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� Let θ = T (F ) be some characteristic of the distribution
functionF (df).
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� Let θ = T (F ) be some characteristic of the distribution
functionF (df).

� Typical examples are

� T (F ) = −
∫ 0

−∞K(F (x)) dx+
∫∞
0
(1−K(F (x)) dx

so called L-statistics. Distortion risk measures which
are quite popular are also of this form.
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� Let θ = T (F ) be some characteristic of the distribution
functionF (df).

� Typical examples are

� T (F ) = −
∫ 0

−∞K(F (x)) dx+
∫∞
0
(1−K(F (x)) dx

so called L-statistics. Distortion risk measures which
are quite popular are also of this form.

� T (F ) =
∫ ∫

g(x1, x2) dF (x1)dF (x2) so called U- or
V-statistic (of degree 2).
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� Let θ = T (F ) be some characteristic of the distribution
functionF (df).
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� Let θ = T (F ) be some characteristic of the distribution
functionF (df).

� Typical examples are

� T (F ) = −
∫ 0

−∞K(F (x)) dx+
∫∞
0
(1−K(F (x)) dx

so called L-statistics. Distortion risk measures which
are quite popular are also of this form.

� T (F ) =
∫ ∫

g(x1, x2) dF (x1)dF (x2) so called U- or
V-statistic (of degree 2).

� Z-estimators.

� Givenn observationsX1, . . . , Xn with df F a natural
estimator is thenT (Fn) with Fn the empirical distribution
function.
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� Well-known: If T is Hadamard differentiable atF , then
the asymptotic distribution ofT (Fn) follows immediately
by the(functional) delta methodfrom the asymptotic
distribution ofFn − F .
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� Well-known: If T is Hadamard differentiable atF , then
the asymptotic distribution ofT (Fn) follows immediately
by the(functional) delta methodfrom the asymptotic
distribution ofFn − F .

� Thus, delta method leads asymptotic distribution of
T (Fn)− T (F ) whenever we have weak convergence of
the empirical process.
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� Well-known: If T is Hadamard differentiable atF , then
the asymptotic distribution ofT (Fn) follows immediately
by the(functional) delta methodfrom the asymptotic
distribution ofFn − F .

� Thus, delta method leads asymptotic distribution of
T (Fn)− T (F ) whenever we have weak convergence of
the empirical process.

� Many results on weak convergence of the empirical
process (iid, short-memory likeα-mixing orβ-mixing,
long memory, etc.).
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� If K corresponds to Lebesgue measure on[0, 1], then

−
∫ 0

−∞
K(Fn(x)) dx+

∫ ∞

0

(1−K(Fn(x)) dx,

corresponds to the sample mean.
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� If K corresponds to Lebesgue measure on[0, 1], then

−
∫ 0

−∞
K(Fn(x)) dx+

∫ ∞

0

(1−K(Fn(x)) dx,

corresponds to the sample mean.
� Proving Hadamard differentiability of this L-statistic (at

F ) in the direction ofV boils down to prove that
∣∣∣∣
∫

[Vn(x)− V (x)] dx

∣∣∣∣ → 0,

whenever||Vn − V ||∞ → 0. || · ||∞ denotes sup-norm.
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� If K corresponds to Lebesgue measure on[0, 1], then

−
∫ 0

−∞
K(Fn(x)) dx+

∫ ∞

0

(1−K(Fn(x)) dx,

corresponds to the sample mean.
� Proving Hadamard differentiability of this L-statistic (at

F ) in the direction ofV boils down to prove that
∣∣∣∣
∫

[Vn(x)− V (x)] dx

∣∣∣∣ → 0,

whenever||Vn − V ||∞ → 0. || · ||∞ denotes sup-norm.

