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Abstract

Theory of variable selection for structural models that do not have clear dependent
variables is developed. Theory is derived within the framework of the curved exponential
family of distributions for observed variables. The idea of Rao’s score test was taken to
construct a test statistic for variable selection, and its statistical properties are examined.
In particular, the test statistic is shown to have asymptotic central chi-square distribution
under a kind of alternative hypothesis. This fact will provide an evidence for excellent

performance of the score statistic for real data sets.
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1. Introduction and motivation

There are numerous researches on variable selection in statistical models including
regression models, time series models, and discriminant analysis (e.g., Shibata 1976, Fu-
jikoshi 1985, Miller 1984). Almost all the literature, however, has focused upon the
models with dependent variables and discussed selection of independent (or explanatory)
variables. In these models, variable selection is made in order to achieve most precise
prediction of the dependent variable or smallest misclassification probability, of a future
sample.

It is important to develop theory of variable selection for models in multivariate anal-
ysis which do not have such clear dependent variables. Examples of such models include
a factor analysis model, a model of principal component analysis and some covariance

structure models. There is not so much literature on variable selection for such models



(Yanai 1980; Tanaka 1983; Jolliffe 1986; Gorsuch 1988). No one has considered variable
selection based on fit measures except for Kano and Thara (1994) and Kano and Harada
(2000).

Consider a simple mean structure model:
E[X] = n(u), (1)

where X is a sample mean p-vector and n(w) is a p-dimensional vector-valued function
from a domain of R? (¢ < p). When the model (1) is not fitted well, a typical approach
to the problem is to explore a different mean structure. An alternative potentially useful
approach is to identify some variables inconsistent with the model and remove them. The
approach is important when variables to be analyzed are not predetermined such as in an
analysis of questionnaire data with many items.

To identify inconsistent variables, one can compute fit measures (i.e., goodness-of-
fit statistics) for every model obtained by removing possibly inconsistent variables. The
procedure is not sensible for nonlinear models with a fairly large number of variables
because of heavy computation. A useful way to do it is to use the estimator for w in the
(full) model (1) to form fit measures for all models after removing possible inconsistent
variables. In this paper, we shall take Rao’s score test approach to construct such a
statistic. This will be described in Section 3.

One may ask a natural question on the score test approach: when the full model
includes an inconsistent variable, say X;, the estimator & must be biased, and the bias
will affect the score test statistic including the one for the model of X;,..., X,. Can the
score test statistic with the biased estimator @ correctly evaluate a fit of the model of
Xy,...,X,7 The answer is “yes.” It will be shown in Section 4 that small deviation from
the model does result in bias of @, but does not affect the score test statistic asymptoti-
cally.

Kano and Thara (1994) and Kano and Harada (2000) have proposed variable selection
procedure for exploratory factor analysis. This paper extends their results to a general
curved exponential family of distributions. Furthermore, we establish a theorem stated in
the paragraph above to provide theoretical foundation with variable selection procedure
developed by Kano and his collaborators.

In Section 5 we discuss a forward selection procedure. Two empirical examples are

presented in Section 6. We end with remarks.



2. Curved exponential family
Let X, . .., X™ be independently and identically distributed p-dimensional random
vectors and assume that their distributions belong to the exponential family with a natural

parameter vector 6:
X X0 exp(8'z — 0(0))u(de). (2)

Here p(+) is a carrier measure independent of 8 and exp(—1(8)) is a normalizing constant

(see e.g., Amari, 1985). The parameter space of 8 is given by

Qg:{GERP

/exp(elw)/,c(da:) < oo} :

We suppress the superscript o to write X simply, when no confusion is created.

Assume that ¢(8) is twice continuously differentiable on 2y, and then

9¢(6)

EX] = 00 =9(0) (=n, say) (3)
Var(X) = 882;/)8(2/) = U(0). (4)

See e.g., Lehmann (1986). The parameter space Q of 7 is then given as
Q=¢(Q) (C RY).

Suppose that W(8) is positive definite on .
Consider a model with mean structure 7 = 1(w), where w is a g-vector with ¢ < p and
1(w) is a differentiable p-dimensional vector-valued function from a domain D,(C R?).

Now we are interested in the goodness-of-fit test of the structural model:
To ... Ho: E[X]=mn(u) versus Agp: E[X] € . (5)

In this paper, we employ the likelihood ratio criterion to construct a statistic to test a
hypothesis as in (5), and call -2 times logarithm of the likelihood ratio statistic an LRT
(statistic) briefly. We denote by Ty the LRT statistic for testing (5) based on the sample
in (2). The actual form of the Tj will be given in (9).

