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I. A statistical model based on discrete observations of a
Lévy driven SDE

This part of the talk is based on the joint research with D.Ivanenko.

Consider a solution Xθ to an SDE driven by a Lévy process Z:

dXθ
t = aθ(X

θ
t )dt+ dZt, X0 = x0. (1)

Denote by Pθn the distribution of the sample (Xh, . . . , Xnh), and consider the
statistical experiments

En =
(
Rn,B(Rn),Pθn, θ ∈ Θ

)
, n ≥ 1.

The state space for X,Z is R, the parameter set Θ is an open interval in R.
In our model:

the noise is an infinite intensity Lévy process without a diffusion part;

we consider the fixed frequency case: on the contrary to high frequency
models, where hn → 0, we assume h > 0 to be fixed;

we are mainly focused on the asymptotic properties of the MLE because we
are aiming to get an asymptotically efficient estimator.
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The likelihood function of the model

The likelihood function of our Markov model has the form

Ln(θ;x1, . . . , xn) =

n∏
k=1

pθh(xk−1, xk), (x1, . . . , xn) ∈ Rn

(the initial value x0 is assumed to be known), where pθt (x, y) is the transition
probability density of Xθ. Both the likelihood function and likelihood ratio

Zn(θ0, θ;x1, . . . , xn) =
Ln(θ;x1, . . . , xn)

Ln(θ0;x1, . . . , xn)

are implicit, because analytical expressions for pθt (x, y) or their ratio are not
available.
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Specific feature of the model: likelihood function may be
non-trivially degenerated

In general, Ln(θ; ·) may equal zero on a non-empty set Nθ
n ⊂ Rn. Moreover, this

set can depend non-trivially on θ. To see that, consider an example of an
Ornstein-Uhlenbeck process driven by a one-sided α-stable process with α < 1:

dXθ
t = −θXθ

t dt+ dZt, Zt =

∫ t

0

∫ ∞
0

uν(ds, du).

Then by a support theorem for Lévy driven SDE’s (Simon 2000), the (topological)
support of P θn is

Sθn =
{

(x1, . . . , xn) : xk ≥ e−θhxk−1, k = 1, . . . , n
}
,

which depends non-trivially on θ. Because

Sθn = closure(Rn \Nθ
n),

this indicates that Nθ
n depends non-trivially on θ, as well.

Henceforth, our model can not be considered as a model with a C1 log-likelihood
function.
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Main result: conditions on the noise

smoothness near the origin: for some u0 > 0, the restriction of µ on
[−u0, u0] has a positive density σ ∈ C2 ([−u0, 0) ∪ (0, u0]) and there exists
C0 such that

|σ′(u)| ≤ C0|u|−1σ(u), |σ′′(u)| ≤ C0u
−2σ(u), |u| ∈ (0, u0];

sufficiently high intensity of “small jumps”:(
log

1

ε

)−1
µ
(
{u : |u| ≥ ε}

)
→∞, ε→ 0;

moment bound for “large jumps”: for some ε > 0,∫
|u|≥1

u4+εµ(du) <∞.

An exapmle: tempered α-stable measure µ(du) = r(u)u−α−1du.
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Main result: conditions on the coefficients

regularity and bounds: a ∈ C3,2(R×Θ) have bounded derivatives

∂xa, ∂2xxa, ∂2xθa, ∂3xxxa, ∂3xxθa, ∂3xθθa, ∂4xxxθa, ∂4xxθθa, ∂5xxxθθa,

and
|aθ(x)|+ |∂θaθ(x)|+ |∂2θθaθ(x)| ≤ C(1 + |x|);

“drift condition”: for any compact set K ⊂ Θ,

lim sup
|x|→+∞

aθ(x)

x
< 0 uniformly w.r.t. θ ∈ K.

An example: perturbed OU process,

aθ(x) = −θx+ αθ(x), α ∈ C3,2
b (R×Θ), Θ = (θ1, θ2), θ1 > 0.
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Main result

Theorem

Every experiment En, n ≥ 1 is regular (see below), and there exists

lim
n→∞

In(θ)

n
= σ2(θ) = E

(
gθh(Xθ,st

0 , Xθ,st
h )

)2
, gθh =

∂θp
θ
h

pθh
.

