Minimax testing of a composite null hypothesis defined via a quadratic functional

Joint work with L. Comminges

Asymptotic Statistics and Related Topics

Tokyo, Japan

Arnak S. Dalalyan ENSAE / CREST / GENES

Motivation 1 Testing the relevance of a group of variables

We observe a sampled signal

 $f: \mathbb{R}^d \to \mathbb{R}$ $\mathbf{t} = (t^1, \dots, t^d)^\top \mapsto f(\mathbf{t})$

in a noisy environment.

- The dimension *d* is large.
- Based on a training sample, some variable selection procedure suggests the irrelevance of the subset of variables t^{J^c} := {t^j : j ∈ J^c}.
- Based on a testing sample we would like to check the irrelevance of J^c.

This amounts to testing the hypothesis $E[Var(f(t)|t^{J})] = 0$.

Motivation 2 Testing the validity of a partial linear model

 We observe a sampled signal obeying the partial linear model :

$$f(\mathbf{t}) = g(\mathbf{t}^J) + \boldsymbol{\beta}^\top \mathbf{t}^{J^c}$$

in a noisy environment.

- \triangleleft g, J and β are unknown.
- The dimension d is large, but the cardinal of J is small.
- For a given set J_0 , we would like to test the hypothesis $J = J_0$.

This amounts to testing the hypothesis **Var**[$\nabla_{J_0^c} f(\mathbf{t})$] = 0.

Motivation 3 Testing the equality of two norms

- Two noisy (sub)images g_1 and g_2 are observed.
- The goal is to check whether they coincide up to a rotation and illumination change : g₁(z) = g₂(Rz) + a, ∀z ∈ D ⊂ R², for some orthogonal matrix R and some a ∈ R.
- This requires testing the hypothesis

 $H_0: \exists (\mathbf{R}, a) \text{ s.t. } g_1(\mathbf{z}) = g_2(\mathbf{R}\mathbf{z}) + a, \quad \forall \mathbf{z} \in D$ (1)

which is usually very time-consuming (involves a nonlinear and nonconvex minimization step).

A simpler strategy is to start with testing H'_0 : $Var[g_1(Z)] = Var[g_2(Z)]$, and to reject the hypothesis H_0 if H'_0 is rejected.

Unifying framework Testing the nullspace of a quadratic functional in regression

Model: $x_i = f(t_i) + \xi_i$; i = 1, ..., n; t_i in \mathbb{R}^d Hypothesis: Q[f] = 0 Smoothness: f in Σ , C[f] < 1SVD of Q: $\{q_l\}, \{\psi_l(.)\}$ SVD of C: $\{e_l\}, \{\varphi_l(.)\}$

Assumption: the two bases $\{\psi_l(.)\}$ and $\{\varphi_l(.)\}$ coincide

Relation to previous work

	Non Gaussian	Sampled	Multi- variate	Beyond Q = I	Beyond $Q \succeq 0$
Ingster & Stepa- nova 2011	x	х	✓	x	x
Ingster & Sapati- nas 2009	x	\checkmark	\checkmark	x	x
Ingster, Sapa- tinas & Suslina 2012	x	x	x	~	x
Laurent, Loubes & Marteau 2011	x	x	x	~	x
Comminges & D. 2012	\checkmark	\checkmark	✓	✓	✓

Remark The approach adopted in the first three references is purely asymptotic, whereas Laurent et al. (2011) obtained nonasymptotic rates of separation.

Overview of our results

Testing procedure

• We observe $\{(x_i, \mathbf{t}_i)\}_{i=1,...,n} \subset \mathbb{R} \times [0, 1]^d$ such that

$$\mathbf{x}_i = f(\mathbf{t}_i) + \xi_i, \quad f(\mathbf{t}) = \sum_{\ell \in \mathscr{L}} \theta_\ell[f] \varphi_\ell(\mathbf{t}),$$

where ξ_i iid with $\mathbf{E}[\xi_1] = 0$ and $\mathbf{t}_i \stackrel{\text{iid}}{\sim} \mathcal{U}[0, 1]^d$.

We wish to test the hypothesis

 $H_0: Q[f] = \sum_{\ell \in \mathscr{L}} q_\ell \theta_\ell [f]^2 = 0$

$$H_1: |Q[f]| > \rho^2.$$

• Each $\theta_{\ell}[f]^2$ is unbiasedly estimated by

$$\widehat{\theta_{\ell}^2} = \frac{1}{n(n-1)} \sum_{i \neq i'} x_i x_{i'} \varphi_{\ell}(\mathbf{t}_i) \varphi_{\ell}(\mathbf{t}_{i'}).$$

• Given a sequence of weights $\mathbf{w} = \{\mathbf{w}_{\ell}\}$, we estimate Q[f] by

$$\widehat{Q}_n^{\boldsymbol{w}} = \sum_{\ell \in \mathscr{L}} \boldsymbol{w}_\ell \boldsymbol{q}_\ell \widehat{\theta}_\ell^2.$$

• Test : we fix a threshold u > 0 and reject H_0 if $|\widehat{Q}_n^w| > u$.

