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Abstract

We first review the use of structural equation modeling (SEM) for the analysis of ex-
perimental data. Typical examples include ANOVA, ANCOVA and MANOVA with or
without a covariance structure. SEM for those experimental data is a mean and covariance
structure model in multiple populations with a common covariance matrix. Such analy-
ses can be implemented under the assumption that all observed variables be distributed
as normal including fixed-effect exogenous variables, which denote levels of factors for
example. Theoretical basis for the usage, based on conditional (likelihood) inference, is
explicitly explained.

A bias of a path coefficient estimate particularly in standardized solutions is pointed
out which comes from the fact that variance estimates of dependent variables contain
variation of means.

Statistical power of several testing procedures concerning mean vectors across several
populations are examined, when a factor model can be assumed for observed variables.
The procedures considered here are MANOVA, a mean and covariance structure model
implemented by SEM, and ANOVA of a factor score or a weighted sum of observed

variables. The SEM is shown to be the most powerful tool in this context.

1 Introduction

Structural equation modeling (SEM) is a very powerful tool for analysis of correlational
or observational data, and it can be used for experimental data as well. A typical example
is the analysis of multiple populations, originated by Joreskog (1971). SEM can be ap-
plied to more complex or more typical experimental designs such as ANOVA, ANCOVA
and MANOVA (e.g., Bagozzi 1977; Bagozzi & Yi 1989; Kiihel 1988). Sorbom (1978)’s
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work on ANCOVA is significant. See also a LISREL manual (e.g., Joreskog & Sorbom
1989 pages 112-116; 1996, pages 151-155). To implement these analyses for experimental
data one can take multiple population approach and/or regression approach. In the re-
gression approach, a design matrix is given explicitly in a data file and draw paths from
control variables to dependent variables. It is known that one could treat as if indepen-
dent (exogenous) binary variables were continuous under certain assumptions in SEM.
Background for these analyses is based on the conditional statistical inference.

In Section 2, we provide some examples of models for experimental data from tradi-
tional to modern models that can be analyzed only with the SEM approach. One factor
MANOVA design is employed as a comprehensive example to present an idea of condi-
tional inference. A full explanation for the conditional inference will be given in Section
3. Equivalence between normal theory inferene with exogenous fixed-effect variables and
analysis of multiple populations with different mean structures and a common covariance
structure is presented.

Section 4 gives a cautionary note on a bias of a standardized estimate. In section 5,
we theoretically compare power of several statistical tests concerning mean vectors, and

the SEM approach is shown to be most favorable.

2 Examples

We shall begin with a simple ANOVA or MANOVA example. Consider six observed
dependent variables Y7,- -+, Y and a binary variable X. Let us say that Y;’s are psycho-
logical tests and that X denotes sex with values 0 for male and 1 for female. One would
like to examine an effect of sex on the six variables. While the aim is achieved by the
traditional MANOVA design, with SEM one can also make the inference by drawing the
path diagram as in Figure 1.

The model in Figure 1 is representable in model equations and variance-covariances

of independent variables in the form:
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The mean of error variables ¢; is assumed implicitly to be zero here and in the sequel as

well.
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Figure 1: ANOVA and MANOVA

Although variable means are specified in (2.1) it does not imply use of a mean and
covariance structure model, because the mean vector has the saturated structure, so that
every population mean is estimated by its sample counterpart.

The chi-square difference test between the model in Figure 1 and the model with all
the k;’s zero gives an approximate MANOVA test statistic, which are correct at least
asymptotically, to detect difference in mean vectors of [Y7,...,Ys] between male and
female.

One usually introduces ¢ — 1 dummy variables if X is a treatment variable with ¢
levels. See Joreskog and Sérbom (1996, pages 151-155).

The conditional approach is a useful way to validate the use of independent binary
or nonnormal variates in many statistical models including the SEM.? In the approach,
the conditional density function given X is considered as the likelihood function to be
maximized. We shall denote the equation in (2.1) by matrix notation as Y = v+&X +e
and © = (§;;).