Since U(0) is nonsingular, the inverse function theorem ensures existence of the inverse

function ¥ ~'(+). Then use of ¥(8) = n(u) from (3) shows that

0 =4~ (n(u)) (= 0(w), say).

Thus, the population distribution is of curved exponential type (Amari, 1985).



Put Z(u) = agit/t)j and we then have
O (O()) Zlu) (= 0 )T, say). ()

[1]

Since the log likelihood based on the data X(*)’s is written as f(u) = n(G(u)’X —

;/)(G(u))) with X = Ly2 X ) we obtain the score function and Fisher information

of the structural parameter vector w as

[1]

()W~

score function = n Yu) (X — ¢(0(u))) (7)
Hu)=(u) (= I(u), say). (8)
The MLE 8 under A, in (5) is 6 = ¥ '(X). The MLE @& under Hy in (5) is defined as

a solution to the maximization problem: maxyep, f(#). Consistency of @ is guaranteed

Fisher information = nZ(u) ¥ ' (u

if the strong identifiability condition holds, i.e., let o be the true parameter, and for any
€ > 0 there is § > 0 such that if ||g(u) — (ug)|| < & then ||u — ug|| < € (see Rao 1973,
Section 5e.2; Kano 1986). Assuming that ug is an interior point of the domain D,,, then
the MLE meets 3-((u) = 0 with probability going to one.

The LRT for testing (5) is equivalent to the following Tp, and Ty has the expansion

in (10) if V(X —n) = 0,(1):

Ty = 20 ({6 —0(a))X — {¢(8) — v(8(a)}) (9)
= (X —n) (V- UTEEVE)TEV) (X —n)+o,(l)  (10)

— XZ—q as n — oo.

The convergence to the central chi-square distribution XZ_q holds when Hj is true. For
simplicity we occasionally write U and = for U(w) and =Z(u), respectively.
It should be noted that the inverse of ZW~'= in (10) is replaced with a generalized

inverse matrix (Z'W~1=)~ if = is not of full column rank. For a generalized inverse, see

Rao and Mitra (1971) or Rao (1973).

3. Derivation of test statistic for backward elimination
Partition X = [ X', X' ]'. Partition F[X] = n(u) = [n,(u),ny(u)] and X =
P P2
[Xll, X;]’ correspondingly.! We shall examine if X, is inconsistent with the model con-

sidered in Hy in (5). Let Q2(C R??) be the parameter space of n, (without structure).
Oy (u)

!There may be some elements of u that are unrelated to n,(u). The forthcoming =, = —>—~ may

ou’

not be of full column rank.



In addition to (5) consider the following testing problem:
Ty ... Hy: FE[X;]=mny(u) versus Ay: E[X,] € Q,. (11)

The LRT statistic for the hypotheses in (11) is labeled as T5.

The variables X; may be regarded as inconsistent if 7j indicates rejection and 75
shows acceptance. When the dimension p of an observed vector X is large, there are an
extremely large number of combinations of possibly inconsistent variables, and estimation
of many structural models in multivariate analysis require extremely heavy computation.
In addition, occurrence of improper solutions annoys researchers (e.g., Kano 1998). Thus
it will be almost intractable to calculate test statistics T, for all models with deleting
possible inconsistent variables.

The purpose of this section is to construct test statistics (asymptotically) equivalent
to T, not by calculating T3 exactly but as simple functions of the MLE @« under Hy. For
this, Rao’s score test approach is useful (Rao 1947).

One can not directly apply the likelihood ratio criterion to test the hypothesis H
against Hy because the random vectors in these hypotheses are different. We intro-

duce a new model that may play a role of interface between the two models. Let

w=[n...,n,,u]. Consider the following structure:
T
Q(E) = ' ) (12)
TIpy
7y(w)
where 1y,...,7,, are free parameters to be estimated. The structure (12) implies that

FE[X ] does not have structure. The derivatives of the structure is expressible in the form:

ag(j):[% :(<)u>] (==, sey). )

Consider the testing problems as follows:

Ty ... Hy : E[X] =mn(u) versus Ay: FE[X]e RF (14)
Togr - .. Hy: E[X]|=mn(u) versus Hy: E[X]=n(u) (15)

