
Estimation of Integrated Covariances in the
Simultaneous Presence of Nonsynchronicity,

Noise and Jumps

Yuta Koike

Graduate School of Mathematical Sciences

University of Tokyo

JAPAN

September 3, 2013

1



Outline

2 Introduction

2 Model

2 Construction of the estimator

2 Main result

2 Simulation

2 Conclusions

2



Introduction

2 The aim of this talk Estimating integrated covariances

separately from jumps using high-frequency financial data

▽ Important for identifying the sources of risks (systematic

or idiosyncratic, normal or non-normal, etc.)

2 We try to deal with the following problems:

• Nonsynchronous observation times

• Microstructure noise

• Time endogeneity
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Model: Latent log-prices

2 Z1, Z2 Latent log-price processes of two assets� �
dZk

t = akt dt+ σkt−dW
k
t︸ ︷︷ ︸

continuous part

+ ckt−dL
k
t︸ ︷︷ ︸

jump

, d[W 1,W 2]t = ηtdt.� �
• B(0) = (Ω(0),F (0), (F (0)

t ), P (0)): Stochastic basis

• W k : Standard Wiener process on B(0)

• Lk: Pure jump Lévy process on B(0)

• ak, σk, ck, η: Càdlàg (F (0)
t )-adapted processes

2 Objective Integrated covariance: ICt =
∫ t
0 σ

1
sσ

2
sηsds
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Model: Observation times

2 I = (Si)∞i=0, J = (T j)∞j=0 Sequences of (F (0)
t )-stopping

times satisfying Si ↑ ∞, T i ↑ ∞ as i→ ∞.

2 n ∈ N: Parameter representing the observation frequency

2 I and J depend on n and assume that

n1−ε

[
sup
i:Si≤t

(Si − Si−1) ∨ sup
j:T j≤t

(T j − T j−1)

]
→p 0

as n→ ∞ for any ε, t > 0 (S−1 = T−1 := 0).
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Model: Microstructure noise

2 Z1
Si ,Z

2
T j Noisy observation data of Z1 and Z2 observed at

each times in I and J respectively:

Z1
Si = Z1

Si + U1
Si , Z2

T j = Z2
T j + U2

T j .

2 (U1
Si)

∞
i=0, (U

2
T j )

∞
j=0 Centered independent random variables,

conditionally on F (0)

• Qt(ω
(0), du): Conditional law of (U1

t , U
2
t ) (a transition

probability from (Ω(0),F (0)
t ) into R2 with

∫
uQt(du) = 0)

• An appropriate stochastic basis (Ω,F , (Ft), P ) is

constructed in the same way as Jacod et al. (2009)
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Construction of the estimator

2 The aim of this talk Estimating ICt from the observation

data (Z1
Si ,Z

2
T j )i,j:Si,T j≤t as n→ ∞ for every t ≥ 0.

2 If both jumps and noise are absent, we can use the
Hayashi-Yoshida estimator (Hayashi & Yoshida, 2005):∑

i,j:Si∨T j≤t

(Z1
Si − Z1

Si−1)(Z2
T j − Z2

T j−1)1{[Si−1,Si)∩[T j−1,T j )̸=∅}

2 Our approach

• Reconstructing the returns of the continuous parts from

the observed returns

• Constructing a Hayashi-Yoshida type estimator based on

the reconstructed returns
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Removing the noise: Pre-averaging

2 Choose a positive integer kn satisfying kn = θ
√
n+ o(n1/4)

for some θ > 0 (e.g., kn = ⌈θ
√
n⌉)

2 Choose a weight function g on [0, 1]. Here g(x) = x ∧ (1− x)

is used for simplicity.

2 Pre-averaging (in tick time) (cf. Podolskij & Vetter, 2009):

Z
1
(I)i =

kn−1∑
p=1

g

(
p

kn

)
(Z1

Si+p − Z1
Si+p−1).

2 (Z
1
(I)i)i seem to be “noise-free” returns
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Removing the noise: Pre-averaging

2 Naive approach (in the absence of jumps) Summing the

cross-products Z
1
(I)iZ2

(J )j1{[Si,Si+kn )∩[T j ,T j+kn )̸=∅} over

i, j and scaling appropriately (cf. Christensen et al., 2010)

⇒ But this approach is possibly ineffective and intractable

(due to using the common pre-averaging window kn)

2 For example, if [Si, Si+m) ⊂ [T j , T j+1) for some i, j,m,

Z
1
(I)iZ2

(J )j
′
1{[Si,Si+kn )∩[T j′ ,T j′+kn )̸=∅} j′ = 0, 1, . . .

will involve many non-overlap cross-products

⇒ We partially pre-synchronize the data
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Pre-synchronization: Refresh time

