξk ∈

Lip(Ωtk), k = 0, 1, . . . , N − 1. For each p ≥ 1, we define the following norm on H0
G(0, T ):

‖η‖Hp
G(0,T ) := Ê

[(∫ T

0

|ηt|2 dt
)p/2]1/p

, η ∈ H0
G(0, T ),

and denote by Hp
G(0,T ) the completion of H0

G(0,T ) under this norm. For each η∈Hp
G(0,T ;Rd),

we can define the stochastic integral
∫ T

0
〈ηt, dBt〉 ∈ LpG(ΩT ).
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Theorem 5.24 ([16]). For any given p > 1 and ξ ∈ LpG(ΩT ) the G-martingale Mt = Ê[ξ|Ωt],
t ∈ [0, T ], has the following representation:

Mt = Ê[ξ] +

∫ t

0

〈Zs, dBs〉 −Kt, t ∈ [0, T ],

where Z ∈ H1
G(0, T ;Rd) and K is a continuous and non-decreasing process with K0 = 0

such that the process (−Kt)t∈[0,T ] is a G-martingale. Furthermore, the above decomposition
is unique and Z ∈ Hα

G(0, T ;Rd), KT ∈ LpG(ΩT ) for any 1 ≤ α < p.

In the case where ξ has no mean-uncertainty, i.e., Ê[ξ] = −Ê[−ξ], by the above represen-
tation we have

Ê[KT ] = Ê[ξ] + Ê[−ξ] = 0,

so KT = 0 in L1
G(ΩT ). Thus we obtain the following theorem.

Theorem 5.25 ([16]). For any given p > 1 and ξ ∈ LpG(ΩT ) with Ê[ξ] = −Ê[−ξ], there
exists Z ∈ H1

G(0, T ;Rd) such that

ξ = Ê[ξ] +

∫ T

0

〈Zs, dBs〉.

Furthermore, the above representation is unique and Z ∈ Hα
G(0, T ;Rd) for any 1 ≤ α < p.

5.5 Girsanov’s formula for G-Brownian motions

We establish Girsanov’s formula for G-Brownian motion. We use the notation in Section 4.3.
Furthermore, for ξ = (ξi)di=1 ∈M2

G(0, T ;Rd), we use the following notation:∫ T

0

〈ξt, dBt〉 :=
d∑
i=1

∫ T

0

ξit dB
i
t

and ∫ T

0

(d〈B〉t ξt) :=
( d∑
j=1

∫ T

0

ξjt d〈B〉
ij
t

)d
i=1
,

∫ T

0

〈ξt, d〈B〉t ξt〉 :=
d∑

i,j=1

∫ T

0

ξitξ
j
t d〈B〉

ij
t .

In this subsection, we assume that the generator G : S(d)→ R satisfies the uniformly elliptic
condition, i.e., there exists β > 0 such that, for each A, Ā ∈ S(d) with A ≥ Ā,

G(A)−G(Ā) ≥ βtr[A− Ā].

Note that the above is equivalent to that there exists σ0 > 0 such that

γγ> ≥ σ0Id, ∀ γ ∈ Θ, (5.10)

42



where Θ ⊂ Rd×d is the bounded and closed set such that

G(A) =
1

2
sup
γ∈Θ

tr[Aγγ>] for A ∈ S(d).

Let h ∈M2
G(0, T ;Rd). We define, for each t ∈ [0, T ],

Dt := exp
(∫ t

0

〈hs, dBs〉 −
1

2

∫ t

0

〈hs, d〈B〉s hs〉
)
,

B̃t := Bt −
∫ t

0

(d〈B〉s hs),

and we set

L̃ip(ΩT ) := {ϕ(B̃t1 , . . . , B̃tn) |n ∈ N, t1, . . . , tn ∈ [0, T ], ϕ ∈ Cb,Lip(Rd×n)}.

We can easily show that L̃ip(ΩT ) is a subspace of L1
G(ΩT ).

Assume that D is a symmetric G-martingale on (Ω, L1
G(ΩT ), Ê). Define

Ẽ[X] := Ê[XDT ] for X ∈ L̃ip(ΩT ). (5.11)

Then Ẽ forms a sublinear expectation on (Ω, L̃ip(ΩT )). Let L̃1
G(ΩT ) be the completion of

L̃ip(ΩT ) under the norm Ẽ[| · |], and extend Ẽ to the unique sublinear expectation on L̃1
G(ΩT ).

