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Let WH =
(
WH

t , t ≥ 0
)
be a normalized fractional Brownian motion (fBM), i.e.

the zero mean Gaussian processes with covariance function

EWH
s WH

t =
1

2

(
|s|2H + |t|2H − |t− s|2H

)

with Hurst exponent H ∈ (0, 1).

■ the process is self-similar (WH
at ∼ aHWH

t )
■ presents long range dependence (persistency - antipersistency)
■ has dependent increments (apart for H = 1

2).

For H = 1
2 , W

H
t = Wt is a standard Brownian motion, i.e. independent

increments.
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0 < H < 1
2 H = 1

2
1
2 < H < 1

antipersistent independence persistent

negative Brownian positive
correlated motion correlated



fractional Ornstein-Uhlenbeck (fOU)
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Let X = (Yt, t ≥ 0) be a fractional Ornstein-Uhlenbeck process (fOU), i.e. the
solution of

Yt = y0 − λ

∫ t

0
Ysds+ σWH

t , t > 0, Y0 = y0, (1)

where unknown parameter ϑ = (λ, σ,H) belongs to an open subset Θ of
(0,Λ)× [σ, σ]× (0, 1), 0 < Λ < +∞, 0 < σ < σ < +∞ and WH = (WH

t , t ≥ 0)
is a standard fractional Brownian motion [10, 12] of Hurst parameter H ∈ (0, 1),

The fOU process is not Markovian nor a semimartingale for H 6= 1
2 but

nevertheless Gaussian and ergodic. ([2])

We denote discrete observations of Yt by Xj = Ytj = Y (tj), where
0 = t0 < t1 < · · · < tN = T is a grid of deterministic times.



Auxiliary known facts about fBm
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Let H ∈ (0, 1), t > s, {Wt, t ∈ [0, T ]} a standard Brownian motion and

KH(t, s) = cHs
1
2
−H

∫ t

s

(u− s)H− 3
2uH− 1

2du

with cH =

(
H(2H−1)

Beta(2−2H,H− 1
2)

) 1
2

. The fBM can be written as follows:

WH
t =

∫ t

0
KH(t, s)dWs, t ∈ [0, T ]

The following is called random walk approximation to fBM, t ∈ [0, T ],

B
H,N
t =

[Nt]∑
i=1

√
N





i
N∫

i−1
N

KH
(
[Nt]
N

, s
)
ds



 ξi ξi’s i.i.d., E(ξi) = 0, Var(ξi) = 1.

Then, as N → ∞, BH,N
t

w→ WH
t in Skorohod topology [14].



fOU estimation: QMLE
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Bertin et al. (2011) [1] considered the following statistical problem

dYt = λdt+ dWH
t

with λ ∈ R unknown and H ∈ (12 , 1) known.
Using random walk approximation & Euler scheme for the fOU, with Xj = Ytj ,
tj = j∆, j = 0, 1, . . . , N , N∆ = T

Xj+1 = Xj + a∆+
(
B

H,N
tj+1

−B
H,N
tj

)

the following QMLE estimator of λ

λ̂N = N

Nα−1∑
j=0

(1+αj)(Xj+1−Xj−hj(X1,...,Xj))

F 2
j

Nα−1∑
j=0

(1+αj)2

F 2
j

where αj , Fj and hj(· · · ) are explicit functions on the data.



fOU estimation: true MLE
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Bertin et al. (2011) proved that, under the asymptotic: N → ∞, T = N∆ → ∞
and ∆ = 1

Nα with α < 1 the QMLE estimator λ̂N is unbiased and consistent for λ
given the known H ∈ (12 , 1).

Let SN =
N−1∑
i=0

(
X i+1

N

−X i
N

)2
and given that [15] N2H−1SN ∼ 1, for large N

if H is estimated from the data with

ĤN = 1 +
logSN

logN

by simulation results only it has been shown that the estimator λ̂N is consistent
and its variance is an increasing function of H.



fOU estimation: true MLE
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Hu et al. (2011) [6] considered the following statistical problem

dYt = λdt+ σdWH
t

with λ ∈ R, σ ∈ R
+ unknown and H ∈ (0, 1) known.

Let t = (∆, 2∆, . . . , N∆)′, X = (X1, X2, . . . , XN )′, and

ΓH = [Cov(WH
i∆,W

H
j∆)]i,j=1,2,...,N

Then, by Malliavin calculus, it is possible to prove that the true MLE estimators

µ̂N =
t
′Γ−1

H X

t′Γ−1
H t

and σ̂N =
1

N

(X′Γ−1
H X)(t′Γ−1

H t)− (t′Γ−1
H X)2

t′Γ−1
H t

are strongly consistent as N → ∞ [ though E(σ̂2
N ) = N−1

N
σ2 ]



fOU estimation: true MLE

9 / 33

Central Limit Theorems. Further, it is possible to prove that

√
t′Γ−1

H t(µ̂N − µ)
d→ N

(
0, σ2

)

and

1

σ2

√
N

2

(
σ̂2
N − σ2

) d→ N
(
0, σ2

)

as N → ∞.