Here Ty and Tpyr denote the LRT statistics for (14) and (15), respectively.
We have defined the four LRT statistics, which have the following relations:

T02/ = TO - TQ/ (16)
T, = Ty +o,(1) (17)



The equality (16) is obvious. The asymptotic equivalence in (17) will be expected since
both Ty and Ty test the structure F[X 3] = n,(w). A mathematical proof of (17) will be
given in the Appendix. It follows from (16) and (17) that

T2 = TQ/ —|— Op(l) = TO - TOZ’ —|— Op(l)'

Thus, it is seen that if a test statistic for (15) is formed as Rao’s score test instead of
Tozr, we can construct a test statistic for (11) which is a (simple) function of @. The score
test is sometimes called a Lagrange multiplier test (Aitchison and Silvey 1958). For a
comprehensive review, see Buse (1982).

Calculate the following quantities under Hy : E[X] = n(uw):

0 = y7mw) (= o). say)

06 (u) oonw) L, O IR
= U = =V ! =V =
D ()5 (w)] 5 = (u) (w)=(n),
where Zy(u) = 6%2(’?) The score function and Fisher information under the model (12)
u

are given as

score function = ni(g)/q’_l(y) (X - lb(Q(ﬁ)))

() U (w)Z(w) (= I(w), say).

(11

(S

Fisher information = n

In Rao’s score statistic, we estimate w by using estimators under Hy, that is,

Ui
Ty, u
u

Using those expressions above, we obtain Rao’s score statistic for (15) as follows:

Toyrio = (sa)\re)/(Fisher irffgrmation)_(sa)\re)
= 0 (X = (@) v @)E () (Sa) v @)@

E(@) v (@) (X —n(a)) . (18)



Here we denote by A~ a generalized inverse of a matrix A.

I
The next formula is useful when = = l 0 _O ] (cf. Kano and Ihara 1994 formula
=2
(A4)):
qr15<5' -1z) =zt
=y! © o (19)
O V3 —U3'E, (ZV5'E,) =g |

where Wy, is the (2,2) block of W. Application of the formula to (18) leads to

SHOLTOEA)

Under the assumption that v/n(X —n) = O,(1) we have

Vi (X = (@) = (I, = ZE0TE) U VR(X —n) + oy(1). (22)

We can verify the asymptotic equivalence between (20) and Ty by substitution of the

expression (22) into (20). Thus, the LRT statistic T3 is asymptotically equivalent to (21).
In sum, we have

Ty =Ty — Toa + 0,(1) = Ty — Tozrrao + 0,(1) = Torao + 0,(1),

The test statistic Topao is basically a function of @ and one can use it to test (11).

We shall study statistical properties of the test statistic (23) in the next section.

4. Distribution of the test statistic: Null and nonnull cases

In this section, we shall focus upon how the test statistic (23) behaves when X is
inconsistent. While the inconsistent X; does not influence upon the exact LRT statistic

Ts, it does affect the statistic (23) since the estimator @ used in (23) depends on X.



To study the behavior we introduce a contiguous hypothesis or population drift (see

e.g., LeCam 1960; Stroud 1972; Browne and Shapiro 1989):

Hyr : B[X] = n(u) + %ﬁ l ] ( — n(u) + \/Lﬁd, say). (24)

The hypothesis reduces to Hy in (5) when d = 0. Under the Hyn, we have

d;
0

V(X2 =) = Npy(0,Un) (25)
Vil —u) = (ZUTE)TZ0N/0(X — )+ o,(1)
£ N, (FetE)TEeld, (Z0E) ).

As expected, the (asymptotic) bias ﬁ(E’\P_lE)_lE\IJ—ld is introduced to the estimator

. To what extent does the bias influence on the test statistics (23)7 It should be noted
from (25) that no bias is introduced to X,.

—_—
—

—1

—_—

=9

Let us partition = = l ] , and we then have

vn (Xg - 172(’&)) = \/ﬁ(Xz — 1) — \/ﬁ(nz(ﬁ) —13)

— V(X = ) = SEUTE) U A(X — )+ 0,(1).26)

The bias appears in the second term in the RHS of (26). Substituting (26) into (23), the

second term of (26) drops out, and finally we obtain
v ! 1 B T T T e P v
Torao =n (Xz - 772) {\I’m — U (52\1}22 :2) =oVs } (Xz - 772) +op(1), (27)

which is free from the bias.

