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Abstract: There are many causes of occurrence of improper solutions in
factor analysis. Identifying potential causes of the improper solutions gives
very useful information on suitability of the model considered for a data set.

This paper studies possible causes of improper solutions in exploratory
factor analysis, focusing upon (A) sampling fluctuations, (B) model underi-
dentifiable and (C) model unfitted, each having several more detailed items.
We then give a checklist to identify the cause of the improper solution
obtained and suggest a method of reanalysis of the data set for each cause.

Keywords: Covariance Structure Analysis, Checklist, Underidentifiability,
Sample Fluctuations.

1. Factor Analysis Model and Improper Solution
In factor analysis, an observed random p-vector x is assumed to have
the following form: x = Éf + u; where É = (ïij) is a p Ç k matrix
of factor loadings，f = [F1;ÅÅÅ; Fk]0 is a k-vector of common factors,
u = [U1;ÅÅÅ; Up]0 being a p-vector of unique factors. Here k is the number
of factors. Assume further that Var(f) = Ik, Cov(f ;u) = 0, Var(u) = â =
diag(†1;ÅÅÅ; †p). The covariance matrix Ü (= (õij)) of the observed vector
x is representable as Ü = ÉÉ0 + â: Each diagonal element †i of â is a
variance of Ui, so that it should be estimated as a positive value. It is said
to be an improper solution or a Heywood case when some elements †i are
not positively estimated.

2. Cause, Identiåcation and Treatment
Following van Driel (1978), we distinguish among three types of causes
of improper solutions as in Table 1: (A) sampling fluctuations, (B) model
underidentifiable, and (C) model unfitted. We shall make brief comments on
these causes. Since the parameter space of †i is the finite interval (0;õii)
and estimation methods naturally do not require estimates †̂i to be in the
interval, †̂i can be outside the parameter space or can be at its boundary
at a positive probability, because of sampling variations. A typical example
is an improper solution which takes place in a simulation study under a
true identified model. Ihara and Okamoto (1985) compared estimation meth-
ods such as ML and LS in terms of frequency of improper solutions due
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8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

A: sampling çuctuation

B: underidentiåability

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

B1: É =

266664
ï1k

É1 0
...
0

377775
0@only one nonzero

element in a col-
umn of É

1A

B2: É =

26666664
ï1k

ï2k

É1 0
...
0

37777775
0@only two nonzero

elements in a col-
umn of É

1A
B3: others

C: factor model unåtted

8><>:
C1: some true unique variances †i < 0
C2: inconsistent variables Xi included
C3: others (e.g., minor factors)

D: others (e.g., outliers)

Table 1: Types of causes of improper solutions

to sampling fluctuations. Anderson and Gerbing (1984), Boomsma (1985)
and Gerbing and Anderson (1985) have studied how model characteristics
influence on the frequency of occurrence of improper solutions in the con-
text of confirmatory factor analysis. In my experience, however, improper
solutions due to sampling fluctuations are not so often met in practice.
When sampling fluctuations cause an improper solution, it may be useful to
constrain uniqueness estimates †̂i to be nonnegative. Gerbing and Ander-
son (1987) discussed interpretability of constrained estimates for improper
solutions caused by sampling fluctuations in confirmatory factor analysis.

The causes (B) and (C) are important in model inspection. Anderson
and Rubin (1956) gave a necessary condition for identification that there be
at least three nonzero elements in each column in É. The cases (B1) and
(B2) in Table 1 violate the necessary condition.

In (B1), the parameters (ï1k; †1) can take any values as far as they meet
ï2

1k +†1 = õ11 ÄPkÄ1
r=1 ï

2
1r, so that †1 can be negative. The location of the

nonzero loading in the k-th column is arbitrary. The k-th common factor is
not a common factor but a unique factor. Thus, it is actually a (kÄ1)-factor
model. Accordingly, an improper solution takes place when the number of
factors is overestimated. Why is it overestimated? In many cases, a test of
goodness of fit suggests it, that is, the test rejects a (k Ä 1)-factor model.
There would be two potential cases yielding this anomaly ((k Ä 1)-factor
model is rejected; examination of a k-factor solution suggests a (kÄ1)-factor
model):
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(B11) Sample size n is large enough to reject reasonably well-fitted models;
in other words, because of large samples, the statistical test becomes
too sensitive to small deviation from the model, possibly caused by
minor factors;

(B12) Distribution assumptions such as normality are violated, and then the
distribution of test statistics can not be approximated by a chi-square
distribution.

