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Structural equation modeling for
experimental data

Yutaka Kano'

Abstract

We first review the use of Structural Equation Modeling (SEM) for the analysis of ex-
perimental data. Typical examples include ANOVA, ANCOVA, and MANOVA with or
without a covariance structure. SEM for those experimental data is a mean and co- {l}
variance structure model in multiple populations with a common covariance matrix.
Such analyses can be implemented under the assumption that all observed vari-
ables be distributed as normal including fixed-effect exogenous variables, which
denote levels of factors, for example. Theoretical basis for the usage, based on
conditional (likelihood) inference, is explicitly explained.

A bias of a path coefficient estimate particularly in standardized solutions is
pointed out which comes from the fact that variance estimates of dependent vari-
ables contain variation of means.

Statistical power of several testing procedures concerning mearn vectors across
several populations are examined, when a factor model can be assumed for ob-
served variables. The procedures considered here are MANOVA, a mean and co-
variance structure model implemented by SEM, and ANOVA of a factor score or a
weighted sum of observed variables. SEM is shown to be the most powerful tool in

this context.

IThis paper is dedicated to the 65th birthday of Prof. Karl G. Jéreskog.

1
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2 STRUCTURAL EQUATION MODELING FOR EXPERIMENTAL DATA

1.1 Introduction

Structural Equation Modeling (SEM) is a very powerful tool for analysis
of correlational or observational data, and it can be used for experimental
data as well. A typical example is the analysis of multiple populations,
originated by Joreskog (1971b). SEM can be applied to more complex or
more typical experimental designs such as ANOVA, ANCOVA, and MANOVA
(e.g., Bagozzi 1977; Bagozzi & Yi 1989; Kiithnel 1988). Sérbom (1978)’s
work on ANCOVA is significant. See also a LISREL manual (e.g., Joreskog
& Sorbom, 1989, pp. 112-116; 1996a, pp. 151-155). To implement these
analyses for experimental data one can take a multiple population ap-
proach and/or a regression approach. In the regression approach, a de-
sign matrix is given explicitly in a data file and draw paths from control
variables to dependent variables. It is known that one could treat inde-
pendent (exogenous) binary variables as if they were continuous under
certain assumptions in SEM. Background for these analyses is based on
conditional statistical inference.

In Section 1.2, we provide some examples of models for experimental
data from traditional to modern models that can be analyzed only with
the SEM approach. One-factor MANOVA design is employed as a compre-
hensive example to present the idea of conditional inference. A full ex-
planation for conditional inference will be given in Section 1.3. Equiva-
lence between normal theory inference with exogenous fixed-effect vari-
ables and analysis of multiple populations with different mean structures
and a common covariance structure is presented.

Section 1.4 gives a cautionary note on the bias of a standardized esti-
mate. In Section 1.5, we compare the power of several statistical tests
concerning mean vectors theoretically, and the SEM approach is shown to
be most favorable.

1.2 Examples

We shall begin with a simple ANOVA or MANOVA example. Consider six
observed dependent variables Y7,...,Ys and a binary variable X. Let
us say that the Y variables are psychological tests and that X denotes
sex with values 0 for male and 1 for female. One would like to examine
an effect of sex on the six variables. While the aim is achieved by the

¢
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traditional MANOVA design, with SEM one can also make the inference by
drawing the path diagram as in Fig. 1.1.

] Y Y Y Y Y
&1 &9 €3 Eq &5 €e
4 \d \d \d \d \d
Yy Y, Y Y, Y5 Ys
K1 K9 /43‘3\ /4 Rs ke
X

Figure 1.1  ANOVA and MANOVA

The model in Fig. 1.1 is representable in model equations and variance-
covariances of independent variables in the form:

Y " K1 €1

Y, vy K2 €2 6E§§ i ;

Bolo | x| @ Cov(ci,e)) = 6; (L1
Y, V4 K4 € |7 (R - ] ’
Yy Vs K5 €5 S,

Y6 Vs Ke € (27] - 17-"76)

The mean of error variables ¢; is assumed implicitly to be zero here and
in the sequel as well.