2 Refresh time sampling Define (Ŝk, T̂ k, Rk)∞k=0 sequentially by

Ŝ0 := S0, T̂ 0 := T 0, R0 := S0 ∨ T 0 and

Ŝk := min{Si|Si > Rk−1}, T̂ k := min{T j |T j > Rk−1}

Rk := Ŝk ∨ T̂ k

2 Pre-averaging in refresh time

Z
1
i := Z

1
(Î)i =

kn−1∑
p=1

g

(
p

kn

)
(Z1

Ŝi+p − Z1
Ŝi+p−1),

Z
2
j := Z

2
(Ĵ )j =

kn−1∑
q=1

g

(
q

kn

)
(Z2

T̂ j+q − Z2
T̂ j+q−1)
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Removing the jumps: Thresholding

2 Large pre-averaging data will involve jumps

2 Thresholding Remove the pre-averaging data exceeding

predetermined threshold values (cf. Äıt-Sahalia et al., 2012;

Podolskij & Ziggel, 2010):

Z̃1
i = Z

1
i 1{|Z1

i |2≤ϱ1n(Ŝ
i)}, Z̃2

j = Z
2
j1{|Z2

j |2≤ϱ2n(T̂
i)}

where ϱkn(t) = αk
n(t)ρn with

• αk
n(t): Sequence of positive-valued stochastic processes

• ρn: Sequence of positive numbers
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Construction of the estimator

2 Our estimator PTHY n
t is defined by� �

PTHY n
t =

1

(ψHY kn)2

∑
i,j:Ŝi+kn∨T̂ j+kn≤t

Z̃1
i Z̃

2
jK̄

ij ,

� �
• ψHY =

∫ 1
0 g(x)dx = 1

4 (Normalizing factor),

• K̄ij = 1{[Ŝi,Ŝi+kn )∩[T̂ j ,T̂ j+kn )̸=∅} (Hayashi-Yoshida type

kernel)
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Main result: Notation

2 D(R+): Skorohod space

2 Υt(ω
(0)): Covariance matrix of Qt(ω

(0), du)

2 Γk = [Rk−1, Rk) for each k

2 (Hn
t ): Filtration generated by W k, ak, σk, ck (k = 1, 2), η,

Υ,
∑

i 1{Si≤·} and
∑

j 1{T j≤·}

2 For each ρ > 0, define the processes G(ρ)n and χn by

G(ρ)ns = E
[(
n|Γk|

)ρ ∣∣Hn
Rk−1

]
, χn

s = P (Ŝk = T̂ k
∣∣Hn

Rk−1)

when s ∈ Γk (| · | denotes the Lebesgue measure).
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Main result: Conditions

2 Condition on the duration (standard and necessary for

computing the asymptotic variance explicitly)

[A1] (i) There exists a càdlàg F(0)-adapted process G such that

G and G− do not vanish and G(1)n →p G in D(R+) as

n→ ∞.

(ii) There exists a càdlàg F(0)-adapted process χ such that

χn →p χ in D(R+) as n→ ∞.

(iii) sup0≤s≤tG(2)
n
s is tight as n→ ∞ for every t.
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Main result: Conditions

2 Condition to deal with the time endogeneity

• General case Strong predictability type condition

(cf. Hayashi & Yoshida, 2011)

[A2] There exists a constant ξ ∈ (0, 12) such that Si and T i

are (F (0)

(t−n−ξ)+
)-stopping times for every n, i ∈ N.

• Finite activity case Continuity condition on the

conditionally expected duration

[A2′] (i) Si and T i are (F (0)
t )-predictable times for every i

(ii) G and χ are Itô-type semimartingales

(iii) nδ(G(1)n −G) →p 0 and nδ(χn − χ) →p 0 in

D(R+) for some δ > 0
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Main result: Conditions

2 Condition on the activity of the jump processes (standard);

for each β ∈ [0, 2]:

[Kβ] It holds that
∫
R |x|β ∧ 1F k(dx) <∞ for k = 1, 2, where

F k is the Lévy measure of Lk.

2 Set

κ =
7585

1161216
, κ =

151

20160
, κ̃ =

1

24

(quantities appearing in the asymptotic variance and

determined by the choice of g)
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Theorem� �
Under standard regularity conditions on the coefficient processes, the

moment of the noise process and the threshold processes,

(i) if [A1], [A2] and [Kβ] are satisfied for some β ∈ [0, 1), then

n1/4(PTHY n − IC)
ds−→

∫ ·

0

wsdW̃s in D(R+) (1)

as n → ∞, where W̃ is a standard Wiener process (defined on an

extension of B) independent of F and w is given by

w2
s =ψ−4

HY

[
θκ(σ1

sσ
2
s)

2(1 + η2s)Gs + θ−3κ̃
{
Υ11

s Υ22
s +

(
Υ12

s χs

)2} 1

Gs

+ θ−1κ
{
(σ1

s)
2Υ22

s + (σ2
s)

2Υ11
s + 2σ1

sσ
2
sηsΥ

12
s χs

}]
.