Let Yi,....Y,, and Y, 41,..., Y ny4n, be a random sample from the populations
of male and female, respectively, and let X; be a sample that denotes the sex of the ¢-th

observation. Using (2.1), the conditional likelihood given X is

no+n1 no no+ni
[T NYiv+&X,0)=[NYilv+&29,0) x [[ NY:v+rM. 0) (2.2)
=1 =1 i=ng+1

with 2@ = 0 and 2V = 1. The first term in (2.2) is the likelihood based on the male

data whereas the second one is that based on the female data. The difference of the mean

2The conditional approach and conditional inference used here are different notion from those devel-
oped by R. A. Fisher in which the conditional likelihood inference given an ancillary statistic is made.



vectors is (v + K,:L'(l)) — (v + K,:L'(O)) = K, so that the regression coeflicients & represent
the difference in the mean vectors between male and female. The error covariance matrix
O denotes the covariances between the observed variables Y. Under the null hypothesis
Hy : k = 0, the both populations have the common mean vector v.

As a result, the inference based on the conditional likelihood in (2.2) is nothing but
the usual MANOVA to find the difference between mean vectors. It should be noted that
the covariance matrices of the male population and the female population are identical
with each other. The ANOVA for testing the difference in each E(Y;) can be performed
by the Wald test as /%Z'/SAE, where the SF is the asymptotic standard error of &;.

We shall clarify how the conditional approach is related to the full likelihood approach
in which the distribution of [Y', X|' is regarded erroneously as multivariate normal. The

likelihood assuming full normality for (Y, X;) is

no+ni
H N(Y ;v + &X;,O)N(X;|, ). (2.3)
=1
The maximum likelihood estimates for v, &k, © based on (2.2) coincides with those based

on (2.3) because (7, ¢) is functionally independent of v, K, ©. The likelihood (2.3) can

(e 7))
paey Xi T 7 oK ¢
The population mean [ + 7&’, 7] is estimated with the sample averages [Y', X] for any

!
&qb';&—,l_ © nf ] , which is led from

the path diagram in Figure 1, by the usual sample covariance matrix of [Y”', X].

be rewritten as

value of k. One can estimate the covariance matrix l

It will be deduced from the discussion above that the normal theory analysis based
on the usual covariance structure model, without mean structures, defined by the path
diagram in Figure 1 is equivalent to the analysis of multiple populations with different
mean structures and a common covariance structure.

A model for MANOVA with two treatments A and B with interaction is expressible
in path diagram in Figure 2. The independent variables X, X3, X3 denote effects of the
treatments of A, B and their interaction A x B and take values for every combination of

levels of A and B as

Al1B1 1 1 1
A2B1 | —1 1 -1
A1B2 1 -1 -1
A2B2 | -1 -1 1
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Figure 2: ANOVA and MANOVA with two treatments

The model in Figure 2 can be represented as

Y1 n
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(2.4)

certain model can be assumed to explain covariances

between dependent variables Y. The model in Figure 3 assumes a two-factor model, and

the mean vectors can differ by & (path coefficients from X; to Y;) between male and

female.

The equations and variance-covariances of the model in Figure 3 are as follows:

Yi n

Y, Uy

Y3 | Vs
Y, B V4 +

Ys Vs

| Y6 | L V6 |
(X)) =
Cov(F,, Fs) =
Vie) =

1 0 K1 €1
)\21 0 Ko €9
)\31 0 F1 K3 €3

0 1 l F2 ] + K4 Xl T €4

0 )\52 (2 €5

0 )‘62 1 L K6 | L €6

T1, V(Xl) = ¢1

s (rys=1,2) .
b, (1=1,...,6)

(2.5)
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Figure 3: MANOVA with a factor analysis model for covariance matrices

In the model in Figure 3, Cov(e;,¢;) = 0 for i # j.
It is occasionally realistic to assume there is difference in mean of latent variables
between male and female, which results in mean difference of observed variables Y. The

model is expressible as in Figure 4.
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Figure 4: A model for mean difference between male and female

The equations and variance-covariances of the model in Figure 4 are as follows:
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EXy) = n, V(X1)=¢
Cov(Gi, ) = ¥y (1,5=1,2)
Vi) = i (1=1,...,6)

G
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The model is a kind of MIMIC model. Joéreskog and Goldberger (1975) studied statis-
tical properties of the MIMIC model with fixed regressors (conditioned on X') and with
random regressors, and obtained the same fitting functions for the both MIMIC model
specifications. Muthén (1989) emphasized use of MIMIC models to express heterogeneity
in means in several groups.