Although variable means are specified in (1.1) it does not imply use of
a mean and covariance structure model, because the mean vector has the
saturated structure, so that every population mean is estimated by its
sample counterpart.

The chi-square difference test between the model in Fig. 1.1 and the
model with all the x;’s zero gives an approximate MANOVA test statistic,
which are correct at least asymptotically, to detect difference in mean vec-
tors of [Y7, ..., Y;s] between males and females.

One usually introduces ¢ — 1 dummy variables if X is a treatment vari-
able with ¢ levels. See Joreskog & Sorbom (1996a, pp. 151-155).

¢
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4 STRUCTURAL EQUATION MODELING FOR EXPERIMENTAL DATA

The conditional approach is a useful way to validate the use of indepen-
dent binary or non-normal variates in many statistical models including
SEM.? In the approach, the conditional density function given X is con-
sidered as the likelihood function to be maximized. We shall denote the
equation in (1.1) in matrix notationas Y = v + kX + e and © = (6;;).

LetYi,....Yn,and Yy 41, ..., Yn,4n, bearandom sample from the
populations of males and females, respectively, and let X; be a sample
that denotes the sex of the :-th observation. Using (1.1), the conditional
likelihood (CL) given X is

no+mni
II NYilv+rX;,0) =
=1
70 no+ni
[[N(Yilv+k2@,0)x J[ N(Yilv +x2P 0) 1.2
=1 i=ng+1

with 2(®) = 0 and (') = 1. The first term in (1.2) is the likelihood based
on the male data whereas the second one is that based on the female data.
The difference of the mean vectors is (v+ k(1)) —(v+k2(?)) = &, so that
the regression coefficients « represent the difference in the mean vectors
between males and females. The error covariance matrix © denotes the
covariances between the observed variables Y. Under the null hypothesis
Hy : k = 0, both populations have the common mean vector v.

As a result, the inference based on the conditional likelihood in (1.2) is
nothing but the usual MANOVA to find the difference between mean vec-
tors. It should be noted that the covariance matrices of the male popula-
tion and the female population are identical with each other. The ANOVA
for testing the difference in each E (Y;) can be performed by the Wald test
as R;/ SE, where the SE is the asymptotic standard error of #;.

We shall clarify how the conditional approach is related to the full likeli-
hood (FL) approach in which the distribution of [Y', X]' is regarded erro-
neously as multivariate normal. The likelihood assuming full normality

2The conditional approach and conditional inference used here are different from those
notions developed by R.A. Fisher in which the conditional likelihood inference given an
ancillary statistic is made.
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for (Y, X;) is

no+mni
H N(Yi|V—|—Ii‘,XZ',®)N(XZ’|T, q§) . 1.3)

=1

The maximum likelihood estimates for v, k, ® based on (1.2) coincide
with those based on (1.3) because (7, ¢) is functionally independent of v,
K, ©. The likelihood (1.3) can be rewritten as

notm Y, v+ KT Kok + 0 ko
m([x] ] e v])

The population mean [v' + 7&',7]' is estimated with the sample aver-
ages [Y', X] for any value of k. One can estimate the covariance matrix

!
l &@;n—,l_ © Kf ] , which is based on the path diagram in Fig. 1.1, by
the usual sample covariance matrix of [Y', X;].

It will be deduced from the discussion above that the normal theory
analysis based on the usual covariance structure model, without mean
structures, defined by the path diagram in Fig. 1.1 is equivalent to the
analysis of multiple populations with different mean structures and a com-
mon covariance structure.

A model for MANOVA with two treatments A and B with interaction is
expressible in path diagram form as shown in Fig. 1.2.

