Central and non-central limit theorems for statistical functionals based on weakly and strongly dependent data

Eric Beutner, Maastricht University

Tokyo, September 3

Overview

Motivation

Quasi-Hadamard differentiability

Applications

Continuous mapping approach to U- and V-statistics

Motivation

Quasi-Hadamard differentiability

Applications

Continuous mapping approach to U- and V-statistics

Motivation
Statistical functionals Functional delta method
Quasi-Hadamard differentiability
Applications

Continuous mapping approach to U- and V-statistics

Motivation

Tokyo, 2013

Motivation Statistical functionals Functional delta method

Quasi-Hadamard differentiability

Applications

Continuous mapping approach to U- and V-statistics Let $\theta = T(F)$ be some characteristic of the distribution function F (df).

Motivation
Statistical functionals Functional delta method
Quasi-Hadamard differentiability

Applications

Continuous mapping approach to U- and V-statistics • Let $\theta = T(F)$ be some characteristic of the distribution function F (df).

Typical examples are

 $\Box T(F) = -\int_{-\infty}^{0} K(F(x)) dx + \int_{0}^{\infty} (1 - K(F(x))) dx$ so called L-statistics. Distortion risk measures which are quite popular are also of this form.

Motivati	on
Statistic	al functionals
Functio	nal delta
method	

Quasi-Hadamard
differentiability

```
Applications
```

Continuous mapping approach to U- and V-statistics • Let $\theta = T(F)$ be some characteristic of the distribution function F (df).

Typical examples are

 $\Box T(F) = -\int_{-\infty}^{0} K(F(x)) dx + \int_{0}^{\infty} (1 - K(F(x))) dx$ so called L-statistics. Distortion risk measures which are quite popular are also of this form.

 $\Box T(F) = \int \int g(x_1, x_2) dF(x_1) dF(x_2)$ so called U- or V-statistic (of degree 2).

Motivation	
Statistical	fun

Statistical functionals Functional delta method

Quasi-Hadamard differentiability

Applications

Continuous mapping approach to U- and V-statistics Let $\theta = T(F)$ be some characteristic of the distribution function F (df).

Typical examples are

 $\Box T(F) = -\int_{-\infty}^{0} K(F(x)) dx + \int_{0}^{\infty} (1 - K(F(x))) dx$ so called L-statistics. Distortion risk measures which are quite popular are also of this form.

 $\Box T(F) = \int \int g(x_1, x_2) dF(x_1) dF(x_2)$ so called U- or V-statistic (of degree 2).

 \Box Z-estimators.

Motivation	
Statistical	func

Statistical functionals Functional delta method

Quasi-Hadamard	
differentiability	

Applications

Continuous mapping approach to U- and V-statistics • Let $\theta = T(F)$ be some characteristic of the distribution function F (df).

Typical examples are

 $\Box T(F) = -\int_{-\infty}^{0} K(F(x)) dx + \int_{0}^{\infty} (1 - K(F(x))) dx$ so called L-statistics. Distortion risk measures which are quite popular are also of this form.

 $\Box T(F) = \int \int g(x_1, x_2) dF(x_1) dF(x_2)$ so called U- or V-statistic (of degree 2).

 \Box Z-estimators.

Given *n* observations X_1, \ldots, X_n with df *F* a natural estimator is then $T(F_n)$ with F_n the empirical distribution function.

Functional delta method

Motivation
Statistical functionals Functional delta method
Quasi-Hadamard differentiability

Applications

Continuous mapping approach to U- and V-statistics Well-known: If T is Hadamard differentiable at F, then the asymptotic distribution of $T(F_n)$ follows immediately by the (functional) delta method from the asymptotic distribution of $F_n - F$.

Functional delta method

3. /	. •		
MO	t1V	atı	on

Statistical functionals Functional delta method

Quasi-Hadamard differentiability

Applications

Continuous mapping approach to U- and V-statistics

- Well-known: If T is Hadamard differentiable at F, then the asymptotic distribution of $T(F_n)$ follows immediately by the (functional) delta method from the asymptotic distribution of $F_n - F$.
- Thus, delta method leads asymptotic distribution of $T(F_n) T(F)$ whenever we have weak convergence of the empirical process.

Functional delta method

Motivation

Statistical functionals Functional delta method

Quasi-Hadamard differentiability

Applications

Continuous mapping approach to U- and V-statistics

- Well-known: If T is Hadamard differentiable at F, then the asymptotic distribution of $T(F_n)$ follows immediately by the (functional) delta method from the asymptotic distribution of $F_n - F$.
- Thus, delta method leads asymptotic distribution of T(F_n) - T(F) whenever we have weak convergence of the empirical process.
- Many results on weak convergence of the empirical process (iid, short-memory like α-mixing or β-mixing, long memory, etc.).

Motivation	
Quasi-Hadamard differentiability	
Illustrative example: sample mean	
Illustrative example: V-statistic	
Way out & Problems	
Quasi-Hadamard differentiability	
Quasi-Hadamard differentiability (cont.)	
Modified FDM	
Applications	
Continuous mapping approach to U- and V-statistics	

•

Quasi-Hadamard differentiability

Illustrative example: sample mean

Motivation

- Quasi-Hadamard differentiability
- Illustrative example: sample mean
- Illustrative example: V-statistic
- Way out & Problems
- Quasi-Hadamard differentiability
- Quasi-Hadamard differentiability (cont.)

Modified FDM

Applications

Continuous mapping approach to U- and V-statistics If K corresponds to Lebesgue measure on [0, 1], then

$$-\int_{-\infty}^{0} K(F_n(x)) \, dx + \int_{0}^{\infty} (1 - K(F_n(x)) \, dx,$$

corresponds to the sample mean.

Illustrative example: sample mean

Motivation

Quasi-Hadamard differentiability

Illustrative example: sample mean

Illustrative example: V-statistic

Way out & Problems

Quasi-Hadamard differentiability

Quasi-Hadamard differentiability (cont.)