We shall end with this section by giving an example of ANCOVA for a latent variable.
Sorbom (1978) developed an alternative model to the MANCOVA in which a latent
variable was introduced and the modeling allowed for heterogeneous covariance matrices.
Sorbom’s model uses multisample analysis of mean and covariance structures. Arbuckle
and Wothke (1999, Example 9) shows one sample covariance structure modeling in case
where the covariance matrices are homogeneous. This modeling is presented in Figure 5.
Let us say that Y] to Y5 and Y, to Yy are pre-tests and post-tests on verbal ability, and

X, is a binary variable that denotes whether the group is control or experimental.
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Figure 5: ANCOVA for a latent variable
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Note that the first row of the second equation, F; = Fi, is redundant, but it will be

useful to construct a covariance structure of observed variables (it is a kind of the RAM

representation. See McArdle and McDonald 1984).

3 Conditional inference

All the models in Section 2 can be expressed as

Y = v+ Af+ KX +e
f = a+Bf+TX+¢
E(X) = 1 V(X)) = @ Cov(X,€)
{ E(e) = 0 { Vie) = 0O, { Cov(e, ¢)
E(¢) = 0 V() = ¥ Cov(¢, X)

(3.1)
O
o . (3.2)
ZCX

Here X and Y denote independent and dependent observed variables whereas f is a
vector of latent variables (constructs). The KX and I'X denote direct effects of X on
Y and indirect effects of X through f on Y, respectively. The diagonals of B are fixed

to be zero and [ — B is assumed to be nonsingular.

It holds that Y.x = O in all the examples in Section 2 but that in Figure 5. So we

first assume that ¥.x = O for simplicity.

In SEM, it is convention that the joint normal distribution is assumed for X, € and

¢, so that the observed vector [Y', X']" follows normally. Eliminating f in the equations

(3.1), we have

Y=v+A(l-B) a+{)+e+(AMI-B)"'T+K)X.

Under the normal assumption, the conditional distribution of Y given X is

Y[X =2~ N(y|E(Y|2), V(Y ]z)),

with

= v+ Al -B)la+(A(I-B)"'I'+ K)x
AI—B)""W(I - B) N4+ 0 (=Xyx, say).



Note that ¥y .x is independent of . If ¥:x # O, a and ¥ have to be replaced, respec-
tively, with

o+ E(C|£13) = o+ ZCX(I)_I(QE - T) and V(C|£13) =V - ZCX(I)_IZXC- (34)
The normal theory inference assumes
[Y'. X ~ N(y|E(Y |2), Sy .x )N (2|7, ©),

and the normal theory MLE is a solution that maximizes the likelihood using the density
above. We will call it the conditional inference that the only conditional distribution of
Y given X is specified and no particular distributional assumption is made on X, that
18,

YIX =2 ~ Ny|E(Y|z),Xy.x).

There is close relationship between the normal theory inference and the conditional infer-
ence, as explained below.

Instead the normality assumption on the entire observation, the conditional inference
assums that (i) the conditional distribution of Y given X is multivariate normal with
E(Y|X)and V(Y |X) in (3.3), (ii) © and ¥ are unrelated to the value of X and (iii) the
parameters 7 and ® of X are not restricted and functionally unrelated with the other
parameters. The assumptions (i) and (ii) are on the distribution of the observations;
whereas (iii) is related to parameterization of the model considered.

The purpose of this section is to study what happens to the normal theory statistical
inference, if X is not normally distributed.

It is obvious that the assumptions (i) and (ii) hold for the normal distribution for all
the variables. Consider nonnormal distributions for X. If X is distributed independently
of € and ¢ or the X is a fixed variable, (ii) is met. This model has been developed by
Muthén (1984, 1989) and Muthén and Muthén (1998). It is an excellent idea due to
Muthén to split observed variables into independent and dependent variables.

We shall denote by m all the parameters involved in F(Y|X) and V(Y|X). By
Assumption (iii), 7 is functionally independent of (7, ®).