The independent variables X, X5, X3 denote effects of the treatments

of A, B and their interaction A x B and take values for every combination
of levels of A and B as

| X X X

AB |l 1 1 1
AB | -1 1 -1
ABy| 1 -1 -1
ABy | -1 -1 1

The model in Fig. 1.2 can be represented as

¢
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Y Y Y Y Y Y
&1 E9 €3 &9 &5 &6
\ \ \ \ M \
Y1 Y2 Y3 Y4 Y5 YG
X1 Xy X3
I I T

Figure 1.2 ANOVA and MANOVA with two treatments

Yy vy K11 K12 K13 €1

Yy 12 K21 K22 K23 X €

Y3 _ V3 + K31 K32 K33 [ Xl ] €3

Yo | 7 | v K41 K42 K43 2 | F € |7

X3
Yy Uy K51 K52 Ks3 €5
Ye Vg Re1l  Ke2 HKe3 €6
(1.4)
E(XZ) = T (l - 17273)
Cov(X,, Xs) = ¢vs (r,5=1,2,3)
COV(GZ‘,GJ') = 0” (l,] =1, ,6)

There is a situation where a certain model can be assumed to explain co-
variances between dependent variables Y. The model in Fig. 1.3 assumes
a two-factor model, and the mean vectors can differ by & (path coefficients
from X to Y;) between males and females.

The equations and variance-covariances of the model in Fig. 1.3 are as

follows:
_Yl_ [ 141 1 F 1 0 1 [ K1 1 [ €1 1
Y2 vy /\21 0 ) €2
Y3 . V3 /\31 0 F1 K3 €3
Y4 o V4 T 0 1 F2 T R4 Xl T €4 ’ (15)
Y5 Vs 0 /\52 Ry €5
A Lve ] L 0 As2 L K6 L €6 ]
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&1 €2 €3 &4 €5 €6
\ \ \ \ \ \
Y, Y, J Y, Y |_ Ys Y
Xy
F1 FZ
I )
Figure 1.3

MANOVA with a factor analysis model for covariance matrices

E(Xy) = m, V(X1)=¢
Cov(E,, Fy) = g (r,s=1,2)
Vie) = 6 (i=1,....6)

In the model in Fig. 1.3, Cov (¢;,€;) = 0 for ¢ # j.

It is occasionally realistic to assume there is difference in the mean of
latent variables between males and females, which results in a mean dif-
ference of observed variables Y. The model is expressible as in Fig. 1.4.
The equations and variance-covariances of the model in Fig. 1.4 are as
follows:

Yl 141 1 0 €1
Y2 14) Agl 0 €9
Ys | | vs As1 0 B €3
Y4 o V4 + 0 1 [ F2 :| + €4
Ys Vs 0 Aso €5
| Y5 Vg 0 e €6
[ ] [ ] [ G ]
| £y ] o [ 72 X1+ G2 |7 (1.6)
E(X1) = 7, V(X1) =1
COV(Ciij) = ¢2] (27] = 172)
VGZ‘) = 0“ (izl,...,
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£1 E9 €3 E4 €5 €6
\ \ \ \ \ \
Y1 Y, Y3 Y, Ys Ys
(1 G2

N

Figure 1.4 A model for mean difference between male and female

The model is a kind of MIMIC model. Jéreskog & Goldberger (1975) stud-
ied statistical properties of the MIMIC model with fixed regressors (condi-
tioned on X) and with random regressors, and obtained the same fitting
functions for both MIMIC model specifications. Muthén (1989a) empha-
sized the use of MIMIC models to express heterogeneity in means in several
groups.

We shall end this section by giving an example of ANCOVA for a latent
variable. Sérbom (1978) developed an alternative model to the MANCOVA
in which a latent variable was introduced and the modeling allowed for
heterogeneous covariance matrices. Sérbom’s model uses multi-sample
analysis of mean and covariance structures. Arbuckle & Wothke (1999,
Example 9) show one sample covariance structure modeling in the case
where the covariance matrices are homogeneous. This modeling is pre-
sented in Fig. 1.5. Let us say that Y7 to Y3 and Y, to Y; are pre-tests
and post-tests on verbal ability, and X is a binary variable that denotes
whether the group is control or experimental.