� ⇒ The simplest L-statistic the sample mean is not
Hadamard differentiable w.r.t. the sup-norm.
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� Proving Hadamard differentiability of a V-statistic (atF )
in the direction ofV , involves among other things
showing that||Vn − V ||∞ → 0 implies

∫
Vn(x2) |dgF |(x2) →

∫
V (x2) |dgF |(x2).

where|dgF | is the absolute measure generated by
gF (x2) =

∫
g(x1, x2)dF (x1) .
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� Proving Hadamard differentiability of a V-statistic (atF )
in the direction ofV , involves among other things
showing that||Vn − V ||∞ → 0 implies

∫
Vn(x2) |dgF |(x2) →

∫
V (x2) |dgF |(x2).

where|dgF | is the absolute measure generated by
gF (x2) =

∫
g(x1, x2)dF (x1) .

� If gF generates a finite (signed) measure, then||Vn − V ||∞
this implication indeed holds.
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� Proving Hadamard differentiability of a V-statistic (atF )
in the direction ofV , involves among other things
showing that||Vn − V ||∞ → 0 implies

∫
Vn(x2) |dgF |(x2) →

∫
V (x2) |dgF |(x2).

where|dgF | is the absolute measure generated by
gF (x2) =

∫
g(x1, x2)dF (x1) .

� If gF generates a finite (signed) measure, then||Vn − V ||∞
this implication indeed holds.

� Forg(x1, x2) = (1/2)(x1 − x2)
2 (the variance kernel) the

measuredgF has density(x2 − c) dx2.
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� Proving Hadamard differentiability of a V-statistic (atF )
in the direction ofV , involves among other things
showing that||Vn − V ||∞ → 0 implies

∫
Vn(x2) |dgF |(x2) →

∫
V (x2) |dgF |(x2).

where|dgF | is the absolute measure generated by
gF (x2) =

∫
g(x1, x2)dF (x1) .

� If gF generates a finite (signed) measure, then||Vn − V ||∞
this implication indeed holds.

� Forg(x1, x2) = (1/2)(x1 − x2)
2 (the variance kernel) the

measuredgF has density(x2 − c) dx2.
⇒ The simplest V-statistic the variance is not Hadamard
differentiable w.r.t. the sup-norm.
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� If we require not only that||Vn − V ||∞ → 0 but that
(Vn(x)− V (x))(1 + |x|)λ, λ > 0, converges uniformly to
zero,
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� If we require not only that||Vn − V ||∞ → 0 but that
(Vn(x)− V (x))(1 + |x|)λ, λ > 0, converges uniformly to
zero, then we only need

∫
(1 + |x|)−λ |dgF |(x) < ∞.
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� If we require not only that||Vn − V ||∞ → 0 but that
(Vn(x)− V (x))(1 + |x|)λ, λ > 0, converges uniformly to
zero, then we only need

∫
(1 + |x|)−λ |dgF |(x) < ∞.

� Similar, for the sample mean.
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� If we require not only that||Vn − V ||∞ → 0 but that
(Vn(x)− V (x))(1 + |x|)λ, λ > 0, converges uniformly to
zero, then we only need

∫
(1 + |x|)−λ |dgF |(x) < ∞.

� Similar, for the sample mean.

� However, Hadamard differentiability is defined as

"Let B1 andB2 be normed spaces. Thenφ : B1 → B2 is
Hadamard differentiable atb1 ∈ B1 if . . . "
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� If we require not only that||Vn − V ||∞ → 0 but that
(Vn(x)− V (x))(1 + |x|)λ, λ > 0, converges uniformly to
zero, then we only need

∫
(1 + |x|)−λ |dgF |(x) < ∞.

� Similar, for the sample mean.

� However, Hadamard differentiability is defined as

"Let B1 andB2 be normed spaces. Thenφ : B1 → B2 is
Hadamard differentiable atb1 ∈ B1 if . . . "

� But for an arbitrary dfF we have
‖F‖λ := ‖F (x)(1 + |x|)λ‖ = ∞.
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� If we require not only that||Vn − V ||∞ → 0 but that
(Vn(x)− V (x))(1 + |x|)λ, λ > 0, converges uniformly to
zero, then we only need

∫
(1 + |x|)−λ |dgF |(x) < ∞.

� Similar, for the sample mean.

� However, Hadamard differentiability is defined as

"Let B1 andB2 be normed spaces. Thenφ : B1 → B2 is
Hadamard differentiable atb1 ∈ B1 if . . . "

� But for an arbitrary dfF we have
‖F‖λ := ‖F (x)(1 + |x|)λ‖ = ∞.