Modified FDM

Applications

Continuous mapping approach to U- and V-statistics If K corresponds to Lebesgue measure on [0, 1], then

$$-\int_{-\infty}^{0} K(F_n(x)) \, dx + \int_{0}^{\infty} (1 - K(F_n(x)) \, dx,$$

corresponds to the sample mean.

Proving Hadamard differentiability of this L-statistic (at *F*) in the direction of *V* boils down to prove that

$$\left| \int \left[V_n(x) - V(x) \right] dx \right| \to 0,$$

whenever $||V_n - V||_{\infty} \to 0$. $|| \cdot ||_{\infty}$ denotes sup-norm.

Illustrative example: sample mean

Motivation

Quasi-Hadamard differentiability

Illustrative example: sample mean

Illustrative example: V-statistic

Way out & Problems

Quasi-Hadamard differentiability

Quasi-Hadamard differentiability (cont.)

Modified FDM

Applications

Continuous mapping approach to U- and V-statistics If K corresponds to Lebesgue measure on [0, 1], then

$$-\int_{-\infty}^{0} K(F_n(x)) \, dx + \int_{0}^{\infty} (1 - K(F_n(x)) \, dx,$$

corresponds to the sample mean.

Proving Hadamard differentiability of this L-statistic (at *F*) in the direction of *V* boils down to prove that

$$\left| \int \left[V_n(x) - V(x) \right] dx \right| \to 0,$$

whenever $||V_n - V||_{\infty} \to 0$. $|| \cdot ||_{\infty}$ denotes sup-norm.

■ \Rightarrow The simplest L-statistic the sample mean is not Hadamard differentiable w.r.t. the sup-norm.

Motivation

Quasi-Hadamard differentiability

Illustrative example: sample mean

Illustrative example: V-statistic

Way out & Problems

Quasi-Hadamard differentiability

Quasi-Hadamard differentiability (cont.)

Modified FDM

Applications

Continuous mapping approach to U- and V-statistics Proving Hadamard differentiability of a V-statistic (at F) in the direction of V, involves among other things showing that $||V_n - V||_{\infty} \to 0$ implies

$$\int V_n(x_2) \, |dg_F|(x_2) \to \int V(x_2) \, |dg_F|(x_2).$$

where $|dg_F|$ is the absolute measure generated by $g_F(x_2) = \int g(x_1, x_2) dF(x_1)$.

Motivation

Quasi-Hadamard differentiability

Illustrative example: sample mean

Illustrative example: V-statistic

Way out & Problems

Quasi-Hadamard differentiability

Quasi-Hadamard differentiability (cont.)

Modified FDM

Applications

Continuous mapping approach to U- and V-statistics Proving Hadamard differentiability of a V-statistic (at F) in the direction of V, involves among other things showing that $||V_n - V||_{\infty} \to 0$ implies

$$\int V_n(x_2) \, |dg_F|(x_2) \to \int V(x_2) \, |dg_F|(x_2).$$

where $|dg_F|$ is the absolute measure generated by $g_F(x_2) = \int g(x_1, x_2) dF(x_1)$.

If g_F generates a finite (signed) measure, then $||V_n - V||_{\infty}$ this implication indeed holds.

Motivation

Quasi-Hadamard differentiability

Illustrative example: sample mean

Illustrative example: V-statistic

Way out & Problems

Quasi-Hadamard differentiability

Quasi-Hadamard differentiability (cont.)

Modified FDM

Applications

Continuous mapping approach to U- and V-statistics Proving Hadamard differentiability of a V-statistic (at F) in the direction of V, involves among other things showing that $||V_n - V||_{\infty} \to 0$ implies

$$\int V_n(x_2) \, |dg_F|(x_2) \to \int V(x_2) \, |dg_F|(x_2).$$

where $|dg_F|$ is the absolute measure generated by $g_F(x_2) = \int g(x_1, x_2) dF(x_1)$.

If g_F generates a finite (signed) measure, then $||V_n - V||_{\infty}$ this implication indeed holds.

For $g(x_1, x_2) = (1/2)(x_1 - x_2)^2$ (the variance kernel) the measure dg_F has density $(x_2 - c) dx_2$.

Motivation

Quasi-Hadamard differentiability

Illustrative example: sample mean

Illustrative example: V-statistic

Way out & Problems

Quasi-Hadamard differentiability

Quasi-Hadamard differentiability (cont.)

Modified FDM

Applications

Continuous mapping approach to U- and V-statistics Proving Hadamard differentiability of a V-statistic (at F) in the direction of V, involves among other things showing that $||V_n - V||_{\infty} \to 0$ implies

$$\int V_n(x_2) \, |dg_F|(x_2) \to \int V(x_2) \, |dg_F|(x_2).$$

where $|dg_F|$ is the absolute measure generated by $g_F(x_2) = \int g(x_1, x_2) dF(x_1)$.

If g_F generates a finite (signed) measure, then $||V_n - V||_{\infty}$ this implication indeed holds.

For g(x₁, x₂) = (1/2)(x₁ − x₂)² (the variance kernel) the measure dg_F has density (x₂ − c) dx₂.
 ⇒ The simplest V-statistic the variance is not Hadamard differentiable w.r.t. the sup-norm.

Motivation

Quasi-Hadamard differentiability

Illustrative example: sample mean

Illustrative example: V-statistic

Way out & Problems

Quasi-Hadamard differentiability

Quasi-Hadamard differentiability (cont.)

Modified FDM

Applications

Continuous mapping approach to U- and V-statistics If we require not only that $||V_n - V||_{\infty} \to 0$ but that $(V_n(x) - V(x))(1 + |x|)^{\lambda}$, $\lambda > 0$, converges uniformly to zero,

Motivation

- Quasi-Hadamard differentiability
- Illustrative example: sample mean
- Illustrative example: V-statistic
- Way out & Problems
- Quasi-Hadamard differentiability
- Quasi-Hadamard differentiability (cont.)
- Modified FDM
- Applications
- Continuous mapping approach to U- and V-statistics

If we require not only that $||V_n - V||_{\infty} \to 0$ but that $(V_n(x) - V(x))(1 + |x|)^{\lambda}, \lambda > 0$, converges uniformly to zero, then we only need $\int (1 + |x|)^{-\lambda} |dg_F|(x) < \infty$.

