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Motivation 1
Testing the relevance of a group of variables

We observe a sampled signal
f-RISR = (1., 197 = f(t)

in a noisy environment.
The dimension d is large.

Based on a training sample, some variable selection
procedure suggests the irrelevance of the subset of
variables t/° := {#/ : j € J°}.

Based on a testing sample we would like to check the
irrelevance of J°.

This amounts to testing the hypothesis E[Var(f(t)[t/)] = 0. J
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Motivation 2
Testing the validity of a partial linear model

We observe a sampled signal obeying the partial linear
model :
f(t) = g(t)) + B7t”
in a noisy environment.
g, J and 8 are unknown.
The dimension d is large, but the cardinal of J is small.

For a given set Jy, we would like to test the hypothesis
J = .

This amounts to testing the hypothesis Var[V . f(t)] = 0. J
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Motivation 3
Testing the equality of two norms

Two noisy (sub)images g; and g» are observed.

The goal is to check whether they coincide up to a rotation and
illumination change : g1(2) = g2(R2) + a, Vz € D C R?, for some
orthogonal matrix R and some a € R.

This requires testing the hypothesis
Ho: 3(rR,a) st gi(2)=g(RZ)+a VzeD (1)

which is usually very time-consuming (involves a nonlinear and
nonconvex minimization step).

A simpler strategy is to start with testing Hj : Var[gi(Z)] = Var[g>(Z)],
and to reject the hypothesis Hy if Hj is rejected. J
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Unifying framework
Testing the nullspace of a quadratic functional in regression

Model:  x; =f(t)+&;; i=L,...,n; t;inRd

Hypothesis: Q[f]1 =0 Smoothness: [ in X, C[f]1<1
] )
SVDof Q: {q}, {yn(.)} SVD of C: {cgh, 1)}

Assumption: the two bases {y(.)} and {¢(.)} coincide
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Relation to previous work

Non Sampled Multi- Beyond | Beyond

Gaussian variate Q=1 Q=0
Ingster & Stepa- X X v X X
nova 2011
Ingster & Sapati- X v v X X
nas 2009
Ingster, Sapa- X X X v X
tinas & Suslina
2012
Laurent, Loubes X X X v X
& Marteau 2011
Comminges & D. v ¥ v N N
2012

Remark The approach adopted in the first three references is purely
asymptotic, whereas Laurent et al. (2011) obtained nonasymptotic
rates of separation.
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Overview of our results
Testing procedure

« We observe {(x;,t;)}i=1,..» C R x [0,1]% such that
X = F(t)+&i,  H(t) = Dge o Oelflie(t), |
where ¢; iid with E[¢;] = 0 and t; ' ¢/[0, 1)°.
e We wish to test the hypothesis

Ho: Qlf] = Xye o [ =0 | Hy : |alf] > o |

e Each 6,[f]? is unbiasedly estimated by

gg = Wﬁ Z/#,’/ XiXirpe(ti)pe(tir). J

e Given a sequence of weights w = {w,}, we estimate Q|[f] by
QW = Y yer WiGe65. |

o Test : we fix a threshold v > 0 and reject Hp if \(A?,","| > u.
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Overview of our results
Basics on the minimax rates of separation
For any estimator Q,, we can write Q, = Q[f] + enlf]-
e Under Hy : |Qn| < sUpye s, lenlf]l.
o Under Hy : |Qn| > 0% — SUPsc 7, lenlfll.
e The testing statistic (3,, leads to a consistent test if
sup |en[f]| < p* — sup len[f]] (with prob. 1 — 7).
feFo feFi(p)
o Let p,,(Q) be the smallest possnble p > 0 satisfying
SUPte 7, lenl ]l + SUPse 7, () lenlf]] < o, (with prob. 1 — ).

o~

e Minimax rate of separation : p; < inf; pn(Q).

Where the difference with the minimax rate of estimation comes
from : replacing supyc #,,) With sup,,-.o SUPsc 7, (,) l€ads to the
minimax rate of estimatlon but this is sub- optlmal !
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Overview of our results
Minimax rates of separation

e Let us call the ratio |g¢|/c, the importance of the axis .
e Let A(T) be the set of indices with importance > T > 0.

o Let M(T) = e (m) 9F-
o In the general case, the minimax rate of separation is given by

4(B;M(T) + Byn)'/?