� Hence, with a weighted sup-norm‖ · ‖λ Hadamard
differentiability atF cannotbe shown.
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� If we require not only that||Vn − V ||∞ → 0 but that
(Vn(x)− V (x))(1 + |x|)λ, λ > 0, converges uniformly to
zero, then we only need

∫
(1 + |x|)−λ |dgF |(x) < ∞.

� Similar, for the sample mean.

� However, Hadamard differentiability is defined as

"Let B1 andB2 be normed spaces. Thenφ : B1 → B2 is
Hadamard differentiable atb1 ∈ B1 if . . . "

� But for an arbitrary dfF we have
‖F‖λ := ‖F (x)(1 + |x|)λ‖ = ∞.

� Hence, with a weighted sup-norm‖ · ‖λ Hadamard
differentiability atF cannotbe shown.

� ⇒: (Functional) Delta method cannot be applied.
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� Definition: (Quasi-Hadamard differentiability)
Let V be avector space, andV0 ⊂ V be equipped with a
norm‖ · ‖V0. Let (V′, ‖ · ‖V′) be a normed vector space,
andT : VT → V

′, VT ⊂ V.
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� Definition: (Quasi-Hadamard differentiability)
Let V be avector space, andV0 ⊂ V be equipped with a
norm‖ · ‖V0. Let (V′, ‖ · ‖V′) be a normed vector space,
andT : VT → V

′, VT ⊂ V.

ThenT is said to be quasi-Hadamard differentiable at
θ ∈ VT tangentially toC0, C0 ⊂ V0, if for a continuous
mapDHad

θ;T : C0 → V
′

lim
n→∞

∥∥∥DHad
θ;T (v)− T (θ + hnvn)− T (θ)

hn

∥∥∥
V′

= 0

holds for each triplet(v, (vn), (hn)) with hn → 0, and

v ∈ C0, (vn) ⊂ V0 satisfying‖vn − v‖V0 → 0.
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� Definition: (Quasi-Hadamard differentiability)
Let V be avector space, andV0 ⊂ V be equipped with a
norm‖ · ‖V0. Let (V′, ‖ · ‖V′) be a normed vector space,
andT : VT → V

′, VT ⊂ V.

ThenT is said to be quasi-Hadamard differentiable at
θ ∈ VT tangentially toC0, C0 ⊂ V0, if for a continuous
mapDHad

θ;T : C0 → V
′

lim
n→∞

∥∥∥DHad
θ;T (v)− T (θ + hnvn)− T (θ)

hn

∥∥∥
V′

= 0

holds for each triplet(v, (vn), (hn)) with hn → 0, and

v ∈ C0, (vn) ⊂ V0 satisfying‖vn − v‖V0 → 0.

� With this definition we find



Quasi-Hadamard differentiability (cont.)

Motivation

Quasi-Hadamard
differentiability

Illustrative example:
sample mean

Illustrative example:
V-statistic

Way out & Problems

Quasi-Hadamard
differentiability

Quasi-Hadamard
differentiability
(cont.)

Modified FDM

Applications

Continuous mapping
approach to U- and
V-statistics

Tokyo, 2013 11

� Theorem: The distortion risk measure (L-statistic)∫
x dK(F (x)) is quasi-Hadamard differentiable if

K is continuous and piecewise differentiable, andK ′ is
bounded above by some constantM > 0.
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� Theorem: The distortion risk measure (L-statistic)∫
x dK(F (x)) is quasi-Hadamard differentiable if

K is continuous and piecewise differentiable, andK ′ is
bounded above by some constantM > 0.

� Theorem: The V-statistic
∫ ∫

g(x1, x2) dF (x1)dF (x2) is
quasi-Hadamard differentiable if for someλ > λ′ ≥ 0

(a) For everyx2 ∈ R fixed, the function
gx2(·) := g( · , x2) lies inBVloc,rc and
gx2(x1)(1 + |x1|)−λ′

is uniformly bounded.