Suppose that the distribution of X is specified as N (|7, ®), which may be misspec-
ified. The likelihood on the full data (Y, X;) and the likelihood on the conditional data
Y. |X; (i =1,2,...,n) are expressed respectively as

Fla(m,7,®) = f[zv(n E(Y|Xi),2y.X)N(XZ»|T,<I>), (3.5)
CL(x) = ﬁN(YZ» E(Y|Xi),2y.X) (3.6)

=1

K3




It follows from the functional independence between & and (7, ®) that

N
(71_[_{11@?5{)) FLy(m,7,®) = m"@xg N(YZ'

N
E(Y|X)). zm) « max [ N(X |7, ®)
(T,(I)) =1

N
= max CL(T,®) x maqfc)i:r[lN(XAT,CI)). (3.7)

(T7

This implies that the maximization with respect to @ can be made independently of the
maximization with respect to (7,®). The MLE for & based on the full normal theory
likelihood (3.5) is identical with that based on the conditional likelihood (3.6).

Let the true density or probability function of X be written as fy(@|w), where w is
a parameter vector associated with the distribution X, which may be (7, ®). When X is
a fixed variable, fx(@|w) = 1. The likelihood based on the true and full density is then

expressible as

FL(m,w) = ﬁN(YZ» E(Y|X)), Zy,X)fX(XAw). (3.8)

In the same manner, the independence between w and w shows

(pax FL(m,w) = max CL(m) x mﬁngX(XiW)' (3.9)
From (3.7) and (3.9) we have that the MLE based on the normal likelihood, conditional
likelihood and the (true) full likelihood coincide with one another. The MLE is free from
the distribution of X ;. This is one of major reasons for the conditional inference to be
allowed.

Although the MLE’s are identical, their distributions can be different. The distri-
butions do depend on fx(@|w). Rather than the distributions of the MLE’s themselves,
researchers are more interested in the distribution of a statistic to test Hy : m; = 0 with
a Wald type statistic or in the confidence interval of 7;, where 7; is any parameter in .

We know that under the null hypothesis

W = #/\JAV(7|X:s) -5 N(0,1),

as n — oo, where AV (7| X’s) represents the conditional asymptotic variance of & given
X,’s and L5 denotes convergence in distribution. Since the asymptotic distribution
N(0,1) is independent of the conditioning variable X, the convergence to the normal
distribution will be true for the unconditional distribution. It is unclear whether the
Wald statistic remains valid for non-normal or fixed-effect independent variables X if

the asymptotic variance of 7 is constructed not under the conditional distribution but

10



under fully normal assumption. For the case, the following derivation will be more easily
understood.
The normal theory likelihood ratio (LR) test, or chi-sqaure difference test, for Hy :

m; = 0 is valid for for any distribution for X; because

max FLy(m,w)  max CL(w)mE%N(XAT,(I))

(7, w):m; =0 =0 (T
ggiji) FLy(m,w) m;_LXCL( )E}E%N(X |7, ®)
- Jnax, CL(w )ijfX(Xﬂw) - (w%&i:o FL(m,w)
 maxCL(m)max fy(X,|w)  max FL(m w)
™ w (777“;)

The validity of the normal theory Wald test is deduced from the validity of the normal
theory LR test and a general theorem of equivalence between the Wald test and LR test
(see e.g., Buse 1982).

Finally we shall consider the chi-square LR statistic for testing goodness of fit of the
model considered. There is difficulty in making such a clear description for the behavior of
the chi-square statistic as that for the MLE and the Wald test in the conditional inference.
It is very hard how to specify the saturated model for nonnormal cases. Here we take as

a saturated model
N(ylv + K, %) fx(2]w),

where v, K, ¥ and w consist of all free parameters. Note that N(y|v+Ke, X)N(x|r, ®) is
the saturated model for (Y, X'). One of important assumptions here is that the modeling
for X is the same for the null and saturated models. The normal theory LR statistic
for testing goodness of fit is then equivalent to the LR statistic based on the true model
specifying fx(@«|w) for the X; because

max Ul N (YZ E(Y;|X), Ey.X) N(X;|r,®) max H N (YZ» E(Y;|X,), Ey.X)

max HN(YZ» V—I—[(XZ',E)N(XZ'|T,<I>) max HN(YZ» V—I—[(XZ',E)
V,K2,7T,2)- (V,K,%)
i=1 " (3.10)
max N|Y.| E(YiX:), Zyv.x ) [x(X;] w)
s 1 ( | |

