Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors

Victor Chernozhukov (MIT), Denis Chetverikov (UCLA), and Kengo Kato (U. of Tokyo)

Sep. 3. 2013

- This talk is based upon the paper:

Chernozhukov, V., Chetverikov, D. and K. (2012). Central limit theorems and multiplier bootstrap when p is much larger than n. arXiv:1212.6906. [A revised version is to appear in Ann. Statist.]

The title was changed during the revision process.

- Applications to moment inequality models (if time allowed) are based on an ongoing paper.

Introduction

- Let x_{1}, \ldots, x_{n} be independent random vectors in $\mathbb{R}^{p}, p \geq 2$.
- $\mathrm{E}\left[x_{i}\right]=0$ and $\mathrm{E}\left[x_{i} x_{i}^{\prime}\right]$ exists. $\mathrm{E}\left[x_{i} x_{i}^{\prime}\right]$ may be degenerate.
- (Important!) Possibly $p \gg n$. Keep in mind $p=p_{n}$.
- This paper is about approximating the distribution of

$$
T_{0}=\max _{1 \leq j \leq p} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} x_{i j}
$$

- By making

$$
x_{i, p+1}=-x_{i 1}, \ldots, x_{i, 2 p}=-x_{i p}
$$

we have

$$
\max _{1 \leq j \leq p}\left|\frac{1}{\sqrt{n}} \sum_{i=1}^{n} x_{i j}\right|=\max _{1 \leq j \leq 2 p} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} x_{i j}
$$

Introduction

- Let y_{1}, \ldots, y_{n} be independent normal random vectors with

$$
y_{i} \sim N\left(0, \mathrm{E}\left[x_{i} x_{i}^{\prime}\right]\right)
$$

- Define

$$
Z_{0}=\max _{1 \leq j \leq p} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} y_{i j}
$$

- When p is fixed, (subject to the Lindeberg condition) the central limit theorem guarantees that

$$
\sup _{t \in \mathbb{R}}\left|\mathrm{P}\left(T_{0} \leq t\right)-\mathrm{P}\left(Z_{0} \leq t\right)\right| \rightarrow 0 .
$$

Introduction

- Basic question: How large $p=p_{n}$ can be while having

$$
\sup _{t \in \mathbb{R}}\left|\mathrm{P}\left(T_{0} \leq t\right)-\mathrm{P}\left(Z_{0} \leq t\right)\right| \rightarrow 0 ?
$$

- Related to multivariate CLT with growing dimension (Portnoy, 1986, PTRF; Götze, 1991, AoP; Bentkus, 2003, JSPI, etc.).
- Write

$$
X=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} x_{i}, Y=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} y_{i} .
$$

They are concerned with conditions under which

$$
\sup _{A \in \mathcal{A}}|\mathrm{P}(X \in A)-\mathrm{P}(Y \in A)| \rightarrow 0
$$

while allowing for $p=p_{n} \rightarrow \infty$.

Introduction

- Bentkus (2003) proved that (in case of i.i.d. and $\mathrm{E}\left[x_{i} x_{i}^{\prime}\right]=I$),

$$
\sup _{A: \text { convex }}|\mathrm{P}(X \in A)-\mathrm{P}(Y \in A)|=O\left(p^{1 / 4} \mathrm{E}\left[\left|x_{1}\right|^{3}\right] n^{-1 / 2}\right) .
$$

Typically $\mathrm{E}\left[\left|x_{1}\right|^{3}\right]=O\left(p^{3 / 2}\right)$, so that the $\mathrm{RHS}=o(1)$ provided that

$$
p=o\left(n^{2 / 7}\right) .
$$

- The main message of the paper: to make

$$
\sup _{t \in \mathbb{R}}\left|\mathrm{P}\left(T_{0} \leq t\right)-\mathrm{P}\left(Z_{0} \leq t\right)\right| \rightarrow 0
$$

p can be much larger. Subject to some conditions,

$$
\log p=o\left(n^{1 / 7}\right)
$$

will suffice.