Overview of our results

Basics on the minimax rates of separation

For any estimator \widehat{Q}_n , we can write $\widehat{Q}_n = Q[f] + \epsilon_n[f]$.

- Under H_0 : $|\widehat{Q}_n| \leq \sup_{f \in \mathcal{F}_0} |\epsilon_n[f]|$.
- Under H_1 : $|\widehat{Q}_n| \ge \rho^2 \sup_{f \in \mathcal{F}_1(\rho)} |\epsilon_n[f]|$.
- The testing statistic \widehat{Q}_n leads to a consistent test if

 $\sup_{\underline{f}\in\mathcal{F}_0} |\epsilon_n[f]| < \rho^2 - \sup_{f\in\mathcal{F}_1(\rho)} |\epsilon_n[f]| \qquad \text{(with prob. } 1-\gamma\text{)}.$

- Let ρ_n(Q̂) be the smallest possible ρ > 0 satisfying
 sup_{f∈ T₀} |ε_n[f]| + sup_{f∈ T₁(ρ)} |ε_n[f]| < ρ², (with prob. 1 − γ).
- Minimax rate of separation : $\rho_n^* \asymp \inf_{\widehat{Q}_n} \rho_n(\widehat{Q})$.

Where the difference with the minimax rate of estimation comes from : replacing $\sup_{f \in \mathcal{F}_1(\rho)}$ with $\sup_{\rho > 0} \sup_{f \in \mathcal{F}_1(\rho)}$ leads to the minimax rate of estimation, but this is sub-optimal !

Overview of our results Minimax rates of separation

- Let us call the ratio $|q_{\ell}|/c_{\ell}$ the importance of the axis φ_{ℓ} .
- Let N(T) be the set of indices with importance ≥ T > 0.
- Let $M(T) = \sum_{\ell \in \mathcal{N}(T)} q_{\ell}^2$.
- In the general case, the minimax rate of separation is given by

$$(\rho_{n,\gamma}^*)^2 = \inf_{T>0} \left(\frac{4(B_1 M(T) + B_2 n)^{1/2}}{n\gamma^{1/2}} + 2\sqrt{2}T \right)$$

$$\approx \inf_{T>0} \left(\frac{M(T)^{1/2}}{n} + T \right) \bigvee n^{-1/2}.$$

• Interestingly, in the case of positive $Q \succeq 0$,

$$(\rho_{n,\gamma}^*)^2 \asymp \inf_{T>0} \left(\frac{M(T)^{1/2}}{n} + T\right).$$

• In both cases, the test defined using the statistic \widehat{Q}_n^w with the weights $w_{\ell} = \mathbb{1}(|q_{\ell}|/c_{\ell} \ge T)$ achieves the optimal rate.

Relation to the norm estimation

Phase transition/ "Elbow" effect

Let us assume the simple case $q_{\ell}^2 = 1$ and $c_{\ell} = \sum_{j=1}^d \ell_j^{2\sigma_j}, \ell \in \mathbb{Z}^d$. One can check that $M(T) \simeq T^{-d/(2\bar{\sigma})}$ where $\bar{\sigma}^{-1} = \frac{1}{d} \sum \sigma_j^{-1}$.

In hypotheses testing :

• If Q is positive, the mmx rate of separation is

 $(\rho_n^*)^2 \asymp n^{-4\bar{\sigma}/(4\bar{\sigma}+d)}.$

If Q is neither positive nor negative, the mmx rate of separation is
 (ρ^{*}_n)² ≈ n^{-(4σ̄/(4σ̄+d) ∧ 1/2)}.

Relation to the norm estimation

Phase transition/ "Elbow" effect

Let us assume the simple case $q_{\ell}^2 = 1$ and $c_{\ell} = \sum_{j=1}^d \ell_j^{2\sigma_j}, \ell \in \mathbb{Z}^d$. One can check that $M(T) \simeq T^{-d/(2\bar{\sigma})}$ where $\bar{\sigma}^{-1} = \frac{1}{d} \sum \sigma_j^{-1}$.

In hypotheses testing :

• If Q is positive, the mmx rate of separation is

 $(\rho_n^*)^2 \asymp n^{-4\bar{\sigma}/(4\bar{\sigma}+d)}.$

If Q is neither positive nor negative, the mmx rate of separation is
 (ρ^{*}_n)² ≍ n^{-(4σ̄/(4σ̄+d) ∧ 1/2)}.