Remark 5.26. For a fixed θ ∈ AΘ
0,T , set

Qθ(A) := EP θ [1lADT ] for A ∈ B(ΩT ).

Then by Theorem 4.19, we have

Ẽ[X] = sup
θ∈AΘ

0,T

EQθ [X], ∀X ∈ L̃ip(ΩT ).

Thus, L̃1
G(ΩT ) can be seen as the completion of L̃ip(ΩT ) under the norm supθ∈AΘ

0,T
EQθ [| · |].

Lemma 5.27 ([5]). Assume that (5.10) holds. Suppose that the process D is a symmetric
G-martingale on (Ω, L1

G(ΩT ), Ê). Then for each t ∈ [0, T ], B̃t ∈ (L̃1
G(ΩT ))d. Therefore B̃ is

a stochastic process on (Ω, L̃1
G(ΩT ), Ẽ). Furthermore, for each θ ∈ AΘ

0,T , the process B̃ is a
Qθ-martingale.

Proof. Fix i = 1, . . . , d and take an arbitrary θ ∈ AΘ
0,T . By definition, the i-th coordinate Bi

of the canonical process B is a P θ-martingale. Note that the process D is also a P θ-martingale
by Proposition 5.20 and satisfies the following relation:

B̃i
t = Bi

t −
∫ t

0

d〈D,Bi〉P θs
Ds

, ∀ t ∈ [0, T ], P θ-a.s. and Qθ-a.s.
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Therefore, by (classical) Girsanov’s formula, B̃i is a local martingale under Qθ and

〈B̃i〉Q
θ

t = 〈Bi〉P θt , ∀ t ∈ [0, T ], P θ-a.s. and Qθ-a.s.

By definition, 〈Bi〉P θt is identical in law with
∫ T

0
(θsθ

>
s )ii ds. We thus deduce that, by the

boundedness of Θ, there exists a constant C > 0 depending only on Θ such that

〈B̃i〉Q
θ

T ≤ CT Qθ-a.s.

In particular, we see that B̃i is a Qθ-martingale. Moreover, by the time-change formula due
to Dambis–Dubins–Schwarz, there exists a standard Brownian motion βθ under Qθ such that

B̃i
t = βθ

〈B̃i〉Q
θ

t

, ∀ t ∈ [0, T ], Qθ-a.s.

Thus, for any p > 1, we have

sup
θ∈AΘ

0,T

EQθ
[
|B̃i|p

]
≤ sup

θ∈AΘ
0,T

EQθ
[

sup
0≤t≤CT

|βθt |p
]
<∞. (5.12)

Now define the sequence {ϕn(B̃i
t)}n∈N ⊂ L̃ip(ΩT ) through ϕn(x) := (x∧n)∨ (−n) for x ∈ R.

By (5.12), we have

sup
θ∈AΘ

0,T

EQθ
[
|B̃i

t − ϕn(Bi
t)|
]
≤ sup

θ∈AΘ
0,T

EQθ
[
|B̃i

t|1l{|B̃it|>n}
]
→ 0 as n→∞.

Thus, the sequence {ϕn(B̃i
t)}n∈N approximates B̃i

t under the norm Ẽ[| · |], ans hence B̃i
t ∈

L̃1
G(ΩT ). This completes the proof.

Girsanov’s formula for G-Brownian motion is stated as follows.

Theorem 5.28 ([5]). Assume that (5.10) holds and D is a symmetric G-martingale on
(Ω, L1

G(ΩT ), Ê). Then the process (B̃t)t∈[0,T ] is a symmetric G-Brownian motion on the sub-

linear expectation space (Ω, L̃1
G(ΩT ), Ẽ) with the same generator G : S(d)→ R.

Proof. It suffices to show that for all n ∈ N, t1, . . . , tn ∈ [0, T ], and ϕ ∈ Cb,Lip(Rd×n),

Ẽ[ϕ(B̃t1 , . . . , B̃tn)] = Ê[ϕ(Bt1 , . . . , Btn)].