Motivation

- Quasi-Hadamard differentiability
- Illustrative example: sample mean
- Illustrative example: V-statistic
- Way out & Problems
- Quasi-Hadamard differentiability
- Quasi-Hadamard differentiability (cont.)
- Modified FDM

Applications

Continuous mapping approach to U- and V-statistics If we require not only that $||V_n - V||_{\infty} \to 0$ but that $(V_n(x) - V(x))(1 + |x|)^{\lambda}, \lambda > 0$, converges uniformly to zero, then we only need $\int (1 + |x|)^{-\lambda} |dg_F|(x) < \infty$.

■ Similar, for the sample mean.

Motivation

- Quasi-Hadamard differentiability
- Illustrative example: sample mean
- Illustrative example: V-statistic
- Way out & Problems
- Quasi-Hadamard differentiability
- Quasi-Hadamard differentiability (cont.)
- Modified FDM
- Applications

```
Continuous mapping
approach to U- and
V-statistics
```

If we require not only that $||V_n - V||_{\infty} \to 0$ but that $(V_n(x) - V(x))(1 + |x|)^{\lambda}, \lambda > 0$, converges uniformly to zero, then we only need $\int (1 + |x|)^{-\lambda} |dg_F|(x) < \infty$.

- Similar, for the sample mean.
- However, Hadamard differentiability is defined as
 - "Let B_1 and B_2 be normed spaces. Then $\phi : B_1 \to B_2$ is Hadamard differentiable at $b_1 \in B_1$ if ..."

Motivation

- Quasi-Hadamard differentiability
- Illustrative example: sample mean
- Illustrative example: V-statistic
- Way out & Problems
- Quasi-Hadamard differentiability
- Quasi-Hadamard differentiability (cont.)
- Modified FDM
- Applications
- Continuous mapping approach to U- and V-statistics

If we require not only that $||V_n - V||_{\infty} \to 0$ but that $(V_n(x) - V(x))(1 + |x|)^{\lambda}, \lambda > 0$, converges uniformly to zero, then we only need $\int (1 + |x|)^{-\lambda} |dg_F|(x) < \infty$.

- Similar, for the sample mean.
- However, Hadamard differentiability is defined as
 - "Let B_1 and B_2 be normed spaces. Then $\phi : B_1 \to B_2$ is Hadamard differentiable at $b_1 \in B_1$ if ..."
- But for an arbitrary df F we have $||F||_{\lambda} := ||F(x)(1+|x|)^{\lambda}|| = \infty.$

Motivation

- Quasi-Hadamard differentiability
- Illustrative example: sample mean
- Illustrative example: V-statistic
- Way out & Problems
- Quasi-Hadamard differentiability
- Quasi-Hadamard differentiability (cont.)
- Modified FDM
- Applications
- Continuous mapping approach to U- and V-statistics

If we require not only that $||V_n - V||_{\infty} \to 0$ but that $(V_n(x) - V(x))(1 + |x|)^{\lambda}, \lambda > 0$, converges uniformly to zero, then we only need $\int (1 + |x|)^{-\lambda} |dg_F|(x) < \infty$.

- Similar, for the sample mean.
- However, Hadamard differentiability is defined as

"Let B_1 and B_2 be normed spaces. Then $\phi : B_1 \to B_2$ is Hadamard differentiable at $b_1 \in B_1$ if ..."

- But for an arbitrary df F we have $||F||_{\lambda} := ||F(x)(1+|x|)^{\lambda}|| = \infty.$
- Hence, with a weighted sup-norm $\|\cdot\|_{\lambda}$ Hadamard differentiability at *F* cannot be shown.

Motivation

- Quasi-Hadamard differentiability
- Illustrative example: sample mean
- Illustrative example: V-statistic
- Way out & Problems
- Quasi-Hadamard differentiability
- Quasi-Hadamard differentiability (cont.)
- Modified FDM
- Applications
- Continuous mapping approach to U- and V-statistics

If we require not only that $||V_n - V||_{\infty} \to 0$ but that $(V_n(x) - V(x))(1 + |x|)^{\lambda}$, $\lambda > 0$, converges uniformly to zero, then we only need $\int (1 + |x|)^{-\lambda} |dg_F|(x) < \infty$.

- Similar, for the sample mean.
- However, Hadamard differentiability is defined as
 - "Let B_1 and B_2 be normed spaces. Then $\phi : B_1 \to B_2$ is Hadamard differentiable at $b_1 \in B_1$ if ..."
- But for an arbitrary df F we have $||F||_{\lambda} := ||F(x)(1+|x|)^{\lambda}|| = \infty.$
- Hence, with a weighted sup-norm $\|\cdot\|_{\lambda}$ Hadamard differentiability at *F* cannot be shown.
- \Rightarrow : (Functional) Delta method cannot be applied.

Quasi-Hadamard differentiability

Motivation

- Quasi-Hadamard differentiability
- Illustrative example: sample mean
- Illustrative example: V-statistic
- Way out & Problems
- Quasi-Hadamard differentiability
- Quasi-Hadamard differentiability (cont.)
- Modified FDM

Applications

Continuous mapping approach to U- and V-statistics **Definition:** (*Quasi-Hadamard differentiability*) Let V be a vector space, and $\mathbf{V}_0 \subset \mathbf{V}$ be equipped with a norm $\|\cdot\|_{\mathbf{V}_0}$. Let $(\mathbf{V}', \|\cdot\|_{\mathbf{V}'})$ be a normed vector space, and $T: \mathbf{V}_T \to \mathbf{V}', \mathbf{V}_T \subset \mathbf{V}$.

Quasi-Hadamard differentiability

Motivation

- Quasi-Hadamard differentiability
- Illustrative example: sample mean
- Illustrative example: V-statistic
- Way out & Problems
- Quasi-Hadamard differentiability
- Quasi-Hadamard differentiability (cont.)

Modified FDM

Applications

Continuous mapping approach to U- and V-statistics **Definition:** (*Quasi-Hadamard differentiability*) Let V be a vector space, and $V_0 \subset V$ be equipped with a norm $\|\cdot\|_{V_0}$. Let $(V', \|\cdot\|_{V'})$ be a normed vector space, and $T : V_T \to V', V_T \subset V$.

