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Motivation 1
Testing the relevance of a group of variables

� We observe a sampled signal

f : Rd → R t = (t1, . . . , td )> 7→ f (t)

in a noisy environment.
� The dimension d is large.
� Based on a training sample, some variable selection

procedure suggests the irrelevance of the subset of
variables tJc

:= {t j : j ∈ Jc}.
� Based on a testing sample we would like to check the

irrelevance of Jc .

This amounts to testing the hypothesis E[Var(f (t)|tJ)] = 0.
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Motivation 2
Testing the validity of a partial linear model

� We observe a sampled signal obeying the partial linear
model :

f (t) = g(tJ) + β>tJc

in a noisy environment.
� g, J and β are unknown.
� The dimension d is large, but the cardinal of J is small.
� For a given set J0, we would like to test the hypothesis

J = J0.

This amounts to testing the hypothesis Var[∇Jc
0
f (t)] = 0.
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Motivation 3
Testing the equality of two norms

� Two noisy (sub)images g1 and g2 are observed.

� The goal is to check whether they coincide up to a rotation and
illumination change : g1(z) = g2(Rz) + a, ∀z ∈ D ⊂ R2, for some
orthogonal matrix R and some a ∈ R.

� This requires testing the hypothesis

H0 : ∃(R,a) s.t. g1(z) = g2(Rz) + a, ∀z ∈ D (1)

which is usually very time-consuming (involves a nonlinear and
nonconvex minimization step).

A simpler strategy is to start with testing H ′0 : Var[g1(Z)] = Var[g2(Z)],
and to reject the hypothesis H0 if H ′0 is rejected.
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Unifying framework
Testing the nullspace of a quadratic functional in regression
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Relation to previous work

Non Sampled Multi- Beyond Beyond
Gaussian variate Q = I Q � 0

Ingster & Stepa-
nova 2011

x x � x x

Ingster & Sapati-
nas 2009

x � � x x

Ingster, Sapa-
tinas & Suslina
2012

x x x � x

Laurent, Loubes
& Marteau 2011

x x x � x

Comminges & D.
2012

� � � � �

Remark The approach adopted in the first three references is purely
asymptotic, whereas Laurent et al. (2011) obtained nonasymptotic
rates of separation.
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Overview of our results
Testing procedure

• We observe {(xi , ti)}i=1,...,n ⊂ R× [0,1]d such that

xi = f (ti)+ξi , f (t) =
∑

`∈L θ`[f ]ϕ`(t),

where ξi iid with E[ξ1] = 0 and ti
iid∼ U [0,1]d .

• We wish to test the hypothesis

H0 : Q[f ] =
∑

`∈L q`θ`[f ]2 = 0 H1 : |Q[f ]| > ρ2.

• Each θ`[f ]2 is unbiasedly estimated by

θ̂2
` = 1

n(n−1)

∑
i 6=i ′ xixi ′ϕ`(ti)ϕ`(ti ′).

• Given a sequence of weights w = {w`}, we estimate Q[f ] by

Q̂w
n =

∑
`∈L w`q`θ̂

2
` .

• Test : we fix a threshold u > 0 and reject H0 if |Q̂w
n | > u.
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Overview of our results
Basics on the minimax rates of separation

For any estimator Q̂n, we can write Q̂n = Q[f ] + εn[f ].

• Under H0 : |Q̂n| ≤ supf∈F0
|εn[f ]|.

• Under H1 : |Q̂n| ≥ ρ2 − supf∈F1(ρ) |εn[f ]|.

• The testing statistic Q̂n leads to a consistent test if

sup
f∈F0

|εn[f ]| < ρ2 − sup
f∈F1(ρ)

|εn[f ]| (with prob. 1− γ).

• Let ρn(Q̂) be the smallest possible ρ > 0 satisfying

supf∈F0
|εn[f ]|+ supf∈F1(ρ) |εn[f ]| < ρ2, (with prob. 1− γ).

• Minimax rate of separation : ρ∗n � infQ̂n
ρn(Q̂).

Where the difference with the minimax rate of estimation comes
from : replacing supf∈F1(ρ) with supρ>0 supf∈F1(ρ) leads to the
minimax rate of estimation, but this is sub-optimal !
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Overview of our results
Minimax rates of separation

• Let us call the ratio |q`|/c` the importance of the axis ϕ`.
• Let N (T ) be the set of indices with importance ≥ T > 0.
• Let M(T ) =

∑
`∈N (T ) q2

` .