Thus, convergence to the central chi-square distribution under Hy» is established in
view of (25) and (27). The degrees of freedom are p; — ¢2, where ¢ = rank(=Z(u)).

On the other hand, we can show that if X, is inconsistent, Thrao is asymptotically

distributed according to the NONcentral chi-square. In fact, if

1

E[X ] = n(u) + \/—Ed%

then the noncentrality parameter is given as
—1 = (= g-1z ) =gt
d2/ {q}22 — \1122 flnity) (:4/2\1}22 :2) :4/2\1}22 } d2.

It has been shown that Thyr40 asymptotically has the central chi-square distribution

for a correctly specified structure for X5 (no inconsistent variable is contained in X3)



and the noncentral chi-square distribution for a misspecified structure for X5 (inconsistent
variables are contained in X3), whether or not the structure for X is correctly specified.

In other words, the statistic Topao does work for the testing problem (11).

5. Test statistic for forward selection

Partition X = [&,& |, and partition F[X] = n(u) = [n,(w)’,n,(w)]" corre-

P P2
spondingly. Using an estimator for w based on the data X4, we shall construct a test

statistic to test the hypothesis (5), that is, to examine whether X; should be added to
X,.

Assume that the structural model for X, is true, that is, F[X 5] = n,(w). When
the assumption is false, one should first take backward elimination procedure to identify
inconsistent variables, rather than adding a new variable.

As noted in the footnote in Section 3, there may be parameters that are not actively
related with 7,(w). We partition u as

u = [u), uhf
m(u) = my(us)
- on,(u)

= = ) full column rank.

That is, wy is a parameter vector that is related only with X .

Assume that we have an estimator @, at hand and that it is possible to construct an
estimator w; for w; in some way. The purpose of this section is to form a test statistic
for testing (5) based on [@], w,)'.

Let @ = [@},4}]'. Define

T o= (X - n(,&))’ {q;—l(ﬁ) _ q;—l(a)z(a)(E(&)’\Ifl(&)E(@)_l

[]

@i (- nta). 2
The test statistic is an extension of the goodness-of-fit statistic developed by Browne

(1982, 1984) in a covariance structure model.

Under the assumption that \/n(@ — u) = O,(1), we can make the expansion as
Vi (X = (@) = V(X —n) —Ev/n(@ —u) +o,(1). (29)
so that the T is expressible in the form:

T=n(X —n) (U —UTIEEVTIE)TEV) (X —n) +o,(1).



It follows from the expression that T" asymptotically has the central chi-square distribution
under Hy: E[X] = n(u) and the noncentral chi-square distribution under the Hy» in (24)

with the noncentrality parameter given as
d (v —UTIE(EVTIE)TIEY ) d.

One question may arise why one needs to add external variables irrespective of the
fact that Xy is correctly specified (no inconsistent variable is contained in Xj). It is
because a correctly specified larger model will make better or more efficient inference on
uy even though nuisance parameters are introduced. For details, see Kano, Bentler and

Mooijaart (1993).

6. Examples

A typical example of curved exponential family of distributions for observed variables
is a covariance structure model under multivariate normality assumption (e.g., Joreskog
1970; Bentler 1986; Bollen 1989). Mean and covariance structure models under multivari-
ate normal assumption also belong to this family (e.g., Browne and Arminger 1995). For
an observed random p-vector X, the model can be characterized as

FIX] = plu)
{Var(X) = Y(u) (30)

Under multivariate normality assumption on X, the probability density function is written
as
exp (egx +0L0(XX) — (6, 02)),

where exp{—1(0,,0,)} is defined as a normalizing constant. We have used a vec-operator
v(+). Notation on vec-operators is described. The notation vec(A) for a matrix A denotes
a vector formed by stacking all column vectors of A in order, and the v(A) for a square
matrix A represents a vector consisting of the elements of lower triangular part, including
diagonals, of A. We denote by D, the operator such that vec(A) = D,v(A) for any
symmetric matrix A of order p.

The mean and covariance structure model in (30) introduces a structure as

0, = ¥ (wpn(u)
6, = —Divec(X ' (u))/2.

In this section, we shall take an exploratory factor analysis model to study how close

the statistic Thra0o is to Th, the exact likelihood ratio test statistic, and to illustrate

10



usefulness of the variable selection procedure proposed. The factor analysis model with &
factors is defined as follows: an observed random p-vector X = [X1,..., X,] is expressed

as

X=p+Af+te,

where p is a general mean vector, f is a random k-vector of common factors, e is a random
p-vector of unique factors, and A is a factor loading matrix. Assume that Var(f) = I,
Cov(f,e) = O and Var(e) = ¥, a p x p diagonal matrix called a unique variance matrix.