In addition, if the model is locally identifiable in the sense that

σ2(θ) > 0, θ ∈ Θ,

and is globally identifiable, i.e. for every θ1 6= θ2 there exists x = x(θ1, θ2):

P θ1h (x, ·) 6= P θ2h (x, ·),

then the MLE θ̂n is consistent, asymptotically normal with N (0, σ2(θ)) limit
distribution, and is asymptotically efficient w.r.t. any loss function w ∈Wp, i.e.

w(x, y) = v(|x− y|)

with convex v of at most polynomial growths at ∞.
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The method

Because of lack of C1-smoothness of the log-likelihood function, it was almost
inevitable for us to choose as the main tool the Ibragimov-Khas’minskii approach
(Ibragimov-Khas’minskii 1981), which basically consists of three following stages.

Ground stage Regularity property ⇒ Rao-Cramer inequality

1-st stage LAN property ⇒ Lower bounds for efficiency
w.r.t. cost functions from Wp

2-st stage Uniform LAN property;
Hölder continuity and growth bounds
for associated Hellinger processes ⇒ Asymptotic normality

and efficiency of MLE
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Malliavin-calculus based integral representations for
transition densities and their derivatives

It is well known that in the framework of the Malliavin calculus a representation

pθt (x, y) = Eθxδ(Ξt)1IXt>y, Ξt =
DXt

‖DXt‖2H

can be obtained via an integration-by-parts procedure from the formal relation

pθt (x, y) = −∂yEθx1IXt>y.

Nualart 1995.
Similar heuristics leads to integral representations for the derivatives of pθt (x, y).

∂θp
θ
t (x, y)

pθt (x, y)
= Et,θx,yδ(Ξ

1
t ), Ξ1

t =
(∂θX

1
t )DXt

‖DXt‖2H

Gobet 2001, 2002; Corcuera, Kohatsu-Higa 2011.
Yoshida 1992, 1996.
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Integral representations (continued)

To get the integration-by-part framework on the Poisson probability space, we use
the approach close to the one introduced in Bismut 1981, modified and simplified
in order to give integral representations explicitly.
Let ν be the Poisson point measure involved into Itô-Lévy representation for the
Lévy process Z:

Zt =

∫ t

0

∫
|u|≤1

u
(
ν(ds, du)− dsµ(du)

)
+

∫ t

0

∫
|u|>1

uν(ds, du).

Then

D

∫ t

0

∫
R
f(u)ν(ds, du) =

∫ t

0

∫
R
f ′(u)%(u)ν(ds, du),

where % ∈ C∞0 is a function which equals %(u) = u2 in some neighbourhood of
the point u = 0.

(τ, u) (τ,Qε(u)), ∂εQε(u)|ε=0 = %(u).

Alexei M.Kulik Limit theorems and statistical inference 10/26



Integral representations (continued)

Theorem

There exists continuous and bounded pθh(x, y), ∂θp
θ
h(x, y), ∂2θθp

θ
h(x, y), and

pθh(x, y) = Eθxδ(Ξh)1IXh>y,
∂θp

θ
h(x, y)

pθh(x, y)
=: gθh(x, y) = Eh,θx,yδ(Ξ

1
h),

∂2θθp
θ
h(x, y)

pθh(x, y)
=: fθh(x, y) = Eh,θx,yδ(Ξ

2
h)

with explicitly given Ξh,Ξ
1
h,Ξ

2
h such that

Ex
(
|δ(Ξh)|p + |δ(Ξ1

h)|p + |δ(Ξ2
h)|p

)
≤ C(1 + |x|p), p < 4 + ε.

Consequently, for every p < 4 + ε

pθt (x, y) ≤ C(1 + |x− y|)−p, Eθx

(∣∣∣gθt (x,Xt)
∣∣∣p +

∣∣∣fθt (x,Xt)
∣∣∣p) ≤ C(1 + |x|)p.
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Regularity of the model

Recall that an experiment is said to be regular, if

for λd-a.a. (x1, . . . , xn) ∈ Rn the mapping θ 7→ Ln(θ;x1, . . . , xn) is
continuous;
the mapping θ 7→

√
Ln(θ; ·) ∈ L2(Rn) is continuously differentiable.