N|Y,;
v 1T (Y

1/—|—AXZ,E)fX X; |w

Again, the key assumptions for the normal model to be relevant are that 7 and ¢ are

unrestricted and are functionally independent of the parameters 7.
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As a result, the normal theory statistical inference such as point estimation, Wald
test and goodness of fit test are all correct irrespective of any type of distribution of
independent observed variables X, provided that F(X) and V(X)) are all free parameters
and they are functionally independent of the other parameters 7.

From now on, we shall consider the case where ¥.x may not be zero. In the case,
E(Y|X) and V(Y |X) invloves 7 and @, so that # is functionally dependent on (7, ®).
However, the derivation above is also applicable if there is a suitable parameter transfor-
mation such that the parameters in E(Y |X) and V(Y| X ) are functionally independent
of (7,9). Whether there is such a transformation will depend on the model under con-

sideration. In the model in Figure 5 with (2.7), we have

BNy — E([ZHXI):[¢zl¢;1l<g<l—rl>]+[%g(1]

B Fy _ ¢22—¢21¢1_11¢12 0
VX = V([@HXI)‘[ 0 M

It is easily understood that V(¢{|X;) can be written as l %2 " ]
22

rameter functionally independent of (71, ¢11), because ¢gg is a free parameter in 7. Since

with ¢3, a free pa-

X takes a value of 0 or 1, the conditional expectation F(Y |X;) can be expressed as

0—71)]

1

EY|X;=0) = v+A(I-B)™" [ Onén

E(Y|X1 — 1) — I/—I—A([— B)—l [ ¢21¢1_1171 —7'1) ] )

The terms involving 7; can be absorbed into v (so that it is written as v*) and ¢q 677

can be written as ¢j,, a parameter in 7 which is independent of (71, ¢1;). We thus have

E(Y|X, =0)

1/*—|-A([—B)_1l8]

E(Y|X,=1) = v*+A(l - B)™! [ qffl ] .

In sum, the argument above shows that the model in Figure (5) assuming normality for
[Y', X']" is equivalent to the joint analysis of the two populations for Y, corresponding to
the values of X, assuming the common covariance structure but different mean structures,
that is, F(Fy) = E(Fy) =0 for X; =0 and F(F;) and E(F,) being free parameters for
X, = 1. The difference in E(F}) between the two populations indicates failure of random

assignment of subjects to the control or experimental group.
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4 Bias

Consider the model in Figure 4. There are mainly two purposes when applying this kind
of model. One is to study impacts of X; on the means of the latent variables. The purpose
will be achieved by the Wald test for the coefficients +;’s or the difference chi-square test
between this model and the model with +,’s zero. In the case, the measurement model is
not of main interest.

The other purpose is to introduce the X; to express heterogeneity of means in the
sample and to study factor structure of the observed variables after adjusting the mean
differences. Such usage was emphasized by Muthén (1989). In the case, the estimates in
the measurement model are important. The model is said to be a MIMIC model.

In this section, we point out a bias of factor loading estimates in a measurement model

and suggest a formula for correction. The problem is important for the second purpose

above.
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gl €2 £3 &4 &5 £6
’ ' ’ v v v

Y2 3 Y4

Y Y5 Y
0% ,,:;N 0.60 W
050 050
o &2

N

1
020

6

Y1
~

010

X1
025

Figure 6: Factor analysis with different latent means: Unstandardized estimates

Now we illustrate the bias of an estimate using a simple example. Figures 6 and 7
shows unstandardized and standardized estimates, respectively, in a MIMIC model. Let
us say that X is a binary variable to represent sex and that one is interested in the factor
structure after adjusting factor mean difference between male and female. According to
Figure 6, the latent mean differences are 0.80 for F; and 0.1 for F,. Since the factor
variances, equal to those of (;, are 0.5 for the both factors, the standardized estimates in
the factor structure should be those in Figure 8. In the example, the measurement model

for F} is the same as that for F,. However, usual standardized estimates given in Figure

13



7 is not equivalent to that in Figure 8. The measurement models for F; and F; are not

identical. A bias certainly arises in the model in Figure 7.