For simplicity, we write ϕ(B̃) and ϕ(B) for ϕ(B̃t1 , . . . , B̃tn) and ϕ(Bt1 , . . . , Btn), respectively.
First we show that Ê[ϕ(B)] ≤ Ẽ[ϕ(B̃)]. It is enough to show that

EP θ [ϕ(B)] ≤ Ẽ[ϕ(B̃)], for all Θ-valued simple processes θ on [0, T ]. (5.13)

Let θ be given in the form

θt ≡ θt(W ) = η01l[t0,t1](t) + η1(W )1l(t1,t2](t) + · · ·+ ηm−1(W )1l(tm−1,tm](t), t ∈ [0, T ],
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where 0 = t0 < t1 < · · · < tm = T is a partition of [0, T ], η0 ∈ Θ, and ηl(ω) ≡ ηl(ωt, t ≤ tl),
ω ∈ Ω, is a Θ-valued measurable functional on Ω for l = 1, . . . ,m − 1. We now define the
sequence of random variables {η′l}m−1

l=0 and the simple process θ′ = (θ′)t∈[0,T ] as follows:
η′0 := η0, θ′t := η′0, t0 ≤ t ≤ t1,

η′1 := η1

(
Wt −

∫ t
0
(θ′s)

>h
(θ′)
s ds, t ≤ t1

)
, θ′s := η′1, t1 < t ≤ t2,

. . .

η′m−1 := ηm−1

(
Wt −

∫ t
0
(θ′s)

>h
(θ′)
s ds, t ≤ tm−1

)
, θ′s := η′m−1, tm−1 < t ≤ tm,

where h
(θ′)
s := hs(

∫ ·
0
θ′u dWu). Then, for all 0 ≤ t ≤ T ,

θ′t = θt

(
W −

∫ ·
0

(θ′s)
>h(θ′)

s ds
)
.

Set

W ′
t := Wt −

∫ t

0

(θ′s)
>h(θ′)

s ds, t ∈ [0, T ],

D
(θ′)
T := exp

(∫ T

0

〈(θ′s)>h(θ′)
s , dWs〉 −

1

2

∫ T

0

tr
[
((θ′s)

>h(θ′)
s )((θ′s)

>h(θ′)
s )>

]
ds
)
,

P ′(A) := EP [1lAD
(θ′)
T ], A ∈ FWT .

Since, by the (classical) Girsanov formula, W ′ is a Brownian motion under P ′, we have

EP θ [ϕ(B)] = EP ′
[
ϕ
(∫ ·

0

θs(W
′) dW ′

s

)]
= EP

[
ϕ
(∫ ·

0

θ′s dWs −
∫ ·

0

θ′s(θ
′
s)
>h(θ′)

s ds
)
D

(θ′)
T

]
= EP θ′

[
ϕ
(
B −

∫ ·
0

(d〈B〉s hs)
)
DT

]
≤ Ê

[
ϕ
(
B −

∫ ·
0

(d〈B〉s hs)
)
DT

]
= Ẽ[ϕ(B̃)],

which shows (5.13).
Next we show that Ẽ[ϕ(B̃)] ≤ Ê[ϕ(B)]. Take an arbitrary θ ∈ AΘ

0,T . By Lemma 5.27, B̃
is a Qθ-martingale. Girsanov’s formula also implies that

〈B̃〉Q
θ

t = 〈B〉P θt , ∀ t ∈ [0, T ], P θ-a.s. and Qθ-a.s.

Hence Qθ ◦ B̃−1 ∈ PΘ
mart, where PΘ

mart is the family of martingale measures P on (Ω,B(Ω))

such that
d〈B〉Pt
dt
∈ {γγ> | γ ∈ Θ} a.e. t ∈ [0, T ], P -a.s. Then by Proposition 4.21, we have

EQθ [ϕ(B̃)] = EQθ◦B̃−1 [ϕ(B)] ≤ sup
P∈PΘ

mart

EP [ϕ(B)] = Ê[ϕ(B)].
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Therefore we get
Ẽ[ϕ(B̃)] = sup

θ∈AΘ
0,T

EQθ [ϕ(B̃)] ≤ Ê[ϕ(B)],

and complete the proof.

Concerning with the condition that D is a symmetric G-martingale on (Ω, L1
G(ΩT ), Ê),

the following gives a Novikov’s type sufficient condition.

Proposition 5.29 ([5]). Assume that there exists ε > 0 such that

Ê
[
exp
(1

2
(1 + ε)

∫ T

0

〈hs, d〈B〉s hs
)]

<∞.

Then the process D is a symmetric G-martingale on (Ω, L1
G(ΩT ), Ê).

5.6 Stochastic differential equations

We consider stochastic differential equations (SDEs, for short) driven by G-Brownian motion.
The conditions and proofs of existence and uniqueness of an SDE is similar to the classical
situation.