For a regular experiment, the Fisher information is given by

In(θ) = 4

∫
Rn

(
∂θ
√
Ln(θ;x)

)2
dx = EG2

n(θ;Xθ
h, . . . , X

θ
nh), Gn = 2

∂θ
√
Ln√
Ln

.

Using the above bounds and approximating the function x 7→
√
x by C1-functions

properly, we get that the model is regular and

∂θ
√
Ln(θ; ·) =

1

2
Gn(θ; ·)∂θ

√
Ln(θ; ·), Gn(θ;x1, . . . , xn) =

n∑
k=1

gθh(xk−1, xk).

Since gθh(Xθ
(k−1)h, X

θ
kh), k = 1, . . . , n is a martingale-difference sequence w.r.t.

Pθn, the Fisher information of the model equals

In(θ) =

n∑
k=1

E
(
gθh(Xθ

(k−1)h, X
θ
kh)
)2
.
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LAN property of the model

Theorem

Zn,θ(u) :=
dP

θ+ϕ(n)u
n

dPθn
(Xn) = exp

{
∆n(θ)u− 1

2
u2 + Ψn(u, θ)

}
,

with ϕ(n) = I
−1/2
n (θ),

∆n(θ)
Pθ⇒ N (0, 1), Ψn(u, θ)

Pθ−→ 0, n→∞.

The proof is an extension to the Markov setting of the proof of that property for a
regular experiment based on i.i.d. observations, given in Ibragimov, Khas’minskii
1981 , Chapter II; (Le Cam 1970).

logZn,θ(u) ≈ 2

n∑
j=1

ηθjn(u)−
n∑
j=1

(
ηθjn(u)

)2
,

ηθjn(u) =

(pθ+ϕ(n)uh (Xh(j−1), Xhj)

pθh(Xh(j−1), Xhj)

)1/2

− 1

 1Ipθh(Xh(j−1),Xhj) 6=0.
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LAN property of the model: proof

A key point in the whole proof is that “elementary increments” ηjn(u) can be
“linearized w.r.t. u”:

ηθjn(u) ≈ 1

2
ϕ(n)ugθh(Xh(j−1), Xhj), gθh =

∂θp
θ
h

pθh
.

Note that the drift condition above and smoothness of transition probabilities of
X yield that the process Xθ is exponentially ergodic:

‖P θT (x, dy)− πθ(dy)‖TV ≤ Ce−βtV (x), V (x) = (1 + |x|2),

e.g. Masuda 2007. Then using a typical “perturbation of stationary limit
theorems” trick, e.g. Bhattacharya 1982, one can show that

1

n

n∑
k=1

(
gθh(Xθ

(k−1)h, X
θ
kh)
)2 L1(P

θ)→ σ2(θ);

1√
n

n∑
k=1

gθh(Xθ
(k−1)h, X

θ
kh)

Pθ⇒N (0, σ2(θ)).
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LAN property of the model: proof (continued)

We prove the “linearization w.r.t. u” relation using regularity of the model, the
LLN and CLT given above, and the following integral version of uniform continuity

type condition for qh(θ, x, y) = ∂θ

√
pθh(x, y): for every N > 0

sup
|v|<N

ϕ2(n)E
n∑
j=1

∫
R

(
qh

(
θ + ϕ(n)v,Xθ

h(j−1), y
)
− qh(θ,Xθ

h(j−1), y)
)2
dy → 0.

To prove this condition, we use the L2-bound for

∂θqh = ∂2θθ

√
pθh =

(
∂2θθp

θ
h

2pθh
−
(
∂θp

θ
h

4pθh

)2
)√

pθh,

which follow from the Malliavin-type integral representations, and based on them
Lp-bounds (p = 4) for

gθh =
∂θp

θ
h

pθh
, fθh =

∂2θθp
θ
h

pθh
.
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Asymptotic properties of the MLE

General theorem by Ibragimov and Khas’minskii (Ibragimov, Khas’minskii 1981,
Chapter III.1) makes it possible to prove asymptotic normality of the MLE and its
asymptotic efficiency w.r.t. a wide class of loss functions under the following
principal assumptions.

Uniform LAN condition: Zn,θn(un) instead of Zn,θ(u), with θn → θ, un → u.