Then T is said to be quasi-Hadamard differentiable at $\theta \in \mathbf{V}_T$ tangentially to $\mathbb{C}_0, \mathbb{C}_0 \subset \mathbf{V}_0$, if for a continuous map $D_{\theta;T}^{\text{Had}} : \mathbb{C}_0 \to \mathbf{V}'$

$$\lim_{n \to \infty} \left\| D_{\theta;T}^{\text{Had}}\left(v\right) - \frac{T(\theta + h_n v_n) - T(\theta)}{h_n} \right\|_{\mathbf{V}'} = 0$$

holds for each triplet $(v, (v_n), (h_n))$ with $h_n \to 0$, and $v \in \mathbb{C}_0, (v_n) \subset \mathbf{V}_0$ satisfying $||v_n - v||_{\mathbf{V}_0} \to 0$.

Quasi-Hadamard differentiability

Motivation

- Quasi-Hadamard differentiability
- Illustrative example: sample mean
- Illustrative example: V-statistic
- Way out & Problems
- Quasi-Hadamard differentiability
- Quasi-Hadamard differentiability (cont.)

Modified FDM

Applications

Continuous mapping approach to U- and V-statistics **Definition:** (*Quasi-Hadamard differentiability*) Let V be a vector space, and $V_0 \subset V$ be equipped with a norm $\|\cdot\|_{V_0}$. Let $(V', \|\cdot\|_{V'})$ be a normed vector space, and $T : V_T \to V', V_T \subset V$.

Then T is said to be quasi-Hadamard differentiable at $\theta \in \mathbf{V}_T$ tangentially to $\mathbb{C}_0, \mathbb{C}_0 \subset \mathbf{V}_0$, if for a continuous map $D_{\theta;T}^{\text{Had}} : \mathbb{C}_0 \to \mathbf{V}'$

$$\lim_{n \to \infty} \left\| D_{\theta;T}^{\text{Had}}\left(v\right) - \frac{T(\theta + h_n v_n) - T(\theta)}{h_n} \right\|_{\mathbf{V}'} = 0$$

holds for each triplet $(v, (v_n), (h_n))$ with $h_n \to 0$, and $v \in \mathbb{C}_0, (v_n) \subset \mathbf{V}_0$ satisfying $||v_n - v||_{\mathbf{V}_0} \to 0$.

With this definition we find

Quasi-Hadamard differentiability (cont.)

Motivation

Quasi-Hadamard differentiability

Illustrative example: sample mean

Illustrative example: V-statistic

Way out & Problems

Quasi-Hadamard differentiability

Quasi-Hadamard differentiability (cont.)

Modified FDM

Applications

Continuous mapping approach to U- and V-statistics Theorem: The distortion risk measure (L-statistic) $\int x \, dK(F(x))$ is quasi-Hadamard differentiable if *K* is continuous and piecewise differentiable, and *K'* is bounded above by some constant M > 0.

Quasi-Hadamard differentiability (cont.)

Motivation

Quasi-Hadamard differentiability

Illustrative example: sample mean

Illustrative example: V-statistic

Way out & Problems

Quasi-Hadamard differentiability

Quasi-Hadamard differentiability (cont.)

Modified FDM

Applications

Continuous mapping approach to U- and V-statistics Theorem: The distortion risk measure (L-statistic) $\int x \, dK(F(x))$ is quasi-Hadamard differentiable if *K* is continuous and piecewise differentiable, and *K'* is bounded above by some constant M > 0.

Theorem: The V-statistic $\int \int g(x_1, x_2) dF(x_1) dF(x_2)$ is quasi-Hadamard differentiable if for some $\lambda > \lambda' \ge 0$

- (a) For every $x_2 \in \mathbb{R}$ fixed, the function $g_{x_2}(\cdot) := g(\cdot, x_2)$ lies in $\mathbb{BV}_{\text{loc},\text{rc}}$ and $g_{x_2}(x_1)(1+|x_1|)^{-\lambda'}$ is uniformly bounded.
- (b) The function $g_F(\cdot) := \int g(x_1, \cdot) dF(x_1)$ lies in $\mathbb{BV}_{loc,rc}$, and $\int \phi_{-\lambda}(x) |dg_F|(x) < \infty$.

Quasi-Hadamard differentiability (cont.)

Motivation

Quasi-Hadamard differentiability

Illustrative example: sample mean

Illustrative example: V-statistic

Way out & Problems

Quasi-Hadamard differentiability

Quasi-Hadamard differentiability (cont.)

Modified FDM

Applications

Continuous mapping approach to U- and V-statistics

Tokyo, 2013

Theorem: The distortion risk measure (L-statistic) $\int x \, dK(F(x))$ is quasi-Hadamard differentiable if *K* is continuous and piecewise differentiable, and *K'* is bounded above by some constant M > 0.

Theorem: The V-statistic $\int \int g(x_1, x_2) dF(x_1) dF(x_2)$ is quasi-Hadamard differentiable if for some $\lambda > \lambda' \ge 0$

- (a) For every $x_2 \in \mathbb{R}$ fixed, the function $g_{x_2}(\cdot) := g(\cdot, x_2)$ lies in $\mathbb{BV}_{\text{loc},\text{rc}}$ and $g_{x_2}(x_1)(1+|x_1|)^{-\lambda'}$ is uniformly bounded.
- (b) The function $g_F(\cdot) := \int g(x_1, \cdot) dF(x_1)$ lies in $\mathbb{BV}_{\text{loc,rc}}$, and $\int \phi_{-\lambda}(x) |dg_F|(x) < \infty$.
- Notice sample mean and variance (with λ' = 2) are quasi-Hadamard differentiable. However, results might be completely useless.

Modified FDM

Motivation

Quasi-Hadamard differentiability

Illustrative example: sample mean

Illustrative example: V-statistic

Way out & Problems

Quasi-Hadamard differentiability

Quasi-Hadamard differentiability (cont.)