We denote by M̄p
G(0, T ;Rn), p ≥ 1, the completion of Mp,0

G (0, T ;Rn) under the norm(∫ T
0
Ê[|ηt|p] dt

)1/p
. Note that M̄p

G(0, T ;Rn) ⊂Mp
G(0, T ;Rn).

Now we consider the following SDE driven by a d-dimensional G-Brownian motion:

Xt = X0 +

∫ t

0

b(s,Xs) ds+

∫ t

0

hij(s,Xs) d〈B〉ijs +

∫ t

0

σj(s,Xs) dB
j
s , t ∈ [0, T ], (5.14)

where the initial condition X0 ∈ Rn is a given constant, b, hij, σj are given functions satisfying
b(·, x), hij(·, x), σj(·, x) ∈ M2

G(0, T ;Rn) for each x ∈ Rn and the Lipschitz condition, i.e.,
|ϕ(t, x)−ϕ(t, x′)| ≤ K|x− x′|, for each t ∈ [0, T ], x, x′ ∈ Rn, ϕ = b, hij, σj. The solution is a
process X ∈ M̄2

G(0, T ;Rn) satisfying the SDE (5.14).

Theorem 5.30 ([10]). There exists a unique solution X ∈ M̄2
G(0, T ;Rn) of the SDE (5.14).

Sketch of the proof. For each Y ∈ M̄2
G(0, T ;Rn), define

Λt(Y ) := X0 +

∫ t

0

b(s, Ys) ds+

∫ t

0

hij(s, Ys) d〈B〉ijs +

∫ t

0

σj(s, Ys) dB
j
s , t ∈ [0, T ].

Then we can easily show that Λ·(Y )∈M̄2
G(0, T ;Rn). Furthermore, for any Y, Y ′∈M̄2

G(0, T ;Rn),
the following estimate holds:

Ê
[
|Λt(Y )− Λt(Y

′)|2
]
≤ C

∫ t

0

Ê
[
|Ys − Y ′s |2

]
ds, t ∈ [0, T ],
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where the constant C > 0 depends only on the Lipschitz constant K. We multiply both sides
of the above inequality by e−2Ct and integrate them on [0, T ], thus deriving∫ T

0

Ê
[
|Λt(Y )− Λt(Y

′)|2
]
e−2Ct dt ≤ C

∫ T

0

e−2Ct

∫ t

0

Ê
[
|Ys − Y ′s |2

]
ds dt

= C

∫ T

0

∫ T

s

e−2Ct dtÊ
[
|Ys − Y ′s |2

]
ds

≤ 1

2

∫ T

0

e−2CsÊ
[
|Ys − Y ′s |2

]
ds.

Note that the following two norms are equivalent in the space M̄2
G(0, T ;Rn):(∫ T

0

Ê
[
|Yt|2

]
dt
)1/2

∼
(∫ T

0

Ê
[
|Yt|2

]
e−2Ct dt

)1/2

.

We obtain that Λ : M̄2
G(0, T ;Rn)→ M̄2

G(0, T ;Rn) is a contraction mapping under the equiv-
alent norm. This completes the proof.

We now consider a particular but important case of a linear SDE. For simplicity, assume
that d = n = 1. Consider the following linear SDE:

Xt = X0 +

∫ t

0

(bsXs + b̃s) ds+

∫ t

0

(hsXs + h̃s) d〈B〉s +

∫ t

0

(σsXs + σ̃s) dBs, t ∈ [0, T ], (5.15)

where X0 ∈ R is a given constant, b, h, σ are given bounded processes in M2
G(0, T ) and b̃, h̃, σ̃

are given processes in M2
G(0, T ). Then the linear SDE (5.15) has a unique solution which can

be explicitly written as

Xt = Γ−1
t

(
X0 +

∫ t

0

b̃sΓs ds+

∫ t

0

(h̃s − σsσ̃s)Γs d〈B〉s +

∫ t

0

σ̃sΓs dBs

)
, t ∈ [0, T ],

where

Γt := exp
(
−
∫ t

0

bs ds−
∫ t

0

(
hs −

1

2
σ2
s

)
d〈B〉s −

∫ t

0

σs dBs

)
, t ∈ [0, T ].

In particular, if b, h, σ are constants and b̃, h̃, σ̃ are zero, then X is a geometric G-Brownian
motion.