€l £2 €3 €4 €5 €6

y y y v v '

Y1 Y2 Y3 Y4 Y5 Y6
oﬁ\ V a;f\m 0.51

0.07

Figure 7: Factor analysis with different latent means: Standardized estimates

The bias comes from the fact that the factor variances are calculated as if X; were

treated as a random-effect variable, like

V(F) = V(0.80X; + (1) = 0.1600 + 0.50 = 0.6600
V(Fy) = V(0.10X, + () = 0.0025 + 0.50 = 0.5025.

The normal theory standardized estimates in Figure 7 have then been calculated as:

V(Fy) ¢ 0.6600

0.6 = 0.6 = 0.5326 for
V(Ys) 0.62 x 0.6600 + 0.6 or A
V(Fy) ¢ 0.5025

0.6 = 0.6 = 0.4813 for
V(Ys) 0.62 x 0.5025 + 0.6 oF 52

for example. On the contray, the corresponding true standardized estimates in Figure 8

are

0.6¢ 0-50 = 0.4803 for both Ay, and Ass.
0.62 x 0.50 + 0.6

Such a bias arises in the model in Figure 3 as well. The data that can be analyzed with
the model in Figure 6 can also be analyzed with the model in Figure 3. Estimates unstan-
dardized and standardized in a usual way are given in Table 1. Again, the standardized

estimates are not to be expected.

3The path coefficients from F; are different between Figure 7 and Figure 8 but appear to be the same
within rounding erorr. It happens because the impact of X; on F5 1s small.
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Figure 8: Factor analysis after adjusting different latent means: Standardized estimates

We do not mention that unstandardized estimates should be reported in the case
where a mean adjustment is made with independent fixed-effect variables. It should be
careful to figure out the variance of a variable that is influenced directly and/or indirectly
by independent fixed-effect variables. The correct variance can be calculated by deducting
the fixed-effect variable variances from the formal variance obtained by normal theory.
Standardized solutions are then calculated using the true variances (rather than the formal

one) in the usual manner.

Table 1: Estimates of path coefficient

unstandardized standardized

B X, Fl X,
Y; | 1.00 0.80 | 0.66 0.37
Y5 | 0.60 0.48 | 0.46 0.26
Y51 0.70 0.56 | 0.49 0.78
Y. 1.00 0.10 0.71 0.05
Y 0.60 0.06 0.48 0.03
Y5 0.70 0.07 0.51 0.04

5 Statistical power

In this section, we shall make comparisons of statistical power among several procedures
to test mean differences of manifest variables or latent variables. Conisder a MIMIC

model in Figure 9. The fixed-effect variable X; takes 0 or 1. Without effect of X,
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the model would be a one-factor model with covariance matix ¥ = Ao’ + ¥, where
A=A, LA, VI(FY) = ¢ and V([er,...,¢)) = ¥ with p = 6. The conditional
distribution of Y = [Y},...,Y,] given X is N, (v,X) for X; = 0 and N,(v + Ay, X) for
X1 — 1

el £2 €3 €4 €5 €6

y y y v v

X1

Figure 9: MIMIC model

There are many ways to statistically test the effect of X;. A traditional method is a
MANOVA. The MANOVA may not be so powerful because it ignores the mean structure
A7v. The second procedure considered here is to use the SEM approach to test y = 0. An
alternative way often used is to sum up the observed variables and to make an ANOVA
to compare F(}"_, Y;) between the populations for X; = 0 and for X; = 1. One can use
factor scores; that is, to compare E(A'ES71Y) (or E[(AUIA)TIA'U-1Y]) between the
two populations. The latter two approaches can be considered as comparison of F(c'Y")
with ¢ a constant vector.

To simplify mathematics needed to compare those procedures, we assume A, ¢ and
U (and hence ¥) are known. Then v and v are unknown parameters to be estimated.

Let Y and Y™ be sample mean vectors with sample size ng and ny, respectively,
from the populations with X; =0 and X; = 1.

