USE OF SEM PROGRAMS TO PRECISELY MEASURE SCALE RELIABILITY
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1. Introduction. Reliability analysis has been discussed extensively mainly by psychometricians
since Cronbach (1951) proposed famous «, and it still receives much attention even now. Reliability
analysis tends to be discussed within the structural equation modeling these days (e.g., Raykov 1997;
Hancock & Mueller, 2000).

Consider a one-factor model with correlated unique factors:

Xi=mwi+Nf+u (i:l,...,p), (1)
where E(f) = E(u;) =0, V(f) = 1, Cov(u;,u;) = ¥i5, Cov(f,u;) = 0 and Cov(u;, u;) =0 (i # j). The
scale score is defined as the total sum of X;, i.e., X = > ¢ | X;. The scale (or composite) reliability is
then defined as

p= V( ?:1 /\Zf) _ ( ?:1 /\2)2 (2)
V(X) ( f:1 Ai)? + Zf:l i + Zf,j,i;tj Wi .
While the traditional reliability (test) theory assumes t;; = 0 for i # j, the assumption may not hold
for many empirical data sets, and the recent literature focuses on effect of the unique factor correlations
upon the traditional reliability measure such as o and p without ;.

If there are many pairs of correlated unique factors, there may be (additional) common factors that
can account for the correlations. Then, practitioners can think that the scale is not unidimensional and
consider subscales. The problem is how to do it when they can not assume common factors behind the
unique factors correlated. A typical case is where there is a common factor with only two indicators
(Kano 1997). In such cases, they have to use the model in (1) to estimate the reliability through the
formula (2).

Here we discuss pragmatic estimation of the reliability based on the expression p in (2). The serious
drawback of the model (1) is nonidentifiability, so that one can not estimate parameters. The #;; has
p(p + 1)/2 parameters, which is the same as the number of variances and covariances of the observed
variables.

One way to estimate ;; is to use the residual covariance matrix, that is, 1/32']' =8 — ;\Z;\] (i £ 4),

where s;; is the sample covariance between X; and X;, and ;\Z 1s the estimate in the usual one-factor
analysis model, i.e., the model with ;; = 0 (¢ # j). The approach, however, does not work, because
nyjyi# 1/32']' 1s almost zero almost always. Estimation process tries to minimize the residuals and in many
cases, this also minimizes the sum of residuals like in regression analysis.

Here we propose to perform the Lagrange Multiplier test for unique factor covariances sequentially,
as suggested by Raykov (2001). For this, the SEM program EQS is useful (Bentler 1995). The LM option
of the EQS as /LMTEST with SET= PEE; gives a list of the pairs of unique factors to be correlated. The
statistically significant pair is released to be a free parameter, and the model is reestimated. In the talk
we demonstrate the process of estimating v;; and show updated reliability coefficients.
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