Definition 5.31. We say that (Xt)t≥0 is a geometric G-Brownian motion if

Xt = exp(αt+ β〈B〉t + γBt),

where α, β, γ are constants.
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6 Applications to mathematical finance

In this section, we apply the theory of G-expectations to mathematical finance. In finan-
cial markets with volatility uncertainty, we assume that their risks are caused by uncertain
volatilities and their assets are effectively allocated in the risk-free asset and a risky stock,
whose price process is supposed to follow a geometric G-Brownian motion rather than a
classical geometric Brownian motion. Owing to the fact that the volatility uncertainty leads
to additional source of risk, the classical definition of arbitrage will no longer be adequate.
For this reason, a new arbitrage definition is presented, and we confirm that the considered
financial market does not admit any arbitrage opportunity in the modified sense. Utilizing
the notion of no-arbitrage, we determine the interval of no-arbitrage prices of given contin-
gent claims. The bounds of this interval are the upper and lower arbitrage prices vup and
vlow, which are obtained as the expected value of the claim’s discounted payoff with respect
to the G-expectation Ê. Generally speaking, because Ê is a sublinear expectation, we have
vup 6= vlow. This verifies the market’s incompleteness. No arbitrage will be generated when
the price is in the interval (vlow, vup) for a European contingent claim.

6.1 The market model with volatility-uncertainty

In the following, for simplicity, we consider the one-dimensional case and fix an interval [σ, σ]
with σ > 0. This interval describes the volatility uncertainty. σ and σ denote a lower and
upper bound for volatility, respectively. Let the generator G be of the form:

G(α) =
1

2

(
σ2α+ − σ2α−

)
for α ∈ R.

In this case, the set Θ ⊂ R appearing in Section 4.3 becomes Θ = [σ, σ]. For each σ ∈ AΘ
0,T ,

we denote by P σ the law of the process (
∫ t

0
σs dWs)t∈[0,T ], where W is a one dimensional

(classical) Brownian motion under a probability measure P on Ω. Then the family {P σ}σ∈AΘ
0,T

is tight, and we denote its closure (under the topology of weak convergence) by PΘ. The G-
framework enables the analysis of stochastic processes for all priors of PΘ. In the following,
we use the capacity-related terminology in terms of this set. By Theorem 4.19, L1

G(ΩT )
coincides with the set of all measurable functions X : ΩT → R which has a q.c. version and
satisfies limn→∞ supP∈PΘ EP

[
|X|1l{|X|>n}

]
= 0. Furthermore, we have

Ê[X] = sup
P∈PΘ

EP [X], ∀X ∈ L1
G(ΩT ).

We emphasize that the prior set PΘ is mutually singular.
We consider the following financial market M which includes a risk-free asset and a single

risky asset. Two assets are traded continuously over [0, T ]. Assume that the interest rate is
a constant r ≥ 0. So the price Rt of the risk-free asset at time t can be defined as

Rt := ert, t ∈ [0, T ].
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Assume that the risky asset is a stock with price St at time t, which is given by the following
equation: {

dSt = rSt dt+ St dBt, t ∈ [0, T ],

S0 = x0 > 0,
(6.1)

where (Bt)t≥0 is the canonical process on Ω which is a G-Brownian motion under Ê. The
solution of SDE (6.1) is a geometric G-Brownian motion:

St = exp
(
rt+Bt −

1

2
〈B〉t

)
, t ∈ [0, T ].

Remark 6.1. Compared with the classical stock price process, (6.1) does not contain any
volatility parameter σ. This is due to the characteristics of the G-Brownian motion B.
Apparently, if σ = σ = σ, then we will be in the classical Black–Scholes model.

We consider an investor who can invest in the market M and consume at intermediate
times. Let αt and βt be the numbers of shares of the bond R and the stock S at time
t ∈ [0, T ], which are determined based on the information available at time t ∈ [0, T ]. Then
the wealth at time t is

Xt = αtRt + βtSt.

We impose the so-called self-financing condition; if the investor’s cumulated consumption
process (defined below) is C = (Ct)t∈[0,T ], then the wealth process X = (Xt)t∈[0,T ] satisfies,
at least formally,

Xt = αtRt + βtSt

= α0R0 + β0S0 +

∫ t

0

αudRu +

∫ t

0

βu dSu − Ct, ∀ t ∈ [0, T ], q.s.