Modified FDM

Applications

Continuous mapping approach to U- and V-statistics

■ Fortunately, they are not. Because

Tokyo, 2013

Modified FDM

Motivation

- Quasi-Hadamard differentiability
- Illustrative example: sample mean
- Illustrative example: V-statistic
- Way out & Problems
- Quasi-Hadamard differentiability
- Quasi-Hadamard differentiability (cont.)

Modified FDM

Applications

Continuous mapping approach to U- and V-statistics

- Fortunately, they are not. Because
- Theorem: (Modified functional delta method) Let $T, \theta, \mathbf{V}, \mathbf{V}_f, \mathbf{V}_0, \mathbb{C}_0$ be as above. If:

(i) T is quasi-Hadamard differentiable at θ tangentially to \mathbb{C}_0 with quasi-Hadamard derivative $D_{\theta;T}^{\text{Had}}$,

(ii) $X_n - \theta$ takes values only in \mathbf{V}_0 and satisfies

$$a_n(X_n - \theta) \stackrel{d}{\to} V \qquad (\text{in } (\mathbf{V}_0, \mathcal{V}_0, \|\cdot\|_{\mathbf{V}_0})),$$

V a random element of $(\mathbf{V}_0, \mathcal{V}_0)$ taking values only in \mathbb{C}_0 .

Then

$$a_n(T(X_n) - T(\theta)) \xrightarrow{d} D_{\theta;T}^{\operatorname{Had}}(V) \qquad (\text{in } (\mathbf{V}', \mathcal{V}', \|\cdot\|_{\mathbf{V}'})).$$

Motivation
Quasi-Hadamard differentiability
Applications
Weakly dependent data
Strongly dependent data
Strongly dependent data (cont.)
Continuous mapping approach to U- and V-statistics

Applications

Motivation

Quasi-Hadamard
differentiability

Applications

- Weakly dependent data
- Strongly dependent data
- Strongly dependent data (cont.)
- Continuous mapping approach to U- and V-statistics

■ The quasi-Hadamard derivative of a U-statistic is given by

$$\dot{U}_F(B^\circ) := -2 \int B^\circ(x) dg_F(x).$$

Tokyo, 2013

Motivation

Quasi-Hadamard differentiability

Applications

Weakly dependent data

Strongly dependent data

Strongly dependent data (cont.)

Continuous mapping approach to U- and V-statistics The quasi-Hadamard derivative of a U-statistic is given by

$$\dot{U}_F(B^\circ) := -2 \int B^\circ(x) dg_F(x).$$

Let (X_i) be α -mixing with $\alpha(n) = \mathcal{O}(n^{-\theta})$ for some $\theta > 1 + \sqrt{2}$. If *F* has finite γ -moment for some $\gamma > \frac{2\theta\lambda}{\theta-1}$, then (Shao and Yu (1996)) with \mathbb{D}_{λ} càdlàg functions with finite weighted sup-norm

 $\sqrt{n}(F_n - F) \xrightarrow{d} \widetilde{B}_F^{\circ} \qquad (\text{in } (\mathbb{D}_{\lambda}, \mathcal{D}_{\lambda}, \|\cdot\|_{\lambda})).$

Motivation

Quasi-Hadamard differentiability

Applications

Weakly dependent data Strongly dependent

data

Strongly dependent data (cont.)

Continuous mapping approach to U- and V-statistics The quasi-Hadamard derivative of a U-statistic is given by

$$\dot{U}_F(B^\circ) := -2 \int B^\circ(x) dg_F(x).$$

Let (X_i) be α -mixing with $\alpha(n) = \mathcal{O}(n^{-\theta})$ for some $\theta > 1 + \sqrt{2}$. If *F* has finite γ -moment for some $\gamma > \frac{2\theta\lambda}{\theta-1}$, then (Shao and Yu (1996)) with \mathbb{D}_{λ} càdlàg functions with finite weighted sup-norm

$$\sqrt{n}(F_n - F) \stackrel{d}{\to} \widetilde{B}_F^{\circ} \qquad (\text{in } (\mathbb{D}_{\lambda}, \mathcal{D}_{\lambda}, \|\cdot\|_{\lambda})).$$

Asymptotic distribution of $\sqrt{n}(U(F_n) - U(F))$ follows then for every df with finite γ -moment for some $\gamma > \frac{2\theta\lambda}{\theta-1}$.

Motivation

Quasi-Hadamard differentiability

Applications

Weakly dependent data Strongly dependent

data

Strongly dependent data (cont.)

Continuous mapping approach to U- and V-statistics The quasi-Hadamard derivative of a U-statistic is given by

$$\dot{U}_F(B^\circ) := -2 \int B^\circ(x) dg_F(x).$$

Let (X_i) be α -mixing with $\alpha(n) = \mathcal{O}(n^{-\theta})$ for some $\theta > 1 + \sqrt{2}$. If *F* has finite γ -moment for some $\gamma > \frac{2\theta\lambda}{\theta-1}$, then (Shao and Yu (1996)) with \mathbb{D}_{λ} càdlàg functions with finite weighted sup-norm

$$\sqrt{n}(F_n - F) \stackrel{d}{\to} \widetilde{B}_F^{\circ} \qquad (\text{in } (\mathbb{D}_{\lambda}, \mathcal{D}_{\lambda}, \|\cdot\|_{\lambda})).$$

- Asymptotic distribution of $\sqrt{n}(U(F_n) U(F))$ follows then for every df with finite γ -moment for some $\gamma > \frac{2\theta\lambda}{\theta-1}$.
- For the variance the assumptions are weaker than in Dehling and Wendler (2010) whenever $\gamma < \frac{7+8\sqrt{2}}{2\sqrt{2}-1}$.

Tokyo, 2013

Strongly dependent data

Motivation

Quasi-Hadamard differentiability

Applications

Weakly dependent data

Strongly dependent data

Strongly dependent data (cont.)

Continuous mapping approach to U- and V-statistics Consider the process $X_t := \sum_{s=0}^{\infty} a_s \varepsilon_{t-s}, t \in \mathbb{N}_0$, where $(\varepsilon_i)_{i \in \mathbb{Z}}$ iid random variables with zero mean and finite variance, and $\sum_{s=0}^{\infty} a_s^2 < \infty$.