Introduction

- Still the above approximation results are not directly usable unless the cov. structure between the coordinates in X is unknown.
- In some cases, we know the cov. structure. e.g. think of $x_{i}=\varepsilon_{i} z_{i}$ where ε_{i} is a scalar (error) r.v. with mean zero and common variance, and z_{i} is the vector of non-stochastic covariates. Then T_{0} is the maximum of t-statistics.
- But usually not. In such cases the dist. of Z_{0}. is unknown.
- \Rightarrow We propose a Gaussian multiplier bootstrap for approximating the dist. of T_{0} when the cov. structure between the coordinates of X is unknown. Its validity is established through the Gaussian approximation results. Still p can be much larger than n.

Applications

- Selecting design-adaptive tuning parameters for Lasso (Tibshirani, 1996, JRSSB) and Dantzig selector (Candès and Tao, 2007, AoS).
- Multiple hypotheses testing (too many references).
- Adaptive specification testing. These three applications are examined in the arXiv paper.
- Testing many moment inequalities. Will be treated if time allowed.

Literature

- Classical CLTs with $p=p_{n} \rightarrow \infty$: Portnoy (1986, PTRF), Götze (1991, AoP), Bentkus (2003, JSPI), among many others.
- Modern approaches on multivariate CLTs: Chatterjee (2005, arXiv), Chatterjee and Meckes (2008, ALEA), Reinert and Röllin (2009, AoP), Röllin (2011,AIHP). Developing Stein's methods for normal approximation. Harsha, Klivans, and Meka (2012, J.ACM).
- Bootstrap in high dim.: Mammen (1993, AoS), Arlot, Blanchard, and Roquain (2010a,b, AoS).

Main Thm.

Theorem

Suppose that there exists const. $0<c_{1}<C_{1}$ s.t.
$c_{1} \leq n^{-1} \sum_{i=1}^{n} \mathrm{E}\left[x_{i j}^{2}\right] \leq C_{1}, 1 \leq \forall j \leq p$. Then

$$
\begin{aligned}
& \sup _{t \in \mathbb{R}}\left|\mathrm{P}\left(T_{0} \leq t\right)-\mathrm{P}\left(Z_{0} \leq t\right)\right| \\
& \leq C \inf _{\gamma \in(0,1)}\left[n^{-1 / 8}\left(M_{3}^{3 / 4} \vee M_{4}^{1 / 2}\right) \log ^{7 / 8}(p n / \gamma)\right. \\
& \\
& \left.\quad+n^{-1 / 2} Q(1-\gamma) \log ^{3 / 2}(p n / \gamma)+\gamma\right],
\end{aligned}
$$

where $C=C\left(c_{1}, C_{1}\right)>0$. Here
$Q(1-\gamma)=(1-\gamma)$-quantile of $\max _{i, j}\left|x_{i j}\right| \vee(1-\gamma)$-quantile of $\max _{i, j}\left|y_{i j}\right|$,
and $M_{k}=\max _{1 \leq j \leq p}\left(n^{-1} \sum_{i=1}^{n} \mathrm{E}\left[\left|x_{i j}\right|^{k}\right]\right)^{1 / k}$.

Comments

- No restriction on correlation structure.
- The extra parameter γ appears essentially to avoid the appearance of the term of the form

$$
\mathrm{E}\left[\max _{1 \leq j \leq p}\left|x_{i j}\right|^{k}\right]
$$

in the bound. Notice the difference from M_{k}.

- To avoid this, we use a suitable truncation, and γ controls the level of truncation.

Techniques

- There are a lot of techniques used to prove the main thm.
- Directly bounding the probability difference $\left(\mathrm{P}\left(T_{0} \leq t\right)-\mathrm{P}\left(Z_{0} \leq t\right)\right)$ is difficult. Transform the problem into bounding

$$
\mathrm{E}[g(X)-g(Y)], g: \text { smooth, }
$$

where $X=n^{-1 / 2} \sum_{i=1}^{n} x_{i}, Y=n^{-1 / 2} \sum_{i=1}^{n} y_{i}$.