The meaning of the above relation is that, starting with an initial capital m = α0R0 + β0S0,
all changes in wealth are due to capital gains (appreciation of stocks and interest from the
bond), minus the amount consumed. If we set πt = βtSt, then we have αt = (Xt − πt)R−1

t ,
and the above relation becomes the following:{

dXt = (Xt − πt)dRtRt
+ πt

dSt
St
− dCt, t ∈ [0, T ],

X0 = m.
(6.2)

A portfolio process π = (πt)t∈[0,T ] represents the dollar amount which is invested in the risky
asset S on [0, T ], and we assume that π ∈ H1

G(0, T ); for the definition of H1
G(0, T ), see the

end of Section 5.4. A cumulated consumption process C = (Ct)t∈[0,T ] is a non-decreasing
and right-continuous process with C0 = 0 and Ct ∈ L1

G(Ωt), for all t ∈ [0, T ]. We denote by
Xm,π,C = (Xm,π,C

t )t∈[0,T ] the solution of SDE (6.2) and call it the wealth process corresponding
to the initial capital m ∈ R and portfolio/consumption pair (π,C). Denoting the discount
process by

γt := R−1
t = e−rt, t ∈ [0, T ],
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the discounted wealth process (γtX
m,π,C
t )t∈[0,T ] is given by

γtX
m,π,C
t = m+

∫ t

0

γsπs dBs −
∫ t

0

γs dCs, t ∈ [0, T ].

Note that the stochastic integral
∫ T

0
γsπs dBs is well-defined and in L1

G(ΩT ) since γ is bounded
and π ∈ H1

G(0, T ).

Definition 6.2. A pair of portfolio and consumption processes (π,C) is called admissible for
an initial capital m ∈ R if π ∈ H1

G(0, T ), C is a non-decreasing and right-continuous process
with C0 = 0, Ct ∈ L1

G(Ωt), t ∈ [0, T ], and

Xm,π,C
t ≥ −κ, ∀ t ∈ [0, T ], q.s.,

for some constant κ > 0, where Xm,π,C is given by the wealth equation (6.2). We denote by
A (m) the set of all admissible portfolio/consumption process pairs for m ∈ R.

Remark 6.3. The above definition of admissible strategies is consistent with the classical
setting. The requirement of Xm,π,C

t ≥ −κ is imposed in order to prevent pathologies like
doubling strategies; such strategies achieve arbitrarily large levels of wealth at t = T , but
require the wealth to be unbounded from below on [0, T ].

6.2 Arbitrage and contingent claims

We introduce the notion of arbitrage opportunities. Loosely speaking, an arbitrage oppor-
tunity is a portfolio process which generates a positive profit without risk. In our setting,
since the prior set PΘ is a family of probability measures on (Ω,B(Ω)) whose elements are
mutually singular, we have to modify the classical notion of arbitrage.

Definition 6.4. We say that there is an arbitrage opportunity in M if there exists an initial
capital m ≤ 0 and an admissible pair (π,C) ∈ A (m) such that

Xm,π,C
T ≥ 0 q.s.,

P{Xm,π,C
T > 0} > 0 for at least one P ∈PΘ.

The following proposition shows that the market M has no arbitrage opportunities.

Proposition 6.5 ([2]). In the financial market M , there does not exist any arbitrage oppor-
tunity.

Proof. Suppose that there exists m ≤ 0 and a pair (π,C) ∈ A (m) such that Xm,π,0
T ≥ 0 q.s.

Then we have Ê[γTX
m,π,C
T ] ≥ 0. By the definition of the wealth process, we have

0 ≤ Ê[γTX
m,π,C
T ] = Ê

[
m+

∫ T

0

γsπs dBs − CT
]
≤ Ê

[
m+

∫ T

0

γsπs dBs

]
= m ≤ 0,

and hence Ê[γTX
m,π,C
T ] = 0. This, together with γTX

m,π,C
T ≥ 0 q.s., implies that Xm,π,C

T = 0
q.s. Therefore, (m,π,C) cannot constitute an arbitrage. This completes the proof.
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In the financial market M , we consider a European contingent claim V and assume that
its payoff VT at maturity time T is a bounded random variable in L1

G(ΩT ). The price of
the claim at time 0 is denoted by V0 ∈ R. The main purpose in this section is to find out
what V0 should be in M ; in other words, how much an agent should charge for selling such
a contractual obligation, and how much another agent could afford to pay for it. For the
sake of finding a reasonable price V0 for V , we need to utilize the concept of arbitrage in
the extended financial market (M , V ) which consists of the original market M and the pair
(V0, VT ).