(b) The functiongF (·) :=
∫
g(x1, · )dF (x1) lies in

BVloc,rc, and
∫
φ−λ(x) |dgF |(x) < ∞.
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� Theorem: The distortion risk measure (L-statistic)∫
x dK(F (x)) is quasi-Hadamard differentiable if

K is continuous and piecewise differentiable, andK ′ is
bounded above by some constantM > 0.

� Theorem: The V-statistic
∫ ∫

g(x1, x2) dF (x1)dF (x2) is
quasi-Hadamard differentiable if for someλ > λ′ ≥ 0

(a) For everyx2 ∈ R fixed, the function
gx2(·) := g( · , x2) lies inBVloc,rc and
gx2(x1)(1 + |x1|)−λ′

is uniformly bounded.

(b) The functiongF (·) :=
∫
g(x1, · )dF (x1) lies in

BVloc,rc, and
∫
φ−λ(x) |dgF |(x) < ∞.

� Notice sample mean and variance (withλ′ = 2) are
quasi-Hadamard differentiable. However, results might be
completely useless.
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� Fortunately, they are not. Because
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� Fortunately, they are not. Because

� Theorem: (Modified functional delta method)
Let T, θ,V,Vf ,V0,C0 be as above. If:

(i) T is quasi-Hadamard differentiableat θ tangentially to
C0 with quasi-Hadamard derivativeDHad

θ;T ,

(ii) Xn − θ takes values only inV0 and satisfies

an(Xn − θ)
d→ V (in (V0,V0, ‖ · ‖V0)),

V a random element of(V0,V0) taking values only inC0.

Then

an(T (Xn)− T (θ))
d→ DHad

θ;T (V ) (in (V′,V ′, ‖ · ‖V′)).
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� The quasi-Hadamard derivative of a U-statistic is given by

U̇F (B
◦) := −2

∫
B◦(x)dgF (x).
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� The quasi-Hadamard derivative of a U-statistic is given by

U̇F (B
◦) := −2

∫
B◦(x)dgF (x).

� Let (Xi) beα-mixing with α(n) = O(n−θ) for some
θ > 1 +

√
2. If F has finiteγ-moment for someγ > 2θλ

θ−1
,

then (Shao and Yu (1996)) withDλ càdlàg functions with
finite weighted sup-norm

√
n(Fn − F )

d→ B̃◦
F (in (Dλ,Dλ, ‖ · ‖λ)).
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� The quasi-Hadamard derivative of a U-statistic is given by

U̇F (B
◦) := −2

∫
B◦(x)dgF (x).

� Let (Xi) beα-mixing with α(n) = O(n−θ) for some
θ > 1 +

√
2. If F has finiteγ-moment for someγ > 2θλ

θ−1
,

then (Shao and Yu (1996)) withDλ càdlàg functions with
finite weighted sup-norm

√
n(Fn − F )

d→ B̃◦
F (in (Dλ,Dλ, ‖ · ‖λ)).

� Asymptotic distribution of
√
n(U(Fn)− U(F )) follows

then for every df with finiteγ-moment for someγ > 2θλ
θ−1

.
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� The quasi-Hadamard derivative of a U-statistic is given by

U̇F (B
◦) := −2

∫
B◦(x)dgF (x).

� Let (Xi) beα-mixing with α(n) = O(n−θ) for some
θ > 1 +

√
2. If F has finiteγ-moment for someγ > 2θλ

θ−1
,

then (Shao and Yu (1996)) withDλ càdlàg functions with
finite weighted sup-norm

√
n(Fn − F )

d→ B̃◦
F (in (Dλ,Dλ, ‖ · ‖λ)).

� Asymptotic distribution of
√
n(U(Fn)− U(F )) follows

then for every df with finiteγ-moment for someγ > 2θλ
θ−1

.

� For the variance the assumptions are weaker than in
Dehling and Wendler (2010) wheneverγ < 7+8

√
2

2
√
2−1

.
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� Consider the processXt :=
∑∞

s=0 as εt−s, t ∈ N0,, where
(εi)i∈Z iid random variables with zero mean and finite
variance, and

∑∞
s=0 a

2
s < ∞.
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� Consider the processXt :=
∑∞

s=0 as εt−s, t ∈ N0,, where
(εi)i∈Z iid random variables with zero mean and finite
variance, and

∑∞
s=0 a

2
s < ∞.