[ Y1 i [ " i 1 0 €1
Y2 9 /\21 0 €9
Y3 . V3 /\31 0 Fl €3
Y4 o V4 T 0 1 F2 T €4
Y5 Vs 0 /\52 €5

LYs 1 Lwl L 0 Aez L €6
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£1 E9 €3 E4 €5 €6
M M M M \d M
Y1 Y2 Y3 Y4 Y5 YG
F1 »- F2
(2
Xy
Figure 1.5 ANCOVA for a latent variable
[ Fy 0 0l[FA 0 F
= X 1.7
El-la d[R] 2] 8] e
E(Xl) = T1, V(Xl):q)
X1 ¢11 12 O
V Fy = P21 @22 O
(2 0 22
Vie) = 6 (1=1,...,6)

Note that the first row of the second equation, | = F7, is redundant, but
it will be useful to construct a covariance structure of observed variables
(it is a kind of RAM representation; see McArdle & McDonald 1984).

1.3 Conditional inference

All the models in Section 1.2 can be expressed as

Y =
f =

v+ Af+ KX+ €
a+ Bf+TX +¢

{E(X)T {
0 Y

V(X)
E(e)
E(¢) = 0

V(e)
409

€
¢

¢

P Cov(X,e) = O
o, Cov(e,¢) = O
v COV(C,X) = ZCX
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Here X and Y denote independent and dependent observed variables
whereas f is a vector of latent variables (constructs). The KX and I'X
denote direct effects of X on Y and indirect effects of X through fonY,
respectively. The diagonals of B are fixed to be zero and I — B is assumed
to be nonsingular.

It holds that 3;x = O in all the examples in Section 1.2 with the ex-
ception of the model shown in Fig. 1.5. So we first assume that ¥y = O
for simplicity.

In SEM, it is convention that a joint normal distribution is assumed for
X, € and ¢, so that the observed vector [Y', X']' follows a multivariate
normal distribution. Eliminating f in the equations (1.8), we have

Y=v+AI-B) (a+{)+e+(AI-B)"'T+K)X.

Under the normal assumption, the conditional distribution of Y given X
is

Y| X=x~N(y|E(Y|z),V(Y|z)),
with

E(Y|lzg) = v+A(I-B)'a+(AI-B)"'IT'+ K)z

V(Y|e) = AMI—B)'W(I—B) AN +0 (= Sy, say). O

Note that 3y y is independent of . If 3:x # O, o and ¥ have to be
replaced, respectively, with

at+E(lle) = a+Sx® (z—7) and
V¢le) = ¥ —Sx® 'Sy, . (1.9)
The normal theory inference assumes
[Y', X' ~ N(ylE(Y]|z), Sy.x)N(x|r, &),

and the normal theory MLE is a solution that maximizes the likelihood
using the density above. We will call it the conditional inference that the
only conditional distribution of Y given X is specified and no particular
distributional assumption is made on X, that is,

Y X=2~N(ylE(Y|x),Zy.x).

¢
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There is a close relationship between the normal theory inference and the
conditional inference, as explained below.

Instead of a normality assumption on the entire observation, the condi-
tional inference assumes that (i) the conditional distribution of Y given
X is multivariate normal with E(Y|X) and V(Y |X) in (1.8), (ii) © and
W are unrelated to the value of X and (iii) the parameters 7 and ® of X
are not restricted and functionally unrelated with the other parameters.
The assumptions (i) and (ii) are on the distribution of the observations;
whereas (iii) is related to parameterization of the model considered.

The purpose of this section is to study what happens to the normal the-
ory statistical inference, if X is not normally distributed.

It is obvious that the assumptions (i) and (ii) hold for the normal distri-
bution for all the variables. Consider non-normal distributions for X. If X
is distributed independently of € and ¢ or X is a fixed variable, (ii) is met.
This model has been developed by Muthén (1984, 1989a) and Muthén &
Muthén (1998). It is an excellent idea, due to Muthén, to split observed
variables into independent and dependent variables.