Strongly dependent data

Motivation

Quasi-Hadamard differentiability

Applications

Weakly dependent data

Strongly dependent data

Strongly dependent data (cont.)

Continuous mapping approach to U- and V-statistics Consider the process $X_t := \sum_{s=0}^{\infty} a_s \varepsilon_{t-s}, t \in \mathbb{N}_0$, where $(\varepsilon_i)_{i \in \mathbb{Z}}$ iid random variables with zero mean and finite variance, and $\sum_{s=0}^{\infty} a_s^2 < \infty$.

If $\mathbb{C}ov(X_0, X_m) = m^{1-2\beta}$, $\beta \in (0.5, 1)$, then $\sum_{m=1}^{\infty} \mathbb{C}ov(X_0, X_m)$ is not absolute summable, and the process (X_t) is called a long-memory process.

Strongly dependent data

Motivation

Quasi-Hadamard differentiability

Applications

Weakly dependent data

Strongly dependent data

Strongly dependent data (cont.)

Continuous mapping approach to U- and V-statistics Consider the process $X_t := \sum_{s=0}^{\infty} a_s \varepsilon_{t-s}, t \in \mathbb{N}_0$, where $(\varepsilon_i)_{i \in \mathbb{Z}}$ iid random variables with zero mean and finite variance, and $\sum_{s=0}^{\infty} a_s^2 < \infty$.

If $\mathbb{C}ov(X_0, X_m) = m^{1-2\beta}$, $\beta \in (0.5, 1)$, then $\sum_{m=1}^{\infty} \mathbb{C}ov(X_0, X_m)$ is not absolute summable, and the process (X_t) is called a long-memory process.

■ No general result for L- and V-statistics of such processes.

Strongly dependent data (cont.)

Motivation	_ :
Quasi-Hadamard differentiability	•
Applications	-
Weakly dependent data	•
Strongly dependent data	•
Strongly dependent data (cont.)	•
Continuous mapping approach to U- and	•

V-statistics

Because quasi-Hadamard differentiability already established, to apply the Modified Functional Delta Method, we only have

Strongly dependent data (cont.)

Motivation Quasi-Hadamard differentiability Applications Weakly dependent data Strongly dependent data Strongly dependent data (cont.)

Continuous mapping approach to U- and V-statistics Because quasi-Hadamard differentiability already established, to apply the Modified Functional Delta Method, we only have to prove weak convergence of weighted empirical processes based on long-memory sequences.

Strongly dependent data (cont.)

Motivation Quasi-Hadamard differentiability

Applications

Weakly dependent data Strongly dependent data

Strongly dependent data (cont.)

Continuous mapping approach to U- and V-statistics Because quasi-Hadamard differentiability already established, to apply the Modified Functional Delta Method, we only have to prove weak convergence of weighted empirical processes based on long-memory sequences.

Theorem Let $\lambda \ge 0$, $\beta \in (0.5, 1)$, and assume that

 $\mathbb{E}[|\varepsilon_0|^{2+2\lambda}] < \infty, \text{ the df } G \text{ of } \varepsilon_0 \text{ is twice differentiable, and} \\ \sum_{j=1}^2 \int |G^{(j)}(x)|^2 (1+|x|^{2\lambda}) \, dx < \infty.$

Then

$$n^{\beta-1/2} (F_n(\cdot) - F(\cdot)) \xrightarrow{\mathrm{d}} -c_{1,\beta} f(\cdot) Z \quad (\text{in } \mathbb{D}_{\lambda}),$$

where f is the density of X_0 and Z is normally distributed with mean 0 and variance 1.

Motivation	•
Quasi-Hadamard	•
differentiability	
Applications	•
Continuous mapping approach to U- and V-statistics	•
Motivation	•
Expansion	•
Applications to V-statistics	•
Applications to V-statistics	•
Example I	
Example II	•
References	•
References	•
	•
	•
	•
	•

Continuous mapping approach to U- and V-statistics

Motivation

Motivation **Ouasi-Hadamard** differentiability Applications Continuous mapping approach to U- and V-statistics Motivation Expansion Applications to **V**-statistics Applications to **V**-statistics Example I Example II References References

For the variance & long memory the above approach leads that the asymptotic distribution of the sample variance multiplied by the rate of the empirical process equals

$$-2\int B^{\circ}(x-)\,dg_F(x) = 2Z_{1,\beta}\int f(x-)\,(x-\mathbb{E}[X_1])\,dx = 0$$

Motivation

Motivation Quasi-Hadamard differentiability

Applications

Continuous mapping approach to U- and V-statistics Motivation

Expansion

Applications to

V-statistics

Applications to V-statistics

Example I

Example II

References

References

For the variance & long memory the above approach leads that the asymptotic distribution of the sample variance multiplied by the rate of the empirical process equals

$$-2\int B^{\circ}(x-)\,dg_F(x) = 2Z_{1,\beta}\int f(x-)\,(x-\mathbb{E}[X_1])\,dx = 0$$

In particular for long memory the follwong representation for U-statistics turns out to be useful

$$a_n (V_g(F_n) - V_g(F)) = 2\Phi_{1,g} (a_n(F_n - F)) + \Phi_{2,g} (\sqrt{a_n}(F_n - F)),$$

where $\Phi_{1,g}(f) := -\int f(x-) dg_F(x)$ and $\Phi_{2,g}(f) := \iint f(x_1-)f(x_2-) dg(x_1, x_2)$ are continuous mappings for appropriate weighted sup-norms.

Expansion

Motivation Quasi-Hadamard differentiability

Applications

Continuous mapping approach to U- and V-statistics Motivation

Expansion

Applications to

V-statistics

Applications to V-statistics

T 1 T

Example I

Example II

References

References

For the following expansion (with $p \ge 1$)

$$F_n(\cdot) - F(\cdot) - \sum_{j=1}^p (-1)^j F^{(j)}(\cdot) \left(\frac{1}{n} \sum_{i=1}^n A_{j;F}(X_i)\right),$$

where $A_{j;F}$ denotes the *j*th order Appell polynomial associated with *F* and $F^{(j)}$ is the *j*th derivative of *F*, weak convergence at the rate $n^{p(\beta-1/2)}$ to $(-1)^p F^{(p)}(\cdot)Z_{p,\beta}$ in a weighted sup-norm can be shown.