• In the general case, the minimax rate of separation is given by

(ρ∗n,γ)2 = inf
T>0

(4
(
B1M(T ) + B2n

)1/2

nγ1/2 + 2
√

2T
)

� inf
T>0

(M(T )1/2

n
+ T

)∨
n−1/2.

• Interestingly, in the case of positive Q � 0,

(ρ∗n,γ)2 � inf
T>0

(M(T )1/2

n
+ T

)
.

• In both cases, the test defined using the statistic Q̂w
n with the weights

w` = 1l(|q`|/c` ≥ T ) achieves the optimal rate.

c© Dalalyan, A.S. Sept. 2, 2013 9



10

Relation to the norm estimation
Phase transition/ “Elbow” effect

Let us assume the simple case q2
` = 1 and c` =

∑d
j=1 `

2σj
j , ` ∈ Zd .

One can check that M(T ) � T−d/(2σ̄) where σ̄−1 = 1
d

∑
σ−1

j .

In hypotheses testing :

• If Q is positive, the mmx rate of separation is

(ρ∗n)2 � n−4σ̄/(4σ̄+d).

• If Q is neither positive nor negative, the mmx rate of separation
is

(ρ∗n)2 � n−(4σ̄/(4σ̄+d)
∧

1/2).

In functional estimation :

• If Q[f ] = ‖f‖2, the mmx rate of estimation is (Lepski et al. ’99)

r∗n � n−2σ̄/(4σ̄+d).

• If Q[f ] = ‖f‖2
2, the mmx rate of estimation is (Donoho and

Nussbaum ’90) r∗n � n−(4σ̄/(4σ̄+d)
∧

1/2).
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Main result I
Positive functionals

Theorem 1. Assume that E [ξ4
1 ] <∞ and for every T > 0, the set

N (T ) = {` : q` ≥ Tc`} is finite. For a γ ∈ (0,1), let Tn,γ be such that :(
n(n−1)

2

∑
`(q` − Tc`)2

+

)1/2
=
(∑

` c`(q` − Tc`)+

)
(2z1−γ/2 + o(1)).

Let us define

ρ∗n,γ =

{∑
l∈L q`(q` − Tn,γc`)+∑
l∈L c`(q` − Tn,γc`)+

}1/2

.

If several conditions are fulfilled, then the test based on the array

ŵ∗l,n =
(

1− Tn,γc`
q`

)
+

satisfies γn(F0,F1(ρ∗n,γ), φ̂∗n) ≤ γ + o(1), as n→∞.
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Testing partial derivatives

• Let α ∈ Rd
+ and σ ∈ Rd

+ be two given vectors.

• Let Q[f ] = ‖∂
∑

j αj f/∂tα1
1 . . . ∂tαd

d ‖2
2, C[f ] =

∑d
j=1 ‖∂σj f/∂tσj

j ‖2
2.

• Let us define δ, σ̄, (κj ) and κ by

δ =
∑d

j=1 αj/σj ,
1
σ̄ = 1

d

∑d
j=1

1
σj
.

• If δ < 1 and σ̄ > d/4,

then the exact mmx rate ρ∗n,γ is given by ρ∗n,γ = C∗γρ∗n(1 + o(1)),

• where the minimax rate ρ∗n and the exact separation constant are

ρ∗n = n−
2σ̄(1−δ)

4σ̄+d ,

and C∗
γ =

(
4z2

1−γ/2κC(d,σ,α)
) σ̄(1−δ)

4σ̄+d (1 + 2κ−1)

2(1+δ)σ̄+d
2(4σ̄+d) with κj = 1

2σj
+
αj
σj

4σ̄+d
2σ̄(1−δ)

and

κ =
∑d

j=1 κj and C(d,σ,α) = π−d
∏d

i=1 Γ(κi )(∏d
i=1 σi

)
(1−δ)Γ(κ+2)

.

c© Dalalyan, A.S. Sept. 2, 2013 12



13

Conclusion

• We established minimax rates of separation in the model of
regression with random design for null hypotheses
corresponding to the nullspace of a general quadratic
functionals.

• In the case of positive functionals, we also proved
sharp-minimax optimality of the proposed procedure.

• When comparing two norms, the minimax rate of separation is :
ρ∗n = n−

2σ̄
4σ̄+d ∧

1
4 . This rate shows that the watershed between the

two regimes corresponds to the condition σ̄ = d/4. In other
terms, we are in the regular regime when σ̄ > d/4. It is
interesting to note, even if we are unable to establish a direct
connection, that this is also the regime under which the Sobolev
embedding Wσ

2 ⊂ L4([0,1]d ) holds true.

• Open questions : adaptation to the unknown smoothness,
unknown noise level, the case of (sparse) Besov bodies,...
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