(ii) if [A1], [A2′] and [K0] are satisfied, then (1) holds true.� �
18



Simulation

2 Latent Zk = Xk + Jk, k = 1, 2

• X1, X2 (continuous part): Bivariate SV1F model (same

parametrization as Barndorff-Nielsen et al. (2011) )

• R = 0.91 (Correlation between X1 and X2)

• J1, J2 (Jump): 3 Scenarios

1. J1 = J2 = 0 (No jump)

2. J1 = J2 = L0, where L0 is a stratified NIG-CP process with

a single jump per unit time (FA jump)

3. J1 = L1, J2 = RL1 +
√
1−R2L2, where L1 and L2 are

mutually independent VG processes (IA jump)

(Ll has the same parametrization as Veraart (2010), especially

the QV of the jumps is the 10% of the IV in their mean values)
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2 Sampling (Si) (resp. (T j)): Poisson arrival times with

intensity n/λ1 (resp. n/λ2) in [0, 1]

• n = 23, 400, (λ1, λ2) = (3, 6), (10, 20), (30, 60)

2 Noise (cf. Barndorff-Nielsen et al., 2011)

Uk
t ∼ N

0, 0.001

√√√√ 1

n

n∑
i=1

σ4
i/n

 , Corr(U1
t , U

2
t ) = R

2 Tuning parameter (cf. Christensen et al., 2013)

• kn = ⌈0.15
√
N⌉ (N: Number of the refresh times − 1)

• Threshold (ad-hoc, but easy and fairly effective)

ϱ1n(Ŝ
i) = 2 log(N)1.2

π/2

K − 2kn + 1

i−2kn∑
p=i−K

|Z1
(Î)p||Z1

(Î)p+kn |

with K = ⌈N3/4⌉ (put ϱ1n(Ŝ
i) = ϱ1n(Ŝ

K) for i < K)
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Scenario 1 2 3

PTHY

λ = (3, 6) −.002 (.104) .003 (.104) .005 (.103)

λ = (10, 20) −.011 (.135) −.006 (.137) −.003 (.137)

λ = (30, 60) −.037 (.200) −.033 (.203) −.030 (.200)

BPV

λ = (3, 6) −.020 (.136) .012 (.148) .017 (.150)

λ = (10, 20) −.058 (.165) −.028 (.166) −.022 (.165)

λ = (30, 60) −.142 (.246) −.116 (.236) −.111 (.235)

Note. The bias and rmse (in parenthesis) are reported. Number of repetition=

1, 000. Upper panel: Our estimator, Lower panel: Subsampled bipower covaria-

tion based on 5-min returns (benchmark)
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Conclusions

2 Construction of the estimator

• Pre-averaging ⇒ Removing the noise

• Refresh time sampling + Hayashi-Yoshida method

⇒ Handling the nosynchronicity

• Thresholding ⇒ Separating the jumps

2 Asymptotic mixed normality was shown in the cases

• Finite variation jumps + Strong Predictability

• Finite activity jumps + Continuity of conditionally

expected duration

2 More information arXiv: 1302.5202, 1305.1229
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Appendix A: Regularity conditions

2 Condition on the coefficient processes (standard)

[A3] ak, σk, ck (k = 1, 2), η and Υij (i, j = 1, 2) are Itô-type

semimartingales

2 Condition on the noise processes (standard)

[A4] (
∫
|u|rQt(·, du))t≥0 is a locally bounded process for every

r > 0
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Appendix A: Regularity conditions

2 Condition on the threshold processes (standard)

[T] (i) We have

ρn → 0 and
n−

1
2
+γ log n

ρn
→ 0

as n→ ∞ for some γ ∈ (0, 12).

(ii) For each k ∈ {1, 2}, there exists a sequence of

stopping times (τkm)m∈N such that τkm ↑ ∞ and both

sup0≤t<τkm
αk
n(t) and sup0≤t<τkm

[1/αk
n(t)] are tight as

n→ ∞ for all m.

27



Appendix A: Precise statement of the main theorem

Theorem� �
(i) Suppose [A1]–[A4] and [Kβ] hold for some β ∈ [0, 1). Suppose

also [T] holds with ρn = O(n−1/2(2−β)). Then (1) holds true.

(ii) Suppose [A1], [A2′], [A3]–[A4′], [K0] and [T] hold. Then (1)

holds true.� �
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