We shall denote by 7 all the parameters involved in E(Y|X) and
V(Y|X). By Assumption (iii), 7 is functionally independent of (T, ®). ‘él}

Suppose that the distribution of X is specified as N (|7, ®), which may
be misspecified. The likelihood on the full data (Y;, X;) and the likelihood

on the conditional data Y;|X; (¢ = 1,2,...,n) are expressed respectively
as
Fly(m . @) = ][ N(Yi E(Y|X,). Zy.X)N(Xm-, B), (1.10)
i=1
cn) = IJ N(Yi E(Y|X,), zy.X) (1.11)
i=1

It follows from the functional independence between 7 and (7, ®) that

max FLy(mw,7,®) =

(7,7, ®)
N N
max [ | N(Yi E(Y|X)), zy.X) < max [ N(Xilr. @) =
=1 =1
N
mﬂa_\xCL(a'r) x max [[ N(Xi|r,®). (1.12)

=1

¢
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This implies that the maximization with respect to w can be made in-
dependently of the maximization with respect to (7, ®). The MLE for =
based on the full normal theory likelihood (1.10) is identical with that
based on the conditional likelihood (1.11).

Let the true density or probability function of X be written as fx(x|w),
where w is a parameter vector associated with the distribution X, which
may be (7, ®). When X is a fixed variable, fx(«|w) = 1. The likelihood
based on the true and full density is then expressible as

FLmw) = [ N(Yi E(Y|X,), zy.X)fX(xm) RENGRE)
1=1

In the same manner, the independence between w and w shows

n
(?%) FL(7,w) = mﬂa_\xCL(a'r) X mﬁxizl_[le(XAw) . (1.149)
From (1.12) and (1.14) we have that the MLE based on the normal like-
lihood, conditional likelihood, and the (true) full likelihood coincide with
one another. The MLE is free from the distribution of X;. This is one of
the major reasons for the conditional inference to be allowed.

Although the MLE’s are identical, their distributions can be different.
The distributions do depend on fx (|w). Rather than the distributions of
the MLE’s themselves, researchers are more interested in the distribution
of a statistic to test Hy : m; = 0 with a Wald type statistic or in the
confidence interval of 7;, where 7; is any parameter in w. We know that
under the null hypothesis

W = #;/\/AV(#|X;’s) = N(0,1)

as n — oo, where AV (7|X’s) represents the conditional asymptotic vari-

ance of 7 given X;’s and ', denotes convergence in distribution. Since
the asymptotic distribution is N(0, 1), independent of the conditioning
variable X;, the convergence to the normal distribution will be true for
the unconditional distribution. It is unclear whether the Wald statistic re-
mains valid for non-normal or fixed-effect independent variables X if the
asymptotic variance of 7 is constructed not under the conditional distri-
bution but under the fully normal assumption. For this case, the following
derivation will be more easily understood.

¢
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The normal theory likelihood ratio (LR) test, or chi-square difference
test, for Hy : m; = 0 is valid for any distribution for X; because
max FLy (7, w) max CL(w) max N(X;|r,®)
Tom; =0 (T,@

(7,w):T;=0

max FLy(m, w)  maxCL(w) max N(X;|r,®)
(7.w) & (T.@
- L CL(m) mjfo(Xi|w) - (w,arj])?;(,:(l):l_(mw)
max CL(7) max fx(X;|w) =~ max FL(m, w)
e w (7w

The validity of the normal theory Wald test is deduced from the validity of
the normal theory LR test and a general theorem of equivalence between
the Wald test and LR test (see, e.g., Buse 1982).

Finally, we shall consider the chi-square LR statistic for testing goodness
of fit of the model considered. There is difficulty in making such a clear
description for the behavior of the chi-square statistic as that for the MLE
and the Wald test in the conditional inference. It is very difficult to see
how to specify the saturated model for non-normal cases. Here we take
as a saturated model

N(ylv + Kz, %) fx(elw),
where v, I{, ¥ and w consist of all free parameters. Note that N(y|v +
Kz, Y)N(x|r,®) is the saturated model for (Y, X). One important as-
sumption here is that the modeling for X is the same for the null and
saturated models. The normal theory LR statistic for testing goodness of

fit is then equivalent to the LR statistic based on the true model specifying
fx(x|w) for the X; because

max HN (Yl

(ﬂaTa¢) =1

max HN (Yl

(Va](aEaT’¢) =1
n

max 1_[1]\7 (Yi
1=

N (v,
o 1 (

E(YiX)), zy.x) N(Xi|r, ®)

v+ KX, 2) N(Xi|r, ®)

E(Y;|X,), EY.X)

v+ KX, 2)

¢
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n

max N(Yl E(Yi|Xi),Zy.X)fx(Xi|w)

() izt (1.15)
N Yi I”XZ', x Xi

o 1% 11 ( va >fX( )

Again, the key assumptions for the normal model to be relevant are that
7 and @ are unrestricted and are functionally independent of the param-
eters . As a result, the normal theory statistical inference such as point
estimation, Wald test and goodness of fit test are all correct irrespective
of any type of distribution of independent observed variables X, provided
that E(X) and V(X) are all free parameters and they are functionally
independent of the other parameters .