Simulations show that the empirical variance of µ̂N increases with H.



fOU estimation: contrast functions
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Ludena (2004) [11] Let H ∈ (12 ,
3
4) be known and consider the “vanishing drift”

fOU process

Yt = y0 +

∫ t

0
σ(θ, Ys)dB

H
s

Let UN (θ) = 1
N

N∑
k=1

h(θ,Xk∆,∆Xkn
H) with h = h(θ, x, y) at most of polynomial

growth in x and y. The minimum contrast estimator

θ̂N = argmin
θ∈Θ

UN (θ)

is asymptotically Gaussian, i.e.
√
N(θ̂N − θ)

d→ N .

Result extends to the following fOU model

dYt = −λYtdt+ σ(θ)dWH
t

with λ > 0 known.



fOU estimation: contrast functions
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Neuenkirch and Tindel (2011) [13] Let H ∈ (12 , 1) be known and consider the fSDE

Yt = y0 +

∫ t

0
b(Ys; θ)ds+

m∑

j=1

σjW
(j)H
t

where W
H
t = (W

(1)H
t ,W

(2)H
t , . . . ,W

(m)H
t )′ is an m-dimensional fBM, σj ,

j = 1, 2, . . . ,m and b(y, θ) are known (up to θ). Let ∆ = κN−α, α ∈ (0, 1) and
κ > 0. Let

QN (θ) =
1

N∆2

N−1∑

k=0


|∆Xk − b(Xk; θ)∆|2 −

m∑

j=1

|σj|2∆2H




then, the least squares estimator θ̂N = argminθ∈Θ |QN (θ)| is strongly consistent.

For the special case dYt = θYtdt+ dWH
t , θ̂N is explicit.



fOU estimation: plug-in
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Xiao et al. (2011) [16] Let H ∈ (12 , 1) be known and consider the fOU process

dYt = −λYtdt+ σdWH
t

The estimator

σ̂2
N = Γ(3−2H)

2HΓ3( 3
2
−H)Γ(H+ 1

2
)(N∆)2−2H×

N∑
j=1

(
j∑

i=1
(i∆)

1
2
−H(j∆−∆− i∆)

1
2
−H∆Xi −

j∑
i=1

(i∆)
1
2
−H(j∆− i∆)

1
2
−H∆Xi

)2

is strongly consistent for σ2.

Moreover, for H ∈ (12 ,
3
4) the estimator λ̂N (with σ known)

λ̂N =

(
1

σ2HΓ(2H)N

N∑

i=0

X2
i

)− 1
2H

is also strongly consistent for λ.
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The present work exposes an estimation procedure for estimating all three
components of ϑ = (λ, σ,H) given the regular discretization of the sample path
Y T = (Yt, 0 ≤ t ≤ T )

dYt = λYtdt+ σdWH
t , t ∈ [0, T ]

from discrete observations

(Xn := Yn∆N
, n = 0, 1, . . . , N) ,

where T = TN = N∆N −→ +∞ and ∆N −→ 0 as N −→ +∞.

Goal: estimate all three elements of ϑ. As H and σ can be efficiently estimated
without the knowledge of λ we propose a two stage procedure.



Quadratic generalized variations
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Let a = (a0, . . . , aK) be a discrete filter of length K + 1, K ∈ N, and of order
L ≥ 1, K ≥ L, i.e.

K∑

k=0

akk
ℓ = 0 for 0 ≤ ℓ ≤ L− 1 and

K∑

k=0

akk
L 6= 0. (2)

Let it be normalized with
K∑

k=0

(−1)1−kak = 1 . (3)

In the following, we will also consider dilatated filter a2 associated to a defined by

a2k =

{
ak′ if k = 2k′

0 otherwise.
for 0 ≤ k ≤ 2K .

Since
2K∑
k=0

a2kk
r = 2r

K∑
k=0

krak, filter a
2 as the same order than a.



Quadratic generalized variations

estimators of H and σ
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Denote by

VN,a =

N−K∑

i=0

(
K∑

k=0

akXi+k

)2

the generalized quadratic variations associated to the filter a (see for instance [7]).
Then, the estimators of H and σ are as follows

ĤN =
1

2
log2

VN,a2

VN,a

and

σ̂N =


−2 · VN,a

∑
k,ℓ akaℓ|k − ℓ|2ĤN∆2ĤN

N




1
2



Properties of estimators of H and σ
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Theorem 1. Let a be a filter of order L ≥ 2. Then, both estimators ĤN and σ̂N
are strongly consistent, i.e.