- How? Approximate $z=\left(z_{1}, \ldots, z_{p}\right)^{\prime} \mapsto \max _{1 \leq j \leq p} z_{j}$ by

$$
F_{\beta}(z)=\beta^{-1} \log \left(\sum_{j=1}^{p} e^{\beta z_{j}}\right)
$$

Then $0 \leq F_{\beta}(z)-\max _{1 \leq j \leq p} z_{j} \leq \beta^{-1} \log p$.

Techniques

- Approximate the indicator function $1(\cdot \leq t)$ by a smooth function h (standard). Then take $g=h \circ F_{\beta}$.
- Use a variant of Stein's method to bound

$$
\begin{equation*}
\mathrm{E}[g(X)-g(Y)] \tag{*}
\end{equation*}
$$

Truncation + some fine properties of F_{β} are used here.

- To obtain a bound on the probability difference from (*), we need an anti-concentration ineq. for maxima of normal random vectors.
- Intuition: from (*), we will have a bound on

$$
\mathrm{P}\left(T_{0} \leq t\right)-\mathrm{P}\left(Z_{0} \leq t+\text { error }\right)
$$

Want to replace $\mathrm{P}\left(Z_{0} \leq t+\right.$ error $)$ by $\mathrm{P}\left(Z_{0} \leq t\right)$.

Simplified anti-concentration ineq.

Lemma (Simplified form)
Let $\left(Y_{1}, \ldots, Y_{p}\right)^{\prime}$ be a normal random vector with $\mathrm{E}\left[Y_{j}\right]=0$ and $\mathrm{E}\left[Y_{j}^{2}\right]=1$ for all $1 \leq j \leq p$. Then $\forall \epsilon>0$,

$$
\sup _{t \in \mathbb{R}} \mathrm{P}\left(\left|\max _{1 \leq j \leq p} Y_{j}-t\right| \leq \epsilon\right) \leq 4 \epsilon\left(\mathrm{E}\left[\max _{1 \leq j \leq p} Y_{j}\right]+1\right)
$$

This bound is universally tight (up to constant).
Note 1: $\mathrm{E}\left[\max _{1 \leq j \leq p} Y_{j}\right] \leq \sqrt{2 \log p}$.
Note 2: The inequality is dimension-free: Easy to extend it to separable Gaussian processes.

Some consequences

Assumption: either

$$
\begin{array}{ll}
\text { (E.1) } & \mathrm{E}\left[\exp \left(\left|x_{i j}\right| / B_{n}\right)\right] \leq 2, \forall i, j ; \text { or } \\
\text { (E.2) } & \left(\mathrm{E}\left[\max _{1 \leq j \leq p} x_{i j}^{4}\right]\right)^{1 / 4} \leq B_{n}, \forall i .
\end{array}
$$

Moreover, assume both

$$
\begin{array}{ll}
\text { (M.1) } & c_{1} \leq n^{-1} \sum_{i=1}^{n} \mathrm{E}\left[x_{i j}^{2}\right] \leq C_{1}, \forall j ; \text { and } \\
\text { (M.2) } & n^{-1} \sum_{i=1}^{n} \mathrm{E}\left[\left|x_{i j}\right|^{2+k}\right] \leq B_{n}^{k}, k=1,2, \forall j
\end{array}
$$

Here $B_{n} \rightarrow \infty$ is allowed. e.g. consider the case where $x_{i}=\varepsilon_{i} z_{i}$ with ε_{i} mean zero scalar error and z_{i} vector of non-stochastic covariates normalized s.t. $n^{-1} \sum_{i=1}^{n} z_{i j}^{2}=1, \forall j$. Then (E.2),(M.1),(M.2) are satisfied if

$$
\mathrm{E}\left[\varepsilon_{i}^{2}\right] \geq c_{1}, \mathrm{E}\left[\varepsilon_{i}^{4}\right] \leq C_{1},\left|z_{i j}\right| \leq B_{n}, \forall i, j,
$$

after adjusting constants.