Integral Hölder continuity and growth conditions on the Hellinger process
Hn,θ

1/2(u) = (Zn,θ(u))1/2, u ∈ R.

1-st assumption can be verified, e.g., following the next scheme:

Uniform bounds for the α-mixing coefficitent for Xθ, θ ∈ Θ

⇒ LLN and CLT for a sequence of strictly stationary processes

⇒ uniform LLN and CLT required for the uniform LAN

2-nd assumption follows from the identifiability conditions.
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II. “Martingale problem approach” for proving diffusion
approximation theorems: an outline

Let Xk, k ≥ 0 be a Markov process with the state space X, which is ergodic, i.e.
has unique invariant distribution π, and the rate of convergence of the transition
probabilities Pk(x, ·) to π has the following bounds.
Consider a distance-like function d : X× X→ R+, i.e. d is symmetric, lower
semicontinuous, and d(x, y) = 0⇔ x = y. Denote by C(µ, ν) the class of
measures on X× X which µ, ν as their projections, and define the coupling
distance on the set P(X) of all probability measures on X by

d(µ, ν) = inf
χ∈C(µ,ν)

∫
d(x, y)χ(dx, dy).

if d(x, y) = 1Ix 6=y (the discrete metric), then d(µ, ν) = (1/2)‖µ− ν‖TV ;

if d(x, y) = ρp(x, y), when d1/p(µ, ν) is the (Wasserstein-) Kantorovich -
Rubinshtein metric of the power p, associated with the metric ρ.

In what follows, we assume, for some properly chosen r, V ,

d(Pk(x, ·), π) ≤ r(k)V (x), k ≥ 0, x ∈ X.
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Constructing the potential

We will explain the method on a particular case of the CLT for a sequence ξn,n,

ξk,n =
1√
n

k∑
j=1

A(Xj), k = 1, . . . , n;

in more generality, diffusion approximation theorems deal with

ξk,n = ξ0,n +
1

n

k∑
j=1

a(Xj , ξj−1,n) +
1√
n

k∑
j=1

A(Xj , ξj−1,n), k = 1, . . . , n.

Define the (extended) potential of A by

RA(x) =

∞∑
k=1

EXx A(Xk).

A is centered, i.e.
∫
, dπ = 0;

A is d-Hölder with the index γ: |A(x)−A(y)| ≤ dγ(x, y).

Then
|EXx A(Xk)| ≤ rγ(k)V γ(x),

and RA is well defined provided that
∑
k r

γ(k) <∞.
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The corrector term method

Consider the processes Yn(t), t ∈ [0, 1] such that

Yn(t) = ξk−1,n, t ∈ [(k − 1)/n, k/n), Yn(1) = ξn,n.

For a given test function f ∈ C2(R) with bounded derivatives, consider a
corrector term process

Un(t) = (RA)(X[nt])f
′(Yn(t)), t ∈ [0, 1],

then we have the following representation for the corrected value of the test
function applied to Yn:

f(Yn(t)) +
1√
n
Un(t) =

1

2n

∑
j≤[nt]

[
A2(Xj) + 2A(Xj−1)RA(Xj−1)

]
f ′′(Yn((j − 1)/n))

+ f(y0) + (martingale) + (remainder term).
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The corrector term method (continued)

Given this representation, we are able to prove the “large ball containment”
property:

sup
n

sup
t
P (|Yn| > R)→ 0, R→∞,

and the bound for the increments for processes Yn:

lim sup
n→∞

sup
|t−s|≤δ

E
(
|Yn(s)− Yn(t)| ∧ 1

)
→ 0, δ → 0.

Then {Yn} is compact in the sense of weak convergence of finite-dimensional
distributions. Using the above representation once more, we prove that any
limiting point Y is a solution to the martingale problem

Lf = σ2/2f ′′, f ∈ C∞0 (R), σ2 :=

∫ [
A2 + 2ARA

]
dπ.

Because this martingale problem is well posed,

Yn ⇒ σW, in particular ξn,n ⇒ N (0, σ2).
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“Martingale problem approach”: summary

We have proved the above (functional) CLT under the following set of
assumptions:

ergodicity bound for X with the distance function d, rate function r, and
state-dependent weight V ;

A is centered, A,A2, and ARA are π-integrable and d-Hölder with the index
γ;∑
k r

γ(k) <∞;

(1/n) maxk≤n EXx V
γ(Xk) ≤ C.