Definition 6.6. We say that there is an arbitrage opportunity in the extended market
(M , V ) if there exist an initial capital m ∈ R, an admissible pair (π,C) ∈ A (m), and a
constant a ∈ {−1, 1}, such that

m+ aV0 ≤ 0

at time 0, and
Xm,π,C
T + aVT ≥ 0 q.s.,

P{Xm,π,C
T + aVT > 0} > 0 for at least one P ∈PΘ

at time T .

Remark 6.7. The values a = ±1 indicate short or long positions in the claim V . This
definition of arbitrage is standard in the literature. For the same reason as before, we again
require q.s. dominance for the wealth at time T and again with positive probability for only
one possible scenario.

In the following, we show that there exist no-arbitrage prices V0 for a claim V ; under
these prices, there are no arbitrage opportunities in the extended market (M , V ). Roughly
stated, since there is one kind of situation where stocks will be traded, the uncertainty of
probability measures induced by the G-framework results in market’s incompleteness. We
will see that the no-arbitrage prices are characterized by an interval, rather than a unique
constant as in the classical Black-Scholes model.

In order to characterize the no-arbitrage prices of the contingent claim V , the following
two prices play a crucial role.

Definition 6.8. Given a European contingent claim V , the upper arbitrage price is defined
by

vup := inf U ,

where the upper hedging class U is given by

U := {m ∈ R | ∃ (π,C) ∈ A (m) s.t. Xm,π,C
T ≥ VT q.s.}.

Similarly, the lower arbitrage price is defined by

vlow := L ,

where the lower hedging class L is given by

L := {m ∈ R | ∃ (π,C) ∈ A (−m) s.t. X−m,π,CT ≥ −VT q.s.}.
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Remark 6.9. The upper hedging price vup represents the least price the seller can accept
without risk, and the lower hedging price vlow the greatest price the buyer can afford to pay
without risk.

Since VT is bounded, both U and L are non-empty sets. Furthermore, by the definition,
we can easily show that both L and U are (connected) interval.

Lemma 6.10 ([2]). For any m1 ∈ L , 0 ≤ m′1 ≤ m1 implies m′1 ∈ L . Similarly, for any
m2 ∈ U , m′2 ≥ m2 implies m′2 ∈ U .

For any constant σ ∈ [σ, σ], we define the Black–Scholes price of a European contingent
claim V as follows:

uσ0 := EPσ [γTVT ].

Lemma 6.11 ([2]). For any σ ∈ [σ, σ], we have vlow ≤ uσ0 ≤ vup.

Proof. Let m ∈ U . From the definition of U , we know that there exists a pair (π,C) ∈ A (m)
such that Xm,π,C

T ≥ VT q.s. Thus, we have that

uσ0 = EPσ [γTVT ] ≤ sup
P∈PΘ

EP [γTVT ] = Ê[γTVT ]

≤ Ê[γTX
m,π,C
T ] = Ê

[
m+

∫ T

0

γuπu dBu −
∫ T

0

γu dCu

]
≤ Ê

[
m+

∫ T

0

γuπu dBu

]
= m.

Hence, uσ0 ≤ m for any m ∈ U , which implies that uσ0 ≤ vup.
Analogously, let m ∈ L . By definition of L , there exists a pair (π,C) ∈ A (−m) such

that X−m,π,CT ≥ −VT q.s. Thus, we have that

−uσ0 = EPσ [−γTVT ] ≤ sup
P∈PΘ

EP [−γTVT ] = Ê[−γTVT ]

≤ Ê[γTX
−m,π,C
T ] = Ê

[
−m+

∫ T

0

γuπu dBu −
∫ T

0

γu dCu

]
≤ Ê

[
−m+

∫ T

0

γuπu dBu

]
= −m.

Hence, uσ0 ≥ m for any m ∈ L , which implies that uσ0 ≥ vlow.

The following lemma characterizes the upper and lower arbitrage prices vup and vlow,
respectively, in terms of the G-expectation of the discounted payoff.

Lemma 6.12 ([2]). We have

vup = Ê[γTVT ] and vlow = −Ê[−γTVT ].