Corollary

Corollary

Suppose that one of the following conditions is satisfied:
(i) (E.1) and $B_{n}^{2} \log ^{7}(p n) \leq C_{1} n^{1-c_{1}}$; or
(ii) (E.2) and $B_{n}^{4} \log ^{7}(p n) \leq C_{1} n^{1-c_{1}}$.

Moreover, suppose that (M.1) and (M.2) are satisfied. Then

$$
\sup _{t \in \mathbb{R}}\left|\mathrm{P}\left(T_{0} \leq t\right)-\mathrm{P}\left(Z_{0} \leq t\right)\right| \leq C n^{-c}
$$

where c, C depend only on c_{1}, C_{1}.

Multiplier bootstrap

- Unless the cov. structure of X is known, the dist. of Z_{0} is still unknown. Propose a multiplier bootstrap.
- Generate i.i.d. $N(0,1)$ r.v.'s e_{1}, \ldots, e_{n} indep. of x_{1}, \ldots, x_{n}. Define

$$
W_{0}=\max _{1 \leq j \leq p} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} e_{i} x_{i j}
$$

- Note that cond. on x_{1}, \ldots, x_{n},

$$
n^{-1 / 2} \sum_{i=1}^{n} e_{i} x_{i} \sim N\left(0, n^{-1} \sum_{i=1}^{n} x_{i} x_{i}^{\prime}\right) .
$$

"Close" to $N\left(0, n^{-1} \sum_{i=1}^{n} \mathrm{E}\left[x_{i} x_{i}^{\prime}\right]\right) \stackrel{d}{=} Y$. Recall $Z_{0}=\max _{1 \leq j \leq p} Y_{j}$.

- Bootstrap critical value:

$$
c_{W_{0}}(\alpha)=\inf \left\{t \in \mathbb{R}: \mathrm{P}_{e}\left(W_{0} \leq t\right) \geq \alpha\right\}
$$

Theorem (Multiplier bootstrap theorem)
Suppose that one of the following conditions is satisfied:
(i) (E.1) and $B_{n}^{2} \log ^{7}(p n) \leq C_{1} n^{1-c_{1}}$; or
(ii) (E.2) and $B_{n}^{4} \log ^{7}(p n) \leq C_{1} n^{1-c_{1}}$.

Moreover, suppose that (M.1) and (M.2) are satisfied. Then

$$
\sup _{\alpha \in(0,1)}\left|\mathrm{P}\left(T_{0} \leq c_{W_{0}}(\alpha)\right)-\alpha\right| \leq C n^{-c},
$$

where c, C depend only on c_{1}, C_{1}.

Key fact

The key to the above theorem is the fact that

$$
\sup _{t \in \mathbb{R}}\left|\mathrm{P}_{e}\left(W_{0} \leq t\right)-\mathrm{P}\left(Z_{0} \leq t\right)\right|
$$

is essentially controlled by

$$
\max _{1 \leq j, k \leq p}\left|n^{-1} \sum_{i=1}^{n}\left(x_{i j} x_{i k}-\mathrm{E}\left[x_{i j} x_{i k}\right]\right)\right|
$$

which can be $o_{P}(1)$ even if $p \gg n$.

Testing many moment inequalities

- $x_{1}, \ldots, x_{n} \sim$ i.i.d. in \mathbb{R}^{p} with $\mathrm{E}\left[x_{i}\right]=\mu$. Assume $\sigma_{j}^{2}=\operatorname{Var}\left(x_{i j}\right)>0, \forall j$.
- Possibly $p \gg n$. Think of $p=p_{n}$.
- We are interested in testing the null hypothesis