The proof can be modified easily if X, A depend on θ, and under the uniform
version of these conditions the uniform CLT is available.
The proof well applies to Markov systems “with extinct memory”, for which e.g.
α-mixing coefficients does not vanish when t→∞; e.g. fBm, solutions to
SDDE’s, SPDE’s.
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“Martingale problem approach”: milestones

Feller 1956: “Distributions as operators” (Volume II, Chapter VIII Section 3).

Papanicolau, Stroock, Varadhan 1977: “Martingale approach” under a priori
assumptions on existence, smoothness, and growth bounds for potentials RA.

Koroliuk, Limnious 2005: These a priori assumptions can be verified in the terms
of the semigroup theory for X, if the process X is uniformly ergodic.

Pardoux, Veretennikov 2001, 2003, 2005: For a diffusion process X, potential RA
is replaced by the weak solution to the Poisson equation LXu = −A. The Itô
formula for the corrector term can be applied because of analytical results about
solutions to elliptic 2-nd order PDE’s.

Kulik, Veretennikov 2011, 2012, 2013: The Itô formula in the whole approach is
systematically replaced by the (extended) Dynkin’s formula. This makes the
approach to be completely insensitive w.r.t. the structure of the process X, and
to involve into the domain of applications weakly ergodic Markov processes.
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III. Ergodicity for Lévy driven SDE’s: an outline

Typically, a Harris-type theorem gives for a Markov process X an ergodic bound
of the form

‖Pt(x, ·)− π‖TV ≤ r(t)V (x),

provided two principal assumptions are verified:

recurrence, e.g. LXV ≤ −αV + C and every set {V ≤ c} is compact;

irreducibility.

The choice of the form of the irreducibility condition is non-trivial. If we adopt the
strategy from Meyn, Tweedie ‘93, then we need to verify (some version of) the
minorization condition:

Pt(x, dy) ≥ cκ(dy), x ∈ K.

This can be proved by means either of Bismut’s approach/Malliavin calculus for
SDE’s with jumps, or of Picard’s method/Ishikawa-Kunita’s calculus on
Wiener-Poisson space (Bichteler, Gravereaux, Jacod ‘87, Picard ‘96, Ishikawa,
Kunita ‘05).
This is exactly approach from Masuda ’07.
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Ergodicity for Lévy driven SDE’s: an outline (continued)

Applying the above strategy, when a diffusion noise is absent, requires the jump
noise to have “sufficiently high” intensity of the small jumps:

ϕ(ρ) :=

∫
|u|≤ρ

u2Π(du) � ρ2−α, or at least ϕ(ρ)� log

(
1

ρ

)
, ρ→ 0.

This limitation can be removed completely by considering the irreducibility
condition in another form, called the Dobrushin condition:

‖Pt(x1, dy)− Pt(x2, dy)‖TV ≤ 2(1− c), x1, x2 ∈ K.

The latter condition can be verified either by means of the stratification method
by Davydov; Kulik ’09, or by means of stochastic control for Lévy driven SDE’s;
Bodnarchuk, Kulik ’12.
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Ergodicity for Lévy driven SDE’s: an outline (continued)

The explicit bounds for the ergodic rates in above theorems involving TV distance
may be very poor, e.g. typically one gets r(t) = Ce−βt with large C and small
β > 0. Such rates can be improved drastically when the TV-distance is replaced
by some weaker distance, e.g. the (Wasserstein)-Kantorovich-Rubinshtein one. In
that case applying the version of the above CLT with the weak ergodic bounds
may lead to a significant improvement of the accuracy in statistical inference,
simulation, etc.
An instructive example here is the OU process

dX(t) = −aX(t) dt+ dZ(t),

which admits ergodic rates with r(t) = e−βt and explicitly given β = β(a). This is
a simplest example of a “dissipative” system, where respective weak ergodic
bound comes from the Itô formula combined with the Gronwall lemma.
Dissipativity is a sort of a structurall assumption, which although can be reduced
greatly, by using the machinery of general Harris type theorems, developed in
Hairer, Mattingly, Scheutzow ’11.
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