Under these assumptions, the model introduces a covariance structure:
Var(X) = AN + . (31)

The communality of the i-th variable X; is defined as proportion of the squared length
of the i-th row vector of A to the variance of X;. Maximum likelihood factor analysis
was developed by Lawley (1941) and is equivalent to Rao’s canonical factor analysis (Rao
1955). For details on factor analysis, see e.g., Lawley and Maxwell (1971).

Variable selection in factor analysis has been made based on the magnitude of com-
munalities (see e.g., Gorsuch 1988). Variables with a small value of communality are
suggested to be dropped. From the statistical point of view, however, fit of the model
considered or discrepancy between sample and the model should be of primary impor-
tance.

The first example is a data set of customer satisfaction analyzed in Churchill and
Surprenant (1982). They studied customer satisfaction of virtual purchasers (n = 180) of
flowers (chrysanthemum) with five questions X; to X5 in a questionnaire. The sample cor-
relation matrix is reproduced in Table 1. One dimensional latent factor, Fy, of customer
satisfaction was introduced behind the observed questions X1,..., X5, that is, one-factor
analysis model is assumed for the observed questions. They discussed causal mechanism
of the customer satisfaction with structural equation modeling (covariance structure anal-
ysis). They suggested deletion of X5 in the one-factor model since the reliability of X5 is
row (page 498).

The reliability corresponds to the communality in factor analysis, which is reported in
the last column of Table 2. As pointed out by Churchill and Surprenant, the communality
estimate for X5 is .420, which is rather lower than those of the other variables.

Now we shall examine goodness-of-fit of the factor analysis model. The LRT statistic
T for goodness of fit shows 11.033, whose p-value is 0.0507. The model is barely accepted
at o = .05 level. The column of 75 in Table 2 shows results of the LRT for the five models

11



obtained by deleting one variable in order from the five-variable model. The Churchill
and Surprenant model, removing Xs, receives a poorer fit (Ty = 6.585, p-value=0.0372).
It is seen from the table that the Churchill and Surprenant model is worst, and the model
removing X or X, receives a quite good fit. Thus, variable selection with the magnitude
of communalities does not lead to a well-fitted model in this example.

Results of the score statistic developed in this paper for the data set are shown in
the column of Thrao in the table. Those values are enough close to the exact LRT
T;. No misleading will occur concerning the variable selection if Top4o is used for T.
Computational burden of Tyr40 is much lighter than that of T5.

The next example is a fairly large data set, Twenty-four Psychological Variables (p =
24, n=145, k = 4) presented in Harman (1976, page 124). While the four-factor solution
has been accepted as an interpretable model (e.g., Joreskog 1978; Akaike 1987), the chi-
square test rejects the model [yigg = 227.140, P-value=0.0213].

Table 3 shows results of Torao, To and their differences along with communality
estimates. Those statistics are listed in the order of the magnitude of T5. It is seen that
the order of the magnitude of Thr 40 is almost identical with that of 75, and the differences
of those statistics are very small and negligible. Thus, the Top40 performs very nicely.

We have five statistically accepted models. Which model should be chosen among the
five may depend on interpretability.

Communality estimates are shown in the last column of the table along with the
order of the magnitude of the communalities from the lowest in the parenthesis. Again,
the traditional magnitude-of-communality rule does not work to find a well-fitted model.

The example was analyzed also by Kano and Harada (2000). The comparison between
the score test and the LRT was not made there.

The Web-based application, namely SEFA, was developed for variable selection in
exploratory factor analysis. The reader who wants to use the SEFA can access at

http://kokol5.hus.osaka-u.ac.jp/ " harada/factor/stepwise/

6. Final remarks

In this paper we have discussed theory of variable selection in a general structural
model in multivariate analysis. Rao’s score test approach to construct a goodness-of-
fit test statistic for all models obtained by removing every set of possibly inconsistent
variables successfully reduces computation, and resultant statistics seem enough accurate.

The accuracy comes from the theoretical foundation, which is established in this

12



paper, that when inconsistent variables X; are included, Rao’s score test statistic for
the model removing X; can be approximated by the central chi-square distribution even
though the X'; cause bias to the MLE for the structural parameter vector, which is used
to form the score test statistic.