$$
H_{0}: \mu_{j} \leq 0, \forall j,
$$

against the alternative

$$
H_{1}: \mu_{j}>0, \exists j .
$$

Literature on testing moment inequalities

- Testing unconditional moment inequalities: Chernozhukov, Hong, and Tamer (2007, ECMT), Romano and Shaikh (2008, JSPI), Andrews and Guggenberger (2009, ET), Andrews and Soares (2010, ECMT), Canay (2010, JoE), Bugni (2011, working), Andrews and Jia-Barwick (2012, ECMT), Romano, Shaikh, and Wolf (2012, working). \# of moment ineq. is fixed.
- Testing conditional moment inequalities: Andrews and Shi (2013, ECMT), Chernozhukov, Lee, and Rosen (2013, ECMT), Armstrong (2011, working), Chetverikov (2011, working), Armstrong and Chan (2012, working).
- When many moment inequalities?: Entry game example in Ciliberto and Tamer (2009, ECMT), testing conditional moment inequalities in Andrews and Shi (2013, ECMT).

Test statistic and MB critical value

- Def. $\hat{\mu}_{j}=n^{-1} \sum_{i=1}^{n} x_{i j}$ and $\hat{\sigma}_{j}^{2}=n^{-1} \sum_{i=1}^{n}\left(x_{i j}-\hat{\mu}_{j}\right)^{2}$.
- Test stat.

$$
T=\max _{1 \leq j \leq p} \sqrt{n} \hat{\mu}_{j} / \hat{\sigma}_{j}
$$

- Under H_{0},

$$
T \leq \max _{1 \leq j \leq p} \sqrt{n}\left(\hat{\mu}_{j}-\mu_{j}\right) / \hat{\sigma}_{j} .
$$

Want to approximate the distribution of the RHS.

- Generate i.i.d. $N(0,1)$ r.v.'s e_{1}, \ldots, e_{n} indep. of the data. Def.

$$
\begin{aligned}
& W=\max _{1 \leq j \leq p} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} e_{i}\left(x_{i j}-\hat{\mu}_{j}\right) / \hat{\sigma}_{j} \\
& c_{W}(1-\alpha)=\text { conditional }(1-\alpha) \text {-quantile of } W
\end{aligned}
$$

Refinement by moment selection

- Take $0<\beta_{n}<\alpha / 2 . \beta_{n} \rightarrow 0$ is allowed but $\sup _{n \geq 1} \beta_{n}<\alpha / 2$.
- Take

$$
\hat{J}=\left\{j \in\{1, \ldots, p\}: \hat{\mu}_{j} \geq-2 c_{W}\left(1-\beta_{n}\right) / \sqrt{n}\right\} .
$$

Def.

$$
\begin{aligned}
& W_{R}=\max _{j \in \hat{J}} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} e_{i}\left(x_{i j}-\hat{\mu}_{j}\right) / \hat{\sigma}_{j} \\
& c_{W_{R}}(1-\alpha)=\text { conditional }\left(1-\alpha+2 \beta_{n}\right) \text {-quantile of } W_{R}
\end{aligned}
$$

Size control

Theorem

Define $z_{i j}=\left(x_{i j}-\mu_{j}\right) / \sigma_{j}$ and $z_{i}=\left(z_{i 1}, \ldots, z_{i p}\right)^{\prime}$. Suppose that (E.2) and (M.2) are satisfied with $x_{i}=z_{i}$. Then

$$
\begin{aligned}
& \mathrm{P}\left(T>c_{W}(1-\alpha)\right) \leq \alpha+C n^{-c} \\
& \left.\mathrm{P}\left(T>c_{W_{R}}(1-\alpha)\right) \leq \alpha+C n^{-c}, \quad \text { (if } \log \left(1 / \beta_{n}\right) \leq C_{1} \log n\right)
\end{aligned}
$$

Moreover, if all the inequalities are binding and $\beta_{n} \leq C_{1} n^{-c_{1}}$, then

$$
\begin{aligned}
& \mathrm{P}\left(T>c_{W}(1-\alpha)\right) \geq \alpha-C n^{-c} \\
& \mathrm{P}\left(T>c_{W_{R}}(1-\alpha)\right) \geq \alpha-C n^{-c}
\end{aligned}
$$

Here c, C depend only on c_{1}, C_{1}.