(ĤN , σ̂N )
a.s.−→ (H,σ) as N −→ +∞.

Moreover, we have asymptotical normality property, i.e. as N → +∞, for all
H ∈ (0, 1), √

N(ĤN −H)
L−→ N (0,Γ1(ϑ, a))

and √
N

logN
(σ̂N − σ)

L−→ N (0,Γ2(ϑ, a))

where Γ1(ϑ, a) and Γ2(ϑ, a) symmetric definite positive matrices depending on σ,
H, λ and the filter a (see next slide).

Proof: based on an application of [7, Theorem 3(i)].



Asymptotic variances of ĤN and σ̂N
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Let

ρ
a
m,an

H (i) =

mK∑
m=0

nK∑
ℓ=0

amk anℓ |mk − nℓ+ i|2H

(mn)H
∑
k,ℓ

akaℓ|k − ℓ|2H

Γ1(ϑ, a) =
1

2 log(2)2

∑

j∈Z

(
ρ
a,a
H (i)2 + ρ

a
2,a2

H (i)2 − 2ρa,a
2

H (i)2
)

and

Γ2(ϑ, a) =
σ2

4
Γ1(ϑ, a)

see also [3].
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Remark 1. Classical filters of order L ≥ 1 are defined by

ak = cL,k =
(−1)1−k

2K

(
K

k

)
=

(−1)1−k

2K
K!

k!(K − k)!
for 0 ≤ k ≤ K.

Daubechies filters of even order can also be considered (see [4]), for instance the
order 2 Daubechies’ filter:

1√
2
(.4829629131445341,−.8365163037378077, .2241438680420134, .1294095225512603)

Remark 2. For classical order 1 quadratic variations (L = 1) and a =
(
−1

2 ,
1
2

)
we

can also obtain consistency for any value of H, but the central limit theorem holds
only for H < 3

4 (see [7]).



Estimator of λ
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From [5], we know the following result

lim
t−→∞

Var(Yt) = lim
t−→∞

1

t

∫ t

0
Y 2
t dt =

σ2Γ (2H + 1)

2λ2H
=: µ2 .

This gives a natural plug-in estimator of λ, namely

λ̂N =


 2 µ̂2,N

σ̂2
NΓ
(
2ĤN + 1

)




− 1

2ĤN

where µ̂2,N is the empirical moment of order 2, i.e

µ̂2,N =
1

N

N∑

n=1

X2
n.



Properties of the estimator of λ
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Theorem 2. Let H ∈
(
1
2 ,

3
4

)
and a mesh satisfying the condition N∆p

N −→ 0,
p > 1, as N −→ +∞. Then, as N −→ +∞,

λ̂N
a.s.−→ λ

and √
TN

(
λ̂N − λ

) L−→ N (0,Γ3(ϑ)),

where Γ3(ϑ) = λ
(
σH

2H

)2
and

σ2
H = (4H − 1)

(
1 +

Γ(1− 4H)Γ(4H − 1)

Γ(2− 2H)Γ(2H)

)
. (4)

Proof. based on [5], [9, Lemma 8], [8] and [2].



Properties of the estimator of λ
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Remark 3. The different conditions on ∆N raise the question of whether such a
rate actually exists. One possible mesh is ∆N = logN

N
.

Remark 4. As in the classical case H = 1
2 , the limit variance Γ3(ϑ) does not

depend on the diffusion coefficient σ. Let us also notice that the quantity σ2
H

appearing in Γ3(ϑ) is an increasing function of H.



Monte Carlo Analysis
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Performance of ĤN and σ̂N
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Let λ = 2 and let σ = 1, 2 for H = 0.5, 0.7, 0.9 in dYt = −λYtdt+ σdWH
t .

ĤN H = 0.5 H = 0.7 H = 0.9

σ = 1 0.499 0.697 0.898
(0.035) (0.033) (0.031)

σ = 2 0.498 0.700 0.898
(0.033) (0.034) (0.033)

σ̂N H = 0.5 H = 0.7 H = 0.9

σ = 1 1.024 1.016 1.081
(0.262) (0.282) (0.437)

σ = 2 2.035 2.073 2.213
(0.510) (0.564) (1.110)

Table 1: Mean average (sd parenthesis) of 500 Monte-Carlo simulations for the estimation of H (left)
and σ (right) for different cases. Here T = 100, N = 1000 and λ = 2.