The MANOVA test statistic is equivalent to

non1 (Y(O) _ Y(l))/z—l (Y(O) _ Y(l)) '

no + 1y

See e.g., Anderson (1984, Sec. 4). The statistic follows the chi-square distribution of p

degrees of freedom and the noncentrality parameter

2
nonyy

ng + 1y

512\4AN0VA = NETIA (5.1)
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Note that the mean and covariance structure is represented as

o[] - [22012]
y®W LAy
- : (5.2)
v Yy _ [Y/ng O ]
y W O X/ny

The likelihood ratio test or difference test for Hy : v = 0, based on SEM, is repre-

sentable as

Tsme 0 17 101(1617[S/m 0 17 (61 (5] .
0 Y/n L\ 0 Y/n I, I, (5:3)
Lol ([nol[S/me 0 17 (501 [0]|[Sm 0 17 [¥®
LA I, A O X/m I A I, A O X/ vy |-
For details see e.g., Rao (1973, Chap. 4) for derivation due to linear models and/or Browne

and Shapiro (1988) for derivation due to SEM. The distribution of the statistic above is

the chi-square with 1 degree of freedom, and the noncentrality parameter 02, is obtained
v (0)
by replacing [}}i(l)] with l )?7 ] in (5.3). After some simplifications, we have

2
Sipn = A'YTI (5.4)

Finally, we consider testing the hypothesis using linear combinations of the manifest

variables. Note that

I [y ] _ (1 0 c'v
S A RO I

v [y ] _ [ ¢'Se/ng 0
Yy - 0 c'Ye/ny

A similar calculation to (5.3) leads to the chi-square distribution with 1 degree of freedom
and the noncentrality parameter as

52— non1y? ‘ (c'A)?

. 5.5
ng + n1 cYe ( )

The Cauchy-Schwarz inequality (see e.g., Rao 1973, page 54) shows that
Sspn = 0 (5.6)
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and that the equality attains when
c=Y""\ (5.7)

It follows from (5.6) and (5.7) that the SEM approach as well as the factor score
approach makes the best inference in term of statistical power. However, the factor
score approach has a drawback when the structural parameters are unknown because
replacement of the parameters with their estimates induces dependency between samples,
that is, X/EA]_IYZ"S are not independently distributed. So the basic assumption in ANOVA
is violated.

Finally we note that the noncentrality parameters in (5.4) and (5.5) are invariant
against changing the scale of [, i.e., which path coefficient is fixed to be one, because so

(€' A)?
[

is Ay. Another comment is that the quantity in (5.5) is a reliability coefficient of
the weighted scale score €'Y . The larger the reliability is, the higher the statistical power

of the mean difference test is.

6 Epilogue

This chapter considers statistical inference via structural equation modeling with inde-
pendent (exogenous) non-normal, possibly fixed-effect, variables. The introduction of
conditional likelihood connects between normal theory inference with such variables and
inference by a mean and covariance structure model.

The SEM generates a wider class of models than traditional experimental designs.
The first extension is to use a model to represent a covariance structure for observed
variables Y, not just saturated structure as in the traditional inference. The second is
to analyze latent means, not just difference of general mean vectors. In this chapter, we
have just considered the effect of X either on latent means (Figure 4) or on means of Y’
(Figure 3). One can also constitute a model in which there is an effect of X; on both latent
means and means of Y (see Muthén 1989), so that one can distinguish between a direct
mean effect and indirect mean effect of X; on Y. The third is to arrow for heterogeneous
covariance matrices of Y if one makes multiple population analysis.*

The main content of Section 4 is nothing but robustness of normal theory inference
against non-normal independent variables. Asymptotic robustness study of normal theory
inference has been extensively explored by Anderson (1987, 1989), Anderson and Amemiya
(1988), Bentler (1983), Browne and Shapiro (1988), Kano (1993), Kano, Berkane and

Bentler (1990), Satorra (1989) among others. There is close connection between the

4This topic was skipped.
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conditional inference and the asymptotic robustness theory. The conditional inference
establishes exact robustness whereas the latter shows merely asymptotic robustness. But

the asymptotic robustness theory allows for non-normal errors.
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