� If Cov(X0, Xm) = m1−2β, β ∈ (0.5, 1), then∑∞
m=1Cov(X0, Xm) is not absolute summable, and the

process(Xt) is called a long-memory process.
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� Consider the processXt :=
∑∞

s=0 as εt−s, t ∈ N0,, where
(εi)i∈Z iid random variables with zero mean and finite
variance, and

∑∞
s=0 a

2
s < ∞.

� If Cov(X0, Xm) = m1−2β, β ∈ (0.5, 1), then∑∞
m=1Cov(X0, Xm) is not absolute summable, and the

process(Xt) is called a long-memory process.

� No general result for L- and V-statistics of such processes.
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� Because quasi-Hadamard differentiability already
established, to apply the Modified Functional Delta
Method, we only have
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� Because quasi-Hadamard differentiability already
established, to apply the Modified Functional Delta
Method, we only have to prove weak convergence of
weighted empirical processes based on long-memory
sequences.
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� Because quasi-Hadamard differentiability already
established, to apply the Modified Functional Delta
Method, we only have to prove weak convergence of
weighted empirical processes based on long-memory
sequences.

� Theorem Let λ ≥ 0, β ∈ (0.5, 1), and assume that

E[|ε0|2+2λ] < ∞, the dfG of ε0 is twice differentiable, and∑2
j=1

∫
|G(j)(x)|2(1 + |x|2λ) dx < ∞.

Then

nβ−1/2
(
Fn(·)− F (·)

) d−→ −c1,β f(·)Z (in Dλ),

wheref is the density ofX0 andZ is normally distributed
with mean 0 and variance 1.
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� For the variance & long memory the above approach leads
that the asymptotic distribution of the sample variance
multiplied by therate of the empirical processequals

−2

∫
B◦(x−) dgF (x) = 2Z1,β

∫
f(x−) (x−E[X1]) dx = 0
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� For the variance & long memory the above approach leads
that the asymptotic distribution of the sample variance
multiplied by therate of the empirical processequals

−2

∫
B◦(x−) dgF (x) = 2Z1,β

∫
f(x−) (x−E[X1]) dx = 0

� In particular for long memory the follwong representation
for U-statistics turns out to be useful

an
(
Vg(Fn)− Vg(F )

)
= 2Φ1,g

(
an(Fn − F )

)

+Φ2,g

(√
an(Fn − F )

)
,

whereΦ1,g(f) := −
∫
f(x−) dgF (x) and

Φ2,g(f) :=
∫∫

f(x1−)f(x2−) dg(x1, x2) are continuous
mappings for appropriate weigthed sup-norms.
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� For the following expansion (withp ≥ 1)

Fn(·)− F (·) −
p∑

j=1

(−1)j F (j)(·)
( 1
n

n∑

i=1

Aj;F (Xi)
)
,

whereAj;F denotes thejth order Appell polynomial
associated withF andF (j) is thejth derivative ofF ,
weak convergence at the ratenp(β−1/2) to
(−1)p F (p)(·)Zp,β in a weighted sup-norm can be shown.
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� For the following expansion (withp ≥ 1)

Fn(·)− F (·) −
p∑

j=1

(−1)j F (j)(·)
( 1
n

n∑

i=1

Aj;F (Xi)
)
,

whereAj;F denotes thejth order Appell polynomial
associated withF andF (j) is thejth derivative ofF ,
weak convergence at the ratenp(β−1/2) to
(−1)p F (p)(·)Zp,β in a weighted sup-norm can be shown.