ĤN H = 0.5 H = 0.7 H = 0.9

σ = 1 0.500 0.700 0.900
(0.003) (0.003) (0.003)

σ = 2 0.500 0.700 0.900
(0.004) (0.003) (0.003)

σ̂N H = 0.5 H = 0.7 H = 0.9

σ = 1 1.000 1.001 0.999
(0.025) (0.026) (0.036)

σ = 2 2.001 2.002 1.997
(0.053) (0.053) (0.073)

Table 2: Mean average (sd in parenthesis) of 500 Monte-Carlo simulations for the estimation of H (left)
and σ (right) for different cases, and for TN = 100, N = 100000 and λ = 2.



Performance of λ̂N
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Let λ = 0.5, 1, H = 0.5, 0.6, 0.7 with σ = 1 in dYt = −λYtdt+ σdWH
t .

λ̂N H = 0.5 H = 0.6 H = 0.7

λ = 0.5 0.093 0.214 0.353
(0.037) (0.057) (0.069)

λ = 1 0.138 0.276 0.432
(0.052) (0.068) (0.078)

λ̂N H = 0.5 H = 0.6 H = 0.7

λ = 0.5 0.476 0.514 0.605
(0.148) (0.166) (0.298)

λ = 1 0.906 0.940 1.005
(0.227) (0.238) (0.412)

Table 3: Mean average (and standard deviation in parenthesis) of 500 Monte-Carlo simulation for the
estimation of λ for different values of H and λ. Here σ = 1 and TN = 1 and N = 100000 (left) and
TN = 100 and N = 1000 (right).

The value of TN is important for the estimation of the drift. The consistency of
the estimates are valid for increasing values of TN and decreasing values of the
mesh size ∆N . Moreover, the bigger H, the harder the estimation of the drift
parameter. This phenomena can be explained by the long-range dependence
property of the fOU process.



Asymptotic distribution of λ̂
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Figure 1: Kernel estimation for the density of
(√

TN

(
λ̂
(m)
N

− λ
))

m=1...M
, M = 5000, for TN =

1000 and TN = 100000 (fill line) and the theoretical Gaussian density N (0,Γ3(ϑ)) (dashed line) for ϑ =
(λ, σ,H) = (0.3, 1, 0.7) (for the value of Γ3(ϑ) see Theorem 2).
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The YUIMA R package
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The Yuima Project aims at implementing, via the yuima package, a very abstract
framework to describe probabilistic and statistical properties of stochastic processes
in a way which is the closest as possible to their mathematical counterparts but
also computationally efficient.

■ it is an R package, using S4 classes and methods, where the basic class extends
to SDE’s with jumps (simple Poisson, Lévy), SDE’s driven by fBM, Markov
switching regime processes, HMM, etc.

■ separates the data description from the inference tools and simulation schemes
■ the design allows for multidimensional, multi-noise processes specification
■ it includes a variety of tools useful in finance, like asymptotic expansion of

functionals of stochastic processes via Malliavin calculus



The yuima object
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The main object is the yuima object which allows to describe the model in a
mathematically sound way.

Then the data and the sampling structure can be included as well or, just the
sampling scheme from which data can be generated according to the model.

The package exposes very few generic functions like simulate, qmle, plot, etc.
and some other specific functions for special tasks.

Before looking at the details, let us see an overview of the main object.
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The model specification
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We consider here the three main classes of SDE’s which can be easily specified. All
multidimensional and eventually parametric models.

■ Diffusions dXt = a(t,Xt)dt+ b(t,Xt)dWt

■ Fractional Gaussian Noise, with H the Hurst parameter

dXt = a(t,Xt)dt+ b(t,Xt)dW
H
t

■ Diffusions with jumps, Lévy

dXt = a(Xt)dt+ b(Xt)dWt +

∫

|z|>1

c(Xt−, z)µ(dt, dz)

+

∫

0<|z|≤1

c(Xt−, z){µ(dt, dz)− ν(dz)dt}



Fractional Gaussian Noise
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dXt = −2Xtdt+ dWH
t

> samp <- setSampling(Terminal=100, n=10000)

> mod <- setModel(drift="-2*x", diffusion="1",hurst=0.7)

> ou <- setYuima(model=mod, sampling=samp)

> fou <- simulate(ou, xinit=1)

0 20 40 60 80 100
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-0
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0
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1
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Estimation
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The parameters H and σ can be estimates via the function qgv (quadratic
generalized variations)

> qgv(fou)

and the parameter λ using the least squares estimator lse

> lse(fou,frac=TRUE)

For more informations and software see

http://R-Forge.R-Project.org/projects/yuima

THANKS

http://R-Forge.R-Project.org/projects/yuima
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