The both cases have been pointed out in the context of covariance structure
analysis. For (B11), researchers are advised to use goodness of fit indices
such as GFI, CFI and RMSEA to measure the distance of the population
from the model (e.g., J°oreskog and S°orbom 1993 section 4.5.2; Bentler 1995
chapter 5). They would then get useful information concerning acceptability
of the model. The cause (B11) is also interpreted as an effect of minor
factors. In (B12), researchers can take elliptical theory or a type of asymp-
totically distribution-free (ADF) method. Kano (1990) suggests a noniterative
estimation procedure which prevents a unique factor from being reinterpreted
as a common factor.

Checking Item Cause of Improper Solutions

A B1 B2 C1

(1) Does iteration converge? yes no no yes

(2) Is the solution stable? (not
depending largely on estima-
tion methods, starting values,
nor optimization algorithms)

yes
unstable in one
Xi

unstable
in two particu-
lar Xi's

yes

(3) Are SE'sy of †̂i almost the
same in magnitude?

yes one large SE
one or two
large SE('s)

yes

(4) Does the conådence inter-
val of †i, not positively esti-
mated, contain zero?

yes no no no

(5) Are residual elements of
S Ä (É̂É̂0+ â̂) almost the same
in magnitude?

yes yes
no for solution
reducing k by
one

yes

Table 2: Checklist for identifying the cause of improper solutions. See text
for examining C2. ySE denotes standard error.

In (B2) an improper solution occurs in the first or second variables
only, because the loadings ï1k and ï2k can take any value as long as they

3



satisfy ï1kï2k = õ12 Ä
PkÄ1
r=1 ï1rï2r. One can not make exploratory factor

analysis when the population factor loading matrix É has the form (B2). In
the case, the researchers can not help making a constraint to remove the
indefiniteness, such as ï1k = ï2k or †1 = †2. It is optional whether to
impose ïik = 0 (i = 3;ÅÅÅ; p). See Kano (1997) for details.

When an improper solution occurs due to (B), underidentifiability, it often
happens that iteration does not terminate; the solution depends on starting
values, estimation methods (e.g., ML, GLS, LS) or optimization algorithms.
In (B1) the location of only one nonzero element, or the variable in which
†i < 0 is arbitrary and it also depends on starting values etc. As noted
above, negative estimates can appear at two particular variables for (B2).
These observations will distinguish between (B1) and (B2).

For (C1) or (C2), researchers have to remove all variables inconsistent
with the model considered. They can remove the variables with negative
unique variances in the case (C1). In (C2) we could examine residuals to
identify inconsistent variables. A more sophisticated manner would be to
take a likelihood ratio test approach, developed by Kano and Ihara (1994).

The case (D) contains all causes other than (A)-(C). Outliers in samples
may cause improper solutions, as pointed out by Bollen (1987). Existence
of outliers is classified in the case (D). The other cases in (D) are yet
unknown and still need to be studied.

In Table 2, we summarize as a checklist how to identify the cause of
improper solutions. Table 3 presents the method of reanalysis for each cause
of improper solutions.

Cause Treatment

A Obtain a boundary solution with all †i ï 0

B11 Refer to goodness of åt indices such as GFI and CFI

B12 Apply an ADF type of estimation method

B2 Estimate under constraint such as ï1k = ï2k or †1 = †2

C1 Remove the variable Xi with †i < 0

C2 Remove inconsistent variables

Table 3: Treatment after identifying the cause of improper solutions

3. Example
Maxwell (1961) conducted maximum likelihood factor analysis of each of
two samples of 810 normal children, and 148 neurotic children attending a
psychiatric clinic, where the first five items of the samples are cognitive tests
and the other five are inventories for assessing orectic tendencies (see Table
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7 for items). He found that the iterative process for obtaining the MLE
does not terminate and the communality of the eighth variable approaches
to one for 4-factor model for the normal sample whereas a 3-factor model
successfully analyzes the sample of neurotic children. He concluded that the
method of maximum likelihood along with goodness-of-fit testing does not
always perform well. It later turned out that the 4-factor solution for the
normal sample is improper (e.g., J°oreskog 1967).

Here, we shall take the sample of normal children to illustrate our
procedure for improper solutions. In the sample, Sato (1987), among others,
reported that the improper solution depends on initial estimates for iteration
and gave three different improper solutions with †̂6, †̂8 or †̂9 negative,
respectively, and that it is difficult to achieve convergence in iteration when
uniqueness estimates are not constrained to be nonnegative. Table 4 shows
MLE for uniqueness and their standard errors, for each case of 0 î †i <1
and Ä1 < †i < 1. The analysis was made with a covariance structure
program Eqs, developed by Bentler (1995).

goodness-of-åt †1 †2 †3 †4

ü2
11-value P-value

0 î †i <1 MLE 18.447 0.072 384 621 302 638
SE 037 059 039 037

Ä1 < †i <1 MLE 14.589 0.202 397 629 298 644
SE 037 056 040 037

†5 †6 †7 †8 †9 †10

0 î †i <1 MLE 352 778 287 000 690 599
SE 096 040 052 003 037 050

Ä1 < †i <1 MLE 324 802 275 Ä276614 725 609
SE 108 042 046 156 040 044

Table 4: Uniqueness estimates (MLE) and their standard errors (SE) in
Maxwell's data (n = 810; k = 4). Values are multiplied by 1000.