Expansion

Motivation Quasi-Hadamard differentiability

Applications

Continuous mapping approach to U- and V-statistics Motivation

Expansion

Applications to

V-statistics

Applications to

V-statistics

Example I

Example II

References

References

For the following expansion (with $p \ge 1$)

$$F_n(\cdot) - F(\cdot) - \sum_{j=1}^p (-1)^j F^{(j)}(\cdot) \left(\frac{1}{n} \sum_{i=1}^n A_{j;F}(X_i)\right),$$

where $A_{j;F}$ denotes the *j*th order Appell polynomial associated with *F* and $F^{(j)}$ is the *j*th derivative of *F*, weak convergence at the rate $n^{p(\beta-1/2)}$ to $(-1)^p F^{(p)}(\cdot)Z_{p,\beta}$ in a weighted sup-norm can be shown.

Then we can introduce the following statistic

Applications to V-statistics

Motivation	
Quasi-Hadamard differentiability	$\mathcal{V}_{n,g;p,q,r}(F_n) := V_g(F_n) - V_g(F)$
Applications	$\sum_{n=1}^{2} \sum_{i=1}^{p-1} \left(1 \sum_{i=1}^{n} \left(1 \sum_{i=1}$
Continuous mapping approach to U- and V-statistics	$+ \sum_{\ell=1}^{n} \sum_{j=1}^{n} (-1)^{j} \left(\frac{1}{n} \sum_{i=1}^{n} A_{j;F}(X_{i}) \right) \int F^{(j)}(x-) dg_{\ell,F}(x)$
Motivation	$-\sum_{i=1}^{j}\left(\frac{1}{i}\sum_{i}A_{j;F}(X_{i})\right)$
Expansion	$\frac{1}{j=1}$ $(n = 1)$
Applications to V-statistics	$\times \iint F^{(j)}(x_1-) \left(F_n(x_2-) - F(x_2-)\right) dg(x_1, x_2)$
Applications to V-statistics	JJ r-1 , n
Example I	$-\sum_{k}(-1)^k \left(\frac{1}{k}\sum_{i}A_{k;F}(X_i)\right)$
Example II	$\sum_{k=1}^{n} (n \sum_{i=1}^{n})$
References	$ \sum \int \int (F_{k}(m_{k}) - F(m_{k})) F^{(k)}(m_{k}) da(m_{k}, m_{k}) $
References	$\times \iint (T_n(x_1-) - T(x_1-)) T \land (x_2-) ag(x_1, x_2)$
	$+\sum_{j=1}^{q-1}\sum_{k=1}^{r-1}(-1)^{j+k}\left(\frac{1}{n}\sum_{i=1}^{n}A_{j;F}(X_{i})\right)\left(\frac{1}{n}\sum_{i=1}^{n}A_{k;F}(X_{i})\right)$ $\times \int \int F^{(j)}(x_{1}-)F^{(k)}(x_{2}-)dq(x_{1},x_{2}).$
	$\bigwedge \int \int I = (w_1 - f) I = (w_2 - f) w_3(w_1, w_2).$

Tokyo, 2013

Applications to V-statistics

Motivation **Ouasi-Hadamard** differentiability Applications Continuous mapping approach to U- and V-statistics Motivation Expansion Applications to **V**-statistics Applications to **V**-statistics Example I Example II References References

Using the continuous mapping approach and the above result:

(i) Assume q + r > p, then $n^{p(\beta - 1/2)} \mathcal{V}_{n,g;p,q,r}(F_n)$ converges in distribution to

$$(-1)^p Z_{p,\beta} \sum_{\ell=1}^2 \int F^{(p)}(x-) dg_{\ell,F}(x).$$

Applications to V-statistics

Motivation **Ouasi-Hadamard** differentiability Applications Continuous mapping approach to U- and **V**-statistics Motivation Expansion Applications to **V**-statistics Applications to **V**-statistics Example I Example II References References

Using the continuous mapping approach and the above result:

(i) Assume q + r > p, then $n^{p(\beta - 1/2)} \mathcal{V}_{n,g;p,q,r}(F_n)$ converges in distribution to

$$(-1)^p Z_{p,\beta} \sum_{\ell=1}^2 \int F^{(p)}(x-) dg_{\ell,F}(x).$$

(ii) Assume q + r = p, then $n^{p(\beta-1/2)} \mathcal{V}_{n,g;p,q,r}(F_n)$ converges in distribution to

$$(-1)^{p} Z_{p,\beta} \sum_{\ell=1}^{2} \int F^{(p)}(x-) dg_{\ell,F}(x) + (-1)^{p} Z_{q,\beta} Z_{r,\beta} \iint F^{(q)}(x_{1}-) F^{(r)}(x_{2}-) dg(x_{1},x_{2}).$$
21

Tokyo, 2013

Example I

Motivation
Quasi-Hadamard differentiability
Applications
Continuous mapping approach to U- and V-statistics
Motivation
Expansion
Applications to V-statistics
Applications to V-statistics
Example I
Example II
References
References

Consider kernel $g(x_1, x_2) = x_1(|x_2| - 1)$, and suppose that $F^{(1)}$ is symmetric about zero and that $\mathbb{E}[|X_1|] = 1$.

Example I

Motivation Quasi-Hadamard differentiability Applications Continuous mapping approach to U- and V-statistics

Motivation

Expansion

Applications to

V-statistics

Applications to V-statistics

Example I

Example II

References

References

Consider kernel $g(x_1, x_2) = x_1(|x_2| - 1)$, and suppose that $F^{(1)}$ is symmetric about zero and that $\mathbb{E}[|X_1|] = 1$.