From now on, we shall consider the case where X.; x may not be zero. In
this case, E(Y|X) and V(Y |X) involves 7 and &, so that 7 is functionally
dependent on (7, ®). However, the derivation above is also applicable if
there is a suitable parameter transformation such that the parameters in
E(Y|X) and V(Y |X) are functionally independent of (7, ®). Whether
there is such a transformation will depend on the model under consider-
ation. In the model in Fig. 1.5 with (1.7), we have

E(CIX1) = E([ZZ;HXl):[(/521?51_11(5(1—7'1)]_'_[ 0 ]

*
It is easily understood that V(| X ) can be written as l (%2 ¢0 ] with
22

¢34 a free parameter functionally independent of (71, ¢11 ), because @22 is
a free parameter in . Since X; takes a value of 0 or 1, the conditional
expectation E (Y |X) can be expressed as

E(Y|X1=0) = v+A(I—B)" [ $1 671 (0 — 7) ]

—~~ O

1

E(Y|X,=1) = u—I—A(I—B)_1l¢21¢1_1 1””] .

72

The terms involving 7 can be absorbed into v (so that it is written as v*)
and ¢,1¢7;' canbe written as ¢3,, a parameter in 7 which is independent

¢



¢

1.4 Bias

Structural Equation Modeling [actual page] 21 F I N AL C O PY

P

YUTAKA KANO 15

of (71, ¢11). We thus have

oy —1| 93
E(Y|X;=1) = v*+A(I-DB) 1[ 7221] :

In summary, the argument above shows that the model in Fig. (1.5) as-
suming normality for [Y', X']" is equivalent to the joint analysis of the two
populations for Y, corresponding to the values of Xy, assuming the com-
mon covariance structure but different mean structures, that is, E (F}) =
E(F;) = 0 for X; = 0 and E(F}) and E(F;) being free parameters for
X, = 1. The difference in E (F} ) between the two populations indicates
failure of random assignment of subjects to the control or experimental

group.

Consider the model in Fig. 1.4. There are mainly two purposes when ap-
plying this kind of model. One is to study impacts of X; on the means of
the latent variables. The purpose will be achieved by the Wald test for the
coefficients 7,’s or the difference chi-square test between this model and
the model with v;’s zero. In this case, the measurement model is not of
main interest.

The other purpose is to introduce X; to express heterogeneity of means
in the sample and to study factor structure of the observed variables after
adjusting the mean differences. Such usage was emphasized by Muthén
(1989). In this case, the estimates in the measurement model are impor-
tant. The model is said to be a MIMIC model. In this section, we point out
a bias of factor loading estimates in a measurement model and suggest a
formula for correction. The problem is important for the second purpose
above.

Now we illustrate the bias of an estimate using a simple example. Fig. 1.6
and 1.7 show unstandardized and standardized estimates, respectively, in
a MIMIC model. Let us say that X is a binary variable to represent sex
and that one is interested in the factor structure after adjusting factor
mean difference between males and females. According to Fig. 1.6, the
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Figure 1.6

Factor analysis with different latent means: Unstandardized estimates

latent mean differences are 0.80 for F; and 0.1 for £5. Since the factor
variances, equal to those of (;, are 0.5 for both factors, the standardized
estimates in the factor structure should be those in Fig. 1.8. In the exam-
ple, the measurement model for [ is the same as that for F,. However,
usual standardized estimates given in Fig. 1.7 are not equivalent to those
in Fig. 1.8. The measurement models for F and F), are not identical. A
bias certainly arises in the model in Fig. 1.7.3

The bias comes from the fact that the factor variances are calculated as
if X| were treated as a random-effect variable, namely

V(F\) = V(0.80X + (1) = 0.1600 + 0.50 = 0.6600
V(Fy) = V(0.10X; + (3) = 0.0025 + 0.50 = 0.5025 .