Furthermore, there exist (πup, Cup) ∈ A (vup) and (πlow, C low) ∈ A (−vlow) such that

γtX
vup,πup,Cup

t = Ê[γTVT |Ωt] and γtX
−vlow,π

low,Clow

t = Ê[−γTVT |Ωt] q.s., ∀ t ∈ [0, T ].
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Proof. We only show the case of the upper arbitrage price. The case of the lower arbitrage
price is similarly proved. First of all, for any m ∈ U , there exists a pair (π,C) ∈ A (m) such
that Xm,π,C

T ≥ VT q.s. Thus

Ê[γTVT ] ≤ Ê[γTX
m,π,C
T ] = Ê

[
m+

∫ T

0

γuπu dBu −
∫ T

0

γu dCu

]
≤ m,

and hence Ê[γTVT ] ≤ vup. Next we prove the opposite inequality. By the G-martingale

representation theorem (see Theorem 5.24), the G-martingale Mt := Ê[γTVT |Ωt], t ∈ [0, T ],
has the following representation:

Mt = Ê[γTVT ] +

∫ t

0

Zu dBu −Kt, t ∈ [0, T ],

where Z ∈ H1
G(0, T ) and K is a continuous and non-decreasing process with K0 = 0 such

that the process (−Kt)t∈[0,T ] is a G-martingale. If we set m := Ê[γTVt] and πup
t := γ−1

t Zt,

Cup
t :=

∫ t
0
γ−1
u dKu, t ∈ [0, T ], then the wealth process Xm,πup,Cup

satisfies

γtX
m,πup,Cup

t = m+

∫ t

0

γuπ
up
u dBu −

∫ t

0

γu dC
up
u = Mt, q.s., ∀ t ∈ [0, T ].

Since VT is bounded, we see that Xm,πup,Cup
is bounded from below q.s., and hence we see

that (πup, Cup) ∈ A (m) and Xm,πup,Cup

T = VT q.s. This implies that Ê[γTVT ] = m ≥ vup.

Thus, we get Ê[γTVT ] = m = vup.

Remark 6.13. From the above lemma, if the payoff VT has mean-uncertainty, i.e., Ê[VT ] >
−Ê[−VT ], or equivalently, Ê[γTVT ] > −Ê[−γTVT ], then we see that (vlow, vup) 6= ∅ and

Ê
[∫ T

0

γt dC
up
t

]
> 0 and Ê

[∫ T

0

γt dC
low
t

]
> 0.

Thus, we cannot replicate VT by a self-financing portfolio in the q.s. sense.

The following theorem characterizes the no-arbitrage interval of a European contingent
claim V .

Theorem 6.14 ([2]). Assume that the payoff VT has mean-uncertainty, i.e., Ê[VT ]>−Ê[−VT ].
Then there are no arbitrage opportunities in the extended market (M , V ) if and only if
V0 ∈ (vlow, vup).

Proof. We firstly show the “if” part. Suppose that V0 ∈ (vlow, vup), and assume that there
exists an arbitrage opportunity in (M , V ). By definition of arbitrage, there exists m ∈ R,
(π,C) ∈ A (m) and a constant a ∈ {−1, 1} such that

m+ aV0 ≤ 0 and Xm,π,C
T + aVT ≥ 0 q.s.

If a = −1, then we have m ≤ V0 and m ∈ U , which contradicts to the assumption V0 <
vup = inf U . Also, if a = 1, then we have −m ≥ V0 and −m ∈ L , which contradicts to

53



the assumption V0 > vlow = sup L . Consequently, there are no arbitrage opportunities in
(M , V ).

Next, we show the “only if” part. Suppose that V0 ≥ vup and let m ∈ [vup, V0]. By

Lemma 6.12, there exists a pair (πup, C low) ∈ A (vup) such that X
vup,πup,Cup

T = VT q.s. Observe
that (πup, 0) ∈ A (m), m− V0 ≤ 0, and

Xm,πup,0
T − VT ≥ X

vup,πup,Cup

T − VT = 0 q.s.

Since Ê[VT ] > −Ê[−VT ], we see that Ê
[∫ T

0
γt dC

up
t

]
> 0. This implies that there exists a

probability measure P ∈PΘ such that EP
[∫ T

0
γt dC

up
t

]
> 0. For such a P , we have that

EP [γTX
m,πup,0
T ] = EP

[
m+

∫ T

0

γtπ
up
t dBt

]
> EP

[
vup +

∫ T

0

γtπ
up
t dBt −

∫ T

0

γt dC
up
t

]
= EP [γTX

vup,πup,Cup

T ] = EP [γTVT ],

hence P{Xm,πup,0
T − VT > 0} > 0. Therefore, (m,πup, 0) and a = −1 form an arbitrage

opportunity in (M , V ). Similarly, when V0 ≤ vlow, we can show that (m,πlow, 0) with m ∈
[−vlow,−V0] and a = 1 form an arbitrage opportunity in (M , V ). This completes the proof.
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