In functional estimation :

- If $Q[f] = ||f||_2$, the mmx rate of estimation is (Lepski et al. '99) $r_n^* \simeq n^{-2\bar{\sigma}/(4\bar{\sigma}+d)}$.
- If $Q[f] = ||f||_2^2$, the mmx rate of estimation is (Donoho and Nussbaum '90) $r_n^* \simeq n^{-(4\bar{\sigma}/(4\bar{\sigma}+d)\wedge 1/2)}$.

Main result I Positive functionals

Theorem 1. Assume that $E[\xi_1^4] < \infty$ and for every T > 0, the set $\mathcal{N}(T) = \{\ell : q_\ell \ge Tc_\ell\}$ is finite. For a $\gamma \in (0, 1)$, let $T_{n,\gamma}$ be such that :

$$\left(\frac{n(n-1)}{2}\sum_{\ell}(q_{\ell}-Tc_{\ell})_{+}^{2}\right)^{1/2}=\left(\sum_{\ell}c_{\ell}(q_{\ell}-Tc_{\ell})_{+}\right)(2z_{1-\gamma/2}+o(1)).$$

Let us define

$$\rho_{n,\gamma}^* = \left\{ \frac{\sum_{l \in \mathscr{L}} q_{\ell}(q_{\ell} - T_{n,\gamma}c_{\ell})_{+}}{\sum_{l \in \mathscr{L}} c_{\ell}(q_{\ell} - T_{n,\gamma}c_{\ell})_{+}} \right\}^{1/2}$$

If several conditions are fulfilled, then the test based on the array

$$\widehat{w}_{l,n}^* = \left(1 - \frac{T_{n,\gamma}c_\ell}{q_\ell}\right)_+$$

satisfies $\gamma_n(\mathcal{F}_0, \mathcal{F}_1(\rho_{n,\gamma}^*), \widehat{\phi}_n^*) \leq \gamma + o(1)$, as $n \to \infty$.

Testing partial derivatives

• Let $\alpha \in \mathbb{R}^d_+$ and $\sigma \in \mathbb{R}^d_+$ be two given vectors.

• Let $Q[f] = \|\partial^{\sum_j \alpha_j} f / \partial t_1^{\alpha_1} \dots \partial t_d^{\alpha_d}\|_2^2$, $C[f] = \sum_{j=1}^d \|\partial^{\sigma_j} f / \partial t_j^{\sigma_j}\|_2^2$.

• Let us define
$$\delta$$
, $\bar{\sigma}$, (κ_j) and κ by

$$\delta = \sum_{j=1}^d \alpha_j / \sigma_j, \qquad \frac{1}{\bar{\sigma}} = \frac{1}{d} \sum_{j=1}^d \frac{1}{\sigma_j}.$$

• If $\delta < 1$ and $\bar{\sigma} > d/4$,

then the exact mmx rate $\rho_{n,\gamma}^*$ is given by $\rho_{n,\gamma}^* = C_{\gamma}^* \rho_n^* (1 + o(1))$,

• where the minimax rate ρ_n^* and the exact separation constant are

$$\rho_n^* = n^{-\frac{2\bar{\sigma}(1-\delta)}{4\bar{\sigma}+d}},$$

and
$$C_{\gamma}^{*} = \left(4z_{1-\gamma/2}^{2}\kappa C(d,\sigma,\alpha)\right)^{\frac{\sigma(1-\delta)}{4\sigma+d}} (1+2\kappa^{-1})^{\frac{2(1+\delta)\sigma+d}{2(4\sigma+d)}}$$
 with $\kappa_{j} = \frac{1}{2\sigma_{j}} + \frac{\alpha_{j}}{\sigma_{j}} \frac{4\sigma+d}{2\sigma(1-\delta)}$ and $\kappa = \sum_{j=1}^{d} \kappa_{j}$ and $C(d,\sigma,\alpha) = \pi^{-d} \frac{\prod_{i=1}^{d} \Gamma(\kappa_{i})}{\left(\prod_{i=1}^{d} \sigma_{i}\right)(1-\delta)\Gamma(\kappa+2)}$.

Conclusion

- We established minimax rates of separation in the model of regression with random design for null hypotheses corresponding to the nullspace of a general quadratic functionals.
- In the case of positive functionals, we also proved sharp-minimax optimality of the proposed procedure.
- When comparing two norms, the minimax rate of separation is : ρ_n^{*} = n^{- 2σ/4∂+d} ¹/₄. This rate shows that the watershed between the two regimes corresponds to the condition σ̄ = d/4. In other terms, we are in the regular regime when σ̄ > d/4. It is interesting to note, even if we are unable to establish a direct connection, that this is also the regime under which the Sobolev embedding W₂^σ ⊂ L₄([0, 1]^d) holds true.
- Open questions : adaptation to the unknown smoothness, unknown noise level, the case of (sparse) Besov bodies,...

◆□▶◆□▶◆三▶◆三▶ 三 のへで