The normal theory standardized estimates in Fig. 1.7 have then been cal-
culated as:

V(F) ¢ 0.6600
0.6, = 0.6 —0.5326 for A
V(Ys) 0.62 x 0.6600 + 0.6 o o

3The path coefficients from F} are different between Fig. 1.7 and Fig. 1.8 but appear to
be the same within rounding error. It happens because the impact of X1 on F is small.
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Figure 1.7
Factor analysis with different latent means: Standardized estimates

V(F) 0.5025
0.6 =06 — 04813 for A
V(Ys) %).62 x 0.5025 + 0.6 or ez

for example. On the contrary, the corresponding true standardized esti-
mates in Fig. 1.8 are

0.50
0.6 = 0.4803 forboth \ d e
¢()-62 x 0.50 + 0.6 or bo 21 an 59

Such a bias arises in the model in Fig. 1.3 as well. The data that can be
analyzed with the model in Fig. 1.6 can also be analyzed with the model in
Fig. 1.3. Estimates unstandardized and standardized in a usual way are
given in Table 1.1. Again, the standardized estimates are different from
what is expected.

We do not mention that unstandardized estimates should be reported in
the case where a mean adjustment is made with independent fixed-effect
variables. One should be careful to figure out the variance of a variable
that is influenced directly and/or indirectly by independent fixed-effect
variables. The correct variance can be calculated by deducting the fixed-
effect variable variances from the formal variance obtained by normal the-
ory. Standardized solutions are then calculated using the true variances
(rather than the formal one) in the usual manner.
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Figure 1.8

Factor analysis after adjusting different latent means: Standardized estimates

Table 1.1  Estimates of path coefficient

unstandardized standardized

F Fy X3 F Fy X3
Y; | 1.00 0.80 | 0.66 0.37
Y5 | 0.60 0.48 | 0.46 0.26
Y; | 0.70 0.56 | 0.49 0.78
Y,y 1.00 0.10 0.71 0.05
Y: 0.60 0.06 0.48 0.03
Ys 0.70 0.07 0.51 0.04
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1.5 Statistical power

In this section, we shall make comparisons of statistical power among sev-
eral procedures to test mean differences of manifest variables or latent
variables. Consider a MIMIC model in Fig. 1.9. The fixed-effect variable
X takes on values of 0 or 1. Without the effect of X, the model would
be a one-factor model with covariance matrix ¥ = A¢X' + U, where
A=A, L AL V(F) = ¢gand V([e,. .., 6])) = ¥ with p = 6.
The conditional distribution of Y = [Y7,...,Y}] given X is N,(v,X)
for X; = 0 and Ny(v + Av,X) for X; = 1.

£1 E9 €3 E4 €5 €6
\d \d \d \d \d \d
Y1 Y2 Y3 Y4 Y5 YG

\/

Xy

Figure 1.9  MIMIC model

There are many ways to test statistically the effect of X;. A tradi-
tional method is a MANOVA. The MANOVA may not be so powerful be-
cause it ignores the mean structure A~. In fact, Hancock, Lawrence,
& Nevitt (2000) showed empirically that the MANOVA is less powerful
than the MIMIC approach. The second procedure considered here is to
use the SEM approach to test v = 0. An alternative way often used
is to sum up the observed variables and to make an ANOVA to compare
E(>°F_, Y;) between the populations for X; = 0 and for X; = 1. One can
use factor scores; that is, to compare E(A'X'Y) (or E[(A'TIN)~IN
U~1Y)) between the two populations. The latter two approaches can be
considered as a comparison of E (¢''Y) with ¢ a constant vector.