Obviously, the cause of the improper solution is not \A: sampling
fluctuations." Maybe we should consider \B: identifiability" as a possible
cause. Table 5 shows the list of top five (standardized) residuals in absolute
value in 3-factor solution. There is no salient residual in the list, which
implies that (B2) is not the cause. To conclude that the cause is (B1),
we have to examine (B11) and (B12), but unfortunately, we can not check
normality of observations because raw data are not available. We would say
that the sample size n = 810 is so large that the power of the goodness-of-fit
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test is raised too much. In fact, other fit indices indicate reasonable fit of
the 3-factor model, for instance, GFI=0.981; CFI=0.973. As a conclusion,

X9-X8 X8-X6 X10-X8 X8-X4 X9-X6
0.095 0.084 -0.050 0.046 -0.044

Table 5: Top åve residuals in 3-factor solution

a probable cause of the improper solution is (B1) and the analysis here
suggests a 3-factor model for the sample of normal children, as well as for
the sample of neurotic children.

Any model is nothing but an approximation to reality, and deviation of
a model from reality always exists. Statistical test can detect the deviation
even when it is very small, provided that the sample size gets large. There
are two considerations: (i) one employs a slightly misspecified model if one
considers the deviation as just an error and so negligible; (ii) one rejects
the model and finds a suitable treatment to reduce the deviation.

The treatment above for the improper solution of the normal sample is
based on the consideration (i). There is an alternative story based on (ii).
The cause of the improper solution is then (C) in this story. The key can
be found in the list of the residuals in Table 5.

In Table 5, we can find that the top four residuals are related to the
eighth variable. This indicates the possibility that the eighth variable be
inconsistent with the model under consideration. The inconsistency could be
a cause of the rejection of the 3-factor model. Table 6 shows the goodness-
of-fit chi-square test statistics of 10 models, each of which is formed by
removing one of 10 variables. The only accepted model is the one in which
the eighth variable is removed. As a result, the eighth variable can be
regarded as inconsistent with the 3-factor model. See Kano and Ihara (1994)
for details.

Variable Deleted

1 2 3 4 5 6 7 8 9 10

LRT 35.32 37.38 48.28 65.37 21.63 55.89 40.73 14.58 45.68 38.47

Table 6: ü2
12 values of 10 models after deletion of one variable. (ü2

12(:05) =
18:55)

Table 7 shows the MLE in 3-factor model after deletion of the eighth
variable.
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Factor 1 Factor 2 Factor 3 | Communal.

COGNITIVE TESTS
X1 Verbal Ability 574 412 323 | 603

X2 Spatial Ability 095 585 139 | 371
X3 Reasoning 406 697 225 | 702
X4 Numerical Ability 325 487 117 | 356

X5 Verbal Fluency 780 243 092 | 675
ORECTIC TENDENCIES |

X6 Neuroticism Questionnaire 104 175 396 | 198
X7 Way to be different 228 143 808 | 725

X8 Worries and Anxiety --- --- --- | ---
X9 Interests 103 180 482 | 275

X10 Annoyances 000 028 625 | 391

Table 7: 3-factor solution, rotated by normalized-VARIMAX, of 9 vari-
ables after deletion of the 8th variable. ü2

12-value= 14:58 (n = 810), P-
value=.2712. Estimates are multiplied by 1000.

We have here suggested two possibilities for treatment of the improper
solution in Maxwell's data. Which approach is to be taken, in others
words, whether the deviation of the 3-factor model using 10 variables can
be considered small enough or not, may depend on researchers and also on
interpretability of those two results of the analyses.

4. Remarks
Users may not implement the procedure described above, if they use usual
exploratory factor analysis (EFA) programs only. It is absolutely necessary to
use programs with which the user can (i) do analysis under no constraint on
†i, that is, †i can take negative values; (ii) get standard errors of estimates,
particularly, of †̂i; (iii) specify starting values; and (iv) get (standardized)
residuals, S Ä (É̂É̂0 + â̂). For this, covariance structure analysis (CSA)
programs (e.g., Amos, Eqs, Lisrel) are very useful, although they do not
have the option of factor rotation. Researchers are recommended to use both
CSA and EFA programs to make exploratory factor analysis in a proper
way.
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