* 2 _
(Pns)" = T|r>1f0 ( ny1/2 + 2\@7-)
o M(T)'2 —1/2
< (MO )y e
o Interestingly, in the case of positive Q = 0,
* 2 _ ( )1/2
(Pn) Arlr>]fo< n +T>

o In both cases, the test defined using the statistic a,"," with the weights
we = 1(]qe|/ce > T) achieves the optimal rate.
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Relation to the norm estimation
Phase transition/ “Elbow” effect

Let us assume the simple case q? = 1 and ¢, = 27:1 Ef”’, tez7d.

One can check that M(T) = T-9/(?) where 5" = § 3" 077"
In hypotheses testing :
o |f Qis positive, the mmx rate of separation is
(p;)Z - n—4&/(4&+d).

o |f Q is neither positive nor negative, the mmx rate of separation
is (p1)2 = 4o/ 4o+ A1/2),
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Relation to the norm estimation
Phase transition/ “Elbow” effect

Let us assume the simple case q? = 1 and ¢, = 27:1 Ef”’, tez7d.
One can check that M(T) = T-9/(?) where 5" = § 3" 077"
In hypotheses testing :

o |f Qis positive, the mmx rate of separation is
(p;)Z - n—4&/(4&+d).

e If Qis neither positive nor negative, the mmx rate of separation
is * —(45 /(40
(p5)2 = p~ 43/ 45+ \1/2),
In functional estimation :
e If Q[f] = ||f||2, the mmx rate of estimation is (Lepski et al. '99)

re = 27/t

o If Q[f] = ||f||3, the mmXx rate of estimation is (Donoho and
Nussbaum '90) = n—45/(45+d) A 1/2)
o= .
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Main result |
Positive functionals

Theorem 1. Assume that E[¢f] < oo and for every T > 0, the set
N(T)={¢:q; > Tc,} is finite. Fora v € (0, 1), let T,_, be such that :

(@ >e(qe— Tci)i)vz = (Zz ce(qe — TCz)+)(221_7/2 +0(1)).

Let us define

1/2
x {E/E,f qZ(QZ - Tn,'yCZ)+ }
pn,'y .

B Zleg ce(qe — Tn,»yCK)Jr

If several conditions are fulfilled, then the test based on the array

Win = (1 - %L

satisfies vn(Fo, F1(p5 4 )5 o1) <~ +0(1),as n— oo.
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Testing partial derivatives

Let o € RY and o € RS be two given vectors.
Let Q[f] = 0% f/ot™ ... 0t5°|B,  CIfl = X0, |97f/at 2.
Let us define 0, 7, (x;) and by

_Nd 1 _15d 1
5-2,‘:104//‘7/7 5 = d =10

If J<1 and g >d/4,
then the exact mmx rate p;, ., is given by pj, ., = CZpp(1 + 0(1)),
where the minimax rate p}, and the exact separation constant are

" _25(1—9)
pn =N 45+d s

5(1—9) 2(1+6)5+d o ~
and C = (422__ ,,w0(d, o, ) #4570 (14 25~1) 206750) with ) = 217/ + L 4etd ang
e, rs)
(Mg, o)) (1=8)r(x+2)’

K= 27:1 rjand C(d, o, o) = a9
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Conclusion

e \We established minimax rates of separation in the model of
regression with random design for null hypotheses
corresponding to the nullspace of a general quadratic
functionals.

¢ In the case of positive functionals, we also proved
sharp-minimax optimality of the proposed procedure.

e When comparmg two norms, the minimax rate of separation is :
ph=n" a3/ i This rate shows that the watershed between the
two regimes corresponds to the condition & = d/4. In other
terms, we are in the regular regime when 5 > d/4. ltis
interesting to note, even if we are unable to establish a direct
connection, that this is also the regime under which the Sobolev
embedding Wg C L4([0, 1]%) holds true.

e Open questions : adaptation to the unknown smoothness,
unknown noise level, the case of (sparse) Besov bodies,...
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