To simplify mathematics needed to compare those procedures, we as-

¢
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sume A, ¢ and ¥ (and hence ) are known. Then v and v are unknown
parameters to be estimated.
Let Y(® and YV be sample mean vectors with sample size ng and ny,
respectively, from the populations with X; = 0 and X; = 1.
The MANOVA test statistic is equivalent to
Mo (Y(O) _ Y(l))' w1 (Y(O) _ Y(l)) _
no + ny
See e.g., Anderson (1984, Sec. 4). The statistic follows the chi-square dis-
tribution of p degrees of freedom and the non-centrality parameter

2
nonyy
ng + 1y

SMANOVA = Ao (1.16)

Note that the mean and covariance structure is represented as
E \:((0) _ I, 0O v
Y I, A Y

o] = 176" o]
Yo | = | 0o s/m

The likelihood ratio test or difference test for Hy : v = 0, based on SEM,
is representable as

E/no -1 Y(O)
% /a1 ] [ - . (1.17)

For details see, e.g., Rao (1973, Chap. 4) for derivation with regard to
linear models and/or Browne & Shapiro (1988) for derivation with regard

¢
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to SEM. The distribution of the statistic above is the chi-square with 1
degree of freedom, and the non-centrality parameter ‘%EM is obtained by

Yy (0)
replacing l 5(1) ] with l )?7 ] in (1.17). After some simplifications, we

have
. (1.18)

Finally, we consider testing the hypothesis using linear combinations of
the manifest variables. Note that

£ YOl T1 0 c'v
c’Y(l) - 1 CIA Y

v dY® ] [ 'Se/ng 0
dY® | 0 c'Sc/ny | -

A similar calculation to (1.17) leads to the chi-square distribution with 1
degree of freedom and the noncentrality parameter as

noniy? ‘ (c'X)?
ng + nq c'Xc

—

(1.19)

The Cauchy-Schwarz inequality (see, e.g., Rao 1973, p. 54) shows that
6dgy = 02 (1.20)
and that the equality is attained when
c=3"1X. (1.21)

It follows from (1.20) and (1.21) that the SEM approach as well as the fac-
tor score approach makes the best inference in terms of statistical power.
However, the factor score approach has a drawback when the structural
parameters are unknown because replacement of the parameters with

S

their estimates induces dependency between samples, that is, A ©71Y,’s
are not independently distributed. Therefore, the basic assumption in
ANOVA is violated.
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Finally, we note that the non-centrality parameters in (1.18) and (1.19)
are invariant against changing the scale of F}, i.e., which path coefficient
is fixed to be one, because so is Ay. Another comment is that the quantity
(¢'X)?/(c'Sc) in (1.19) is a reliability coefficient of the weighted scale
score ¢'Y. The larger the reliability is, the higher is the statistical power
of the mean difference test.

1.6 Epilogue

This chapter considers statistical inference via structural equation model-
ing with independent (exogenous) non-normal, possibly fixed-effect, vari-
ables. The introduction of conditional likelihood connects between nor-
mal theory inference with such variables and inference by a mean and co-
variance structure model. The SEM generates a wider class of models than
traditional experimental designs. The first extension is to use a model to
represent a covariance structure for observed variables Y, not just a satu-
rated structure as in traditional inference. The second is to analyze latent
means, not just the difference of general mean vectors. In this chapter, we
have just considered the effect of X either on latent means (Fig. 1.4) or on
means of Y (Fig. 1.3). One can also constitute a model in which there is an
effect of X on both latent means and means of Y (see Muthén 1989), so
that one can distinguish between a direct mean effect and indirect mean
effect of X7 on Y. The third is to allow for heterogeneous covariance
matrices of Y if one makes multiple population analysis.*

The main content of Section 1.4 is nothing but robustness of normal the-
ory inference against non-normal independent variables. Asymptotic ro-
bustness study of normal theory inference has been extensively explored
by Anderson (1987, 1989), Anderson & Amemiya (1988), Bentler (1983),
Browne & Shapiro (1988), Kano (1993), Kano, Berkane, & Bentler (1990),
and Satorra (1989), among others. There is close connection between
the conditional inference and the asymptotic robustness theory. The con-
ditional inference establishes exact robustness whereas the latter shows
merely asymptotic robustness. But the asymptotic robustness theory al-
lows for non-normal errors.

4This topic was skipped.

&