� Then we can introduce the following statistic
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Vn,g;p,q,r(Fn) := Vg(Fn)− Vg(F )

+
2

∑

`=1

p−1
∑

j=1

(−1)j
( 1

n

n
∑

i=1

Aj;F (Xi)
)

∫

F (j)(x−) dg`,F (x)

−
q−1
∑

j=1

(−1)j
( 1

n

n
∑

i=1

Aj;F (Xi)
)

×
∫∫

F (j)(x1−) (Fn(x2−)− F (x2−)) dg(x1, x2)

−
r−1
∑

k=1

(−1)k
( 1

n

n
∑

i=1

Ak;F (Xi)
)

×
∫∫

(Fn(x1−)− F (x1−))F (k)(x2−) dg(x1, x2)

+

q−1
∑

j=1

r−1
∑

k=1

(−1)j+k
( 1

n

n
∑

i=1

Aj;F (Xi)
)( 1

n

n
∑

i=1

Ak;F (Xi)
)

×
∫∫

F (j)(x1−)F (k)(x2−) dg(x1, x2).
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Using the continuous mapping approach and the above result:

� (i) Assumeq + r > p, thennp(β−1/2) Vn,g;p,q,r(Fn)
converges in distribution to

(−1)p Zp,β

2∑

`=1

∫
F (p)(x−) dg`,F (x).
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Using the continuous mapping approach and the above result:

� (i) Assumeq + r > p, thennp(β−1/2) Vn,g;p,q,r(Fn)
converges in distribution to

(−1)p Zp,β

2∑

`=1

∫
F (p)(x−) dg`,F (x).

� (ii) Assumeq + r = p, thennp(β−1/2) Vn,g;p,q,r(Fn)
converges in distribution to

(−1)p Zp,β

2∑

`=1

∫
F (p)(x−) dg`,F (x)+

(−1)p Zq,βZr,β

∫∫
F (q)(x1−)F (r)(x2−) dg(x1, x2).
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� Consider kernelg(x1, x2) = x1(|x2| − 1), and suppose
thatF (1) is symmetric about zero and thatE[|X1|] = 1.
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� Consider kernelg(x1, x2) = x1(|x2| − 1), and suppose
thatF (1) is symmetric about zero and thatE[|X1|] = 1.

� Takingn2(β−(1/2)) leads to:

n2β−1 Vn,g;2,1,1(Fn) = n2β−1
(
Vg(Fn)− Vg(F )

)

d−→ Z2
1,β

∫∫
F (1)(x1−)F (1)(x2−) dg(x1, x2) = 0.
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� Consider kernelg(x1, x2) = x1(|x2| − 1), and suppose
thatF (1) is symmetric about zero and thatE[|X1|] = 1.

� Takingn2(β−(1/2)) leads to:

n2β−1 Vn,g;2,1,1(Fn) = n2β−1
(
Vg(Fn)− Vg(F )

)

d−→ Z2
1,β

∫∫
F (1)(x1−)F (1)(x2−) dg(x1, x2) = 0.

� However, withn3(β−(1/2)) we have

n3(β−1/2) Vn,g;3,1,2(Fn) = n3(β−1/2)
(
Vg(Fn)− Vg(F )

)

d−→ −Z1,βZ2,β

∫∫
F (1)(x1−)F (2)(x2−) dg(x1, x2)

= −2Z1,βZ2,β

∫ ∞

0

F (2)(x2) dx2.
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� Consider the test statistic

Tn :=
∫∞
0

(
F̂n(−t)−

[
1− F̂n(t−)

])2

dt.
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� Consider the test statistic

Tn :=
∫∞
0

(
F̂n(−t)−

[
1− F̂n(t−)

])2

dt.

� Takingn3(β−1/2) leads to:

n3(β−1/2) Vn,g;3,1,2(Fn)

d−→ Z1,βZ2,β

(∫
F (1)(x)F (2)(x)− F (1)(x)F (2)(−x) dx

)

= 0.
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� Consider the test statistic

Tn :=
∫∞
0

(
F̂n(−t)−

[
1− F̂n(t−)

])2

dt.

� Takingn3(β−1/2) leads to:

n3(β−1/2) Vn,g;3,1,2(Fn)

d−→ Z1,βZ2,β

(∫
F (1)(x)F (2)(x)− F (1)(x)F (2)(−x) dx

)

= 0.

� However, withn4(β−1/2) we find

n4(β−1/2) Vn,g;4,2,2(Fn)

d−→ Z2,βZ2,β

(∫
F (2)(x)F (2)(x)− F (2)(x)F (2)(−x) dx

)
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