A natural question may arise: what if a model and a (original) model removing some
variables from the original model are both acceptable? Which model should be adopted?
One answer is that the original larger model should be chosen because a larger model
will make better statistical inference in general, as noted in Section 4 (Kano, Bentler and
Mooijaart 1993).

An alternative approach would be to apply information criteria such as AIC (e.g.,
Akaike 1987). Note, however, that one can not compare between a large model and a

small model directly, that is, AIC can not say anything about

Hy: E[X]=mn(u) versus H,: E[X;] = ny(u).
Instead, we can propose users to use AIC to compare

Hy - BX] = n(u) versus Hy : B[X] = nu),

where n(w) was given in (12). For getting AIC, one needs to calculate Ty for every model.

If Tyra0 1s used for Ty, computation will be reduced greatly.
Notice that
TO — TQ/ = TO — T2 —|— Op(l) = TO — TQRAO —|— Op(l)'

If the difference Ty — Thrao is larger than the twice of the difference in degrees of free-
dom, AIC indicates preference of the smaller model in Hy or H,. Thus, AIC provides

information as to whether a variable should be removed.
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Appendix

We shall provide a concise proof of the asymptotic equivalence in (17) here. As in

(10), we have

Ty =n(X —n) (U = UEEVTE)ZU) (X —n) +0,(1).

Recall that = is given as in (13), and apply the identity in (19). We then have the

asymptotic equivalence.
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TABLE 1
Sample correlation matrix of customer satisfaction data (n=180), reproduced from

Churchill and Surprenant (1982)

X1 1

X2 .76 1

X3 .69 .71 1

X4 .74 .86 .75 1
X5 .57 .57 .67 .59 1

TABLE 2
Comparison of Torao with T, in customer satisfaction data

Y2(.05) = 5.991, \2(.05) = 11.070

o remove | I | o Ty difierence | (1R e
X1 2 | 4.062 4136  -0.074 0.676
X2 210192 0408  -0.216 0.839
X3 2| 3990 4.020  -0.030 0.647
X4 210946  1.304  -0.358 0.860
X5 2 | 6.604 6.585 0.019 0.420

all variables

neluded 5 | 11.033 11.033 0.000

Tsra0 and Ty denote the statistic developed here and the usual likelihood

ratio test statistic, respectively. The difference means that Thrao — T5.
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TABLE 3
Comparison of Thrao with T in 24 Psychological Data
Yige(-05) = 218.820, 1,(.05) = 198.154

ol L s e | O
X11 167 [ 190.126  190.014  0.112 0.449 (12)
X3 167 | 193.219 193.222  -0.003 0.358 ( 6)
X5 167 | 195.376 195.252  0.124 0.648 (20)
X19 167 | 197.481 197.423  0.058 0.239 ( 2)
X13 167 | 197.726 197.548  0.178 0.511 (16)
X23 167 | 199.521 199.489  0.032 0.503 (15)
X9 167 | 201.029 200.717  0.312 0.744 (23)
X17 167 | 202.537 202.428  0.109 0389 ( 7)
X8 167 | 203.195 203.157  0.038 0.516 (17)
X4 167 | 203.322 203.274  0.048 0.349 ( 5)
X7 167 | 204.121  203.767  0.354 0.718 (22)
X6 167 | 204.475 204.353  0.122 0.689 (21)
X21 167 | 204.474 204.438  0.036 0.416 (11)
X18 167 | 205.314 205.102  0.212 0.409 (10)
X14 167 | 205.391 205.177 0214 0.340 ( 4)
X2 167 | 206.812 206.801  0.011 0219 ( 1)
X12 167 | 207.305 207.215  0.090 0.567 (19)
X20 167 | 207.247 207.221  0.026 0.409 ( 9)
X16 167 | 208.798  208.568  0.230 0.452 (13)
X22 167 | 208.927 208.897  0.030 0.399 ( 8)
X10 167 | 211.196  209.215  1.981 0.760 (24)
X24 167 | 209.542  209.405  0.137 0.501 (14)
X1 167 | 209.703  209.661  0.042 0.561 (18)
X15 167 | 214.625 214.595  0.030 0.306 ( 3)

alilnvjfffj:ées 186 | 227.140  227.140  0.000

Tsra0 and Ty denote the statistic developed here and the usual likelihood

ratio test statistic, respectively. The difference means that Thrao — T5.
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