統計数学セミナー
Seminar on Probability and Statistics
Home : Archive [ 2003 to 04 ] [ 2004 to 05 ] [ 2005 to 06 ] [ 2006 to 07 ] [ 2007 to 08 ] [ 2008 to 09 ] [ 2009 to 10 ] [ 2010 to 11 ] [ 2011 to 12 ] [ 2012 to 13 ] [ 2013 to 14 ] [ 2014 to 15 ]
Previous Seminar : Next Seminar

Seminar on Probability and Statistics
Wednesday January 27 2016
Osaka I407 (Host) and Tokyo 052 (Web)
1:00-2:10 pm


Multilevel SMC Samplers


Ajay Jasra
National University of Singapore

Abstract

The approximation of expectations w.r.t. probability distributions associated to the solution of partial differential equations (PDEs) is considered herein; this scenario appears routinely in Bayesian inverse problems. In practice, one often has to solve the associated PDE numerically, using, for instance finite element methods and leading to a discretisation bias, with step-size level h_L. In addition, the expectation cannot be computed analytically and one often resorts to Monte Carlo methods. In the context of this problem, it is known that the introduction of the multi-level Monte Carlo (MLMC) method can reduce the amount of computational effort to estimate expectations, for a given level of error. This is achieved via a telescoping identity associated to a Monte Carlo approximation of a sequence of probability distributions with discretisation levels \infty>h_0>h_1\cdots>h_L. In many practical problems of interest, one cannot achieve an i.i.d. sampling of the associated sequence of probability distributions. A sequential Monte Carlo (SMC) version of the MLMC method is introduced to deal with this problem. It is shown that under appropriate assumptions, the attractive property of a reduction of the amount of computational effort to estimate expectations, for a given level of error, can be maintained in the SMC context. The approach is numerically illustrated on a Bayesian inverse problem. This is a joint work with Kody Law (ORNL), Yan Zhou (NUS), Raul Tempone (KAUST) and Alex Beskos (UCL).




Previous Seminar : Next Seminar
Seminar on Probability and Statistics