• Taking $n^{2(\beta-(1/2))}$ leads to:

$$n^{2\beta-1} \mathcal{V}_{n,g;2,1,1}(F_n) = n^{2\beta-1} \left(V_g(F_n) - V_g(F) \right)$$

$$\xrightarrow{\mathsf{d}} Z_{1,\beta}^2 \iint F^{(1)}(x_1-)F^{(1)}(x_2-) dg(x_1,x_2) = 0.$$

Example I

Motivation Quasi-Hadamard differentiability

Applications

Continuous mapping approach to U- and V-statistics

Motivation

Expansion

Applications to

V-statistics

Applications to V-statistics

Example I

Example II

References

References

Consider kernel $g(x_1, x_2) = x_1(|x_2| - 1)$, and suppose that $F^{(1)}$ is symmetric about zero and that $\mathbb{E}[|X_1|] = 1$.

• Taking $n^{2(\beta-(1/2))}$ leads to:

$$n^{2\beta-1} \mathcal{V}_{n,g;2,1,1}(F_n) = n^{2\beta-1} \left(V_g(F_n) - V_g(F) \right)$$

$$\xrightarrow{\mathsf{d}} Z_{1,\beta}^2 \iint F^{(1)}(x_1-)F^{(1)}(x_2-) dg(x_1,x_2) = 0.$$

• However, with $n^{3(\beta-(1/2))}$ we have

$$n^{3(\beta-1/2)} \mathcal{V}_{n,g;3,1,2}(F_n) = n^{3(\beta-1/2)} \left(V_g(F_n) - V_g(F) \right)$$

$$\stackrel{\mathsf{d}}{\longrightarrow} -Z_{1,\beta} Z_{2,\beta} \iint F^{(1)}(x_1 -) F^{(2)}(x_2 -) dg(x_1, x_2)$$

$$= -2 Z_{1,\beta} Z_{2,\beta} \int_0^\infty F^{(2)}(x_2) dx_2.$$

Tokyo, 2013

Example II

Motivation

Quasi-Hadamard differentiability

Applications

Continuous mapping approach to U- and V-statistics

Motivation

Expansion

Applications to

V-statistics

Applications to V-statistics

Example I

Example II

References

References

Consider the test statistic $T_n := \int_0^\infty \left(\hat{F}_n(-t) - \left[1 - \hat{F}_n(t-) \right] \right)^2 dt.$

Example II

Motivation Quasi-Hadamard differentiability Applications Continuous mapping approach to U- and V-statistics

Motivation

Expansion

Applications to

V-statistics

Applications to V-statistics

Example I

Example II

References

References

Consider the test statistic $T_n := \int_0^\infty \left(\hat{F}_n(-t) - \left[1 - \hat{F}_n(t-) \right] \right)^2 dt.$

Taking $n^{3(\beta-1/2)}$ leads to:

$$n^{3(\beta-1/2)} \mathcal{V}_{n,g;3,1,2}(F_n)$$

$$\stackrel{\mathsf{d}}{\longrightarrow} Z_{1,\beta} Z_{2,\beta} \left(\int F^{(1)}(x) F^{(2)}(x) - F^{(1)}(x) F^{(2)}(-x) \, dx \right)$$

$$= 0.$$

Tokyo, 2013

Example II

Motivation Quasi-Hadamard differentiability Applications Continuous mapping approach to U- and

V-statistics Motivation

Expansion

Applications to

V-statistics

Applications to V-statistics

Example I

Example II

References

References

Consider the test statistic $T_n := \int_0^\infty \left(\hat{F}_n(-t) - \left[1 - \hat{F}_n(t-) \right] \right)^2 dt.$

• Taking $n^{3(\beta-1/2)}$ leads to:

$$n^{3(\beta-1/2)} \mathcal{V}_{n,g;3,1,2}(F_n)$$

$$\stackrel{d}{\longrightarrow} Z_{1,\beta} Z_{2,\beta} \left(\int F^{(1)}(x) F^{(2)}(x) - F^{(1)}(x) F^{(2)}(-x) \, dx \right)$$

$$= 0.$$

• However, with $n^{4(\beta-1/2)}$ we find

$$n^{4(\beta-1/2)} \mathcal{V}_{n,g;4,2,2}(F_n) \xrightarrow{\mathsf{d}} Z_{2,\beta} Z_{2,\beta} \left(\int F^{(2)}(x) F^{(2)}(x) - F^{(2)}(x) F^{(2)}(-x) \, dx \right)$$

References

Motivation **Ouasi-Hadamard** differentiability Applications Continuous mapping approach to U- and **V**-statistics Motivation Expansion Applications to **V**-statistics Applications to **V**-statistics Example I Example II References References

- Beutner, E. and Zähle, H. (2010). A modified functional delta method and its application to the estimation of risk functionals. *J. Multivariate Anal.* 101, 2452–2463.
- Beutner, E. and Zähle, H. (2012). Deriving the asymptotic distribution of U- and V-statistics of dependent data using weighted empirical processes, *Bernoulli* 18, 803–822.
- Beutner, E., Wu, W.B. and Zähle, H. (2012). Asymptotics for statistical functionals of long-memory sequences. *Stochastic Process. Appl.* 122, 910–929.
- Beutner, E. and Zähle, H. Continuous mapping approach to the asymptotics of U- and V-statistics, *Bernoulli*, to appear.

References

Motivation Quasi-Hadamard differentiability

Applications

- Continuous mapping approach to U- and V-statistics
- Motivation
- Expansion
- Applications to
- V-statistics
- Applications to V-statistics
- Example I
- Example II
- References
- References

- Dehling, H. and Wendler, M. (2010). Central limit theorem and the bootstrap for U-statistics of strongly mixing data. *Journal of Multivariate Analysis*, 101(1), 126–137.
- Sen, P.K. (1996). Statistical functionals, Hadamard differentiability and martingales. In *A Festschrift for J. Medhi* (Eds. Borthakur, A.C, and Chaudhury, H.), New Age Press, Delhi, 29–47.
- Shao, Q.-M. and Yu, H. (1996). Weak convergence for weighted empirical processes of dependent sequences. *Ann. Probab.* 24, 2098–2127.
- Wu, W.B. (2003). Empirical processes of long-memory sequences. *Bernoulli*, 9, 809–831.