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B Letd = T(F') be some characteristic of the distribution
function [ (df).

B Typical examples are

O T(F)=—[° K(F(z))dz + [*(1 — K(F(z))dx
so called L-statistics. Distortion risk measures whicl
are guite popular are also of this form.

O T(F) = [ [ g(x1,22) dF(x1)dF(x2) so called U- or
V-statistic (of degree 2).

O Z-estimators.

m Givenn observationsXy, ..., X, with df F’ a natural
estimator is thefl'( F},) with F,, the empirical distribution

function.
4
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m Well-known: If " iIs Hadamard differentiable dt, then
the asymptotic distribution df (F;,) follows immediately
by the(functional) delta methotrom the asymptotic
distribution of ), — F'.

B Thus, delta method leads asymptotic distribution of
T(F,) — T(F)whenever we have weak convergence of
the empirical process.
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m Well-known: If " iIs Hadamard differentiable dt, then
the asymptotic distribution df (F;,) follows immediately
by the(functional) delta methotrom the asymptotic
distribution of ), — F'.

B Thus, delta method leads asymptotic distribution of
T(F,) — T(F)whenever we have weak convergence of
the empirical process.

B Many results on weak convergence of the empirical
process (iid, short-memory like-mixing or 5-mixing,
long memory, etc.).
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B If K corresponds to Lebesgue measure(pi|, then

/ K(F d:z:+/ooo(1—K(Fn(:z:))daz,

corresponds to the sample mean.
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B If K corresponds to Lebesgue measure(pi|, then

/ K(F d:z:+/ooo(1—K(Fn(:z:))daz,

corresponds to the sample mean.

B Proving Hadamard differentiability of this L-statistid (a
F) in the direction ofl” boils down to prove that

[ vionas

whenevel |V, — V|| — 0. || - ||« denotes sup-norm.

— 0,

B = The simplest L-statistic the sample mean is not
Hadamard differentiable w.r.t. the sup-norm.
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® Proving Hadamard differentiability of a V-statistic (&)
In the direction ofl/, involves among other things
showing that|V;, — V||« — 0 implies

/ Vi () [dgr|(22) — / V() |dgr| (22).

where|dgr| is the absolute measure generated by
gr(w2) = f9(331>I2)dF(Z1) :
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(Vo(z) — V(2))(1 + |z])*, X > 0, converges uniformly to
zero,
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B Hence, with a weighted sup-norm ||, Hadamard
differentiability at F' cannotbe shown.
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B If we require not only thal|V,, — V||« — 0 but that
(Vo(z) — V(2))(1 + |z)*, X > 0, converges uniformly to
zero, then we only neefi(1 + |z|)~* |dgr|(z) < oo.
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|F[x = [ F(z)(1 + [z])*] = oo

B Hence, with a weighted sup-norm ||, Hadamard
differentiability at F' cannotbe shown.

B = (Functional) Delta method cannot be applied. 9
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B Definition: (Quasi-Hadamard differentiability)
Let V be avector spaceandV, C V be equipped with a
norm|| - ||v,. Let (V'] - ||v/) be a normed vector space,
andT :Vy - V' V,CV.
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B Definition: (Quasi-Hadamard differentiability)
Let V be avector spaceandV, C V be equipped with a
norm|| - ||v,. Let (V'] - ||v/) be a normed vector space,
andT :Vy - V' V,CV.
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holds for each tripletv, (v,), (h,)) with h,, — 0, and
v € Cq, (v,) C V satisfying||v,, — v||v, — 0.

m With this definition we find
10



Motivation

Quasi-Hadamard
differentiability

lllustrative example:

sample mean

lllustrative example: s

V-statistic

Way out & Problems s

Quasi-Hadamard
differentiability

Quasi-Hadamard
differentiability
(cont.)

Modified FDM

Applications

Continuous mapping »

approach to U- and
V-statistics

Tokyo, 2013

Quasi-Hadamard differentiability (cont.)

B Theorem: The distortion risk measure (L-statistic)
[ zdK(F(x)) is quasi-Hadamard differentiable if
K is continuous and piecewise differentiable, dkdis
bounded above by some constaht> 0.
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B Theorem: The distortion risk measure (L-statistic)
[ zdK(F(x)) is quasi-Hadamard differentiable if
K is continuous and piecewise differentiable, dkdis
bounded above by some constaht> 0.

B Theorem: The V-statistic| [ g(x1,xq) dF (z1)dF (x3) IS
quasi-Hadamard differentiable if for some> \' > 0

(a) For everyr, € R fixed, the function
Gzy (1) == g( -, 22) lies INBVyc c and
Gy (1) (1 + |m1\)—X is uniformly bounded.

(b) The functiongp(-) := [ g(x1, - )dF(x1) liesin
Hg\ﬁocrc;fin(i/‘¢’ ‘CQJF|( ) < Q.

B Notice sample mean and variance (wWkh= 2) are
guasi-Hadamard differentiable. However, results might
completely useless 11
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B The quasi-Hadamard derivative of a U-statistic is given |

B Let (X;) bea-mixing with a(n) = O(n~?) for some
0 > 1+ /2. If F has finitey-moment for somey > 222,
then (Shao and Yu (1996)) with, cadlag functions with

finite weighted sup-norm

~

Vn(F, —F) % By (in (Dy, Dy, ]| - [1)).
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B The quasi-Hadamard derivative of a U-statistic is given |

B Let (X;) bea-mixing with a(n) = O(n~?) for some
0 > 1+ /2. If F has finitey-moment for somey > 222,
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B The quasi-Hadamard derivative of a U-statistic is given |

B Let (X;) bea-mixing with a(n) = O(n~?) for some
0 > 1+ /2. If F has finitey-moment for somey > 222,
then (Shao and Yu (1996)) with, cadlag functions with
finite weighted sup-norm
Vi(F, = F) 5 By (in (Dy, D, - 1)
B Asymptotic distribution ofy/n(U(F,,) — U(F’)) follows

then for every df with finitey-moment for some, > 222

B For the variance the assumptions are weaker than in

Dehling and Wendler (2010) whenevek ;*/5—“/; 14
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Strongly dependent data

B Consider the process; = >~ asei—s, t € Ny, where

(¢;)iez Iid random variables with zero mean and finite
variance, an®_ -, a7 < oo,
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B Consider the process; = >~ asei—s, t € Ny, where
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j=1

Y PO ( ZAJF )

where A, r» denotes thgth order Appell polynomial
associated witlF and F'Y) is the jth derivative ofF,
weak convergence at the rat&’—1/2) to
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