Quantum hypothesis testing for Gaussian states

Wataru Kumagai
（Tohoku University）

Joint Work with Masahito Hayashi
Contents

• Quantum System and Gaussian State
• Formulation of Quantum Hypothesis Testing
• Optimal Test in Min-Max Criterion
• Conclusion
Quantum System and Quantum State

Quantum theory assumes that “every physical object has a quantum state on a quantum system”.

Quantum system \iff complex Hilbert space H,
Quantum state \iff linear operator ρ on H satisfying

\[
\begin{cases}
(i) \text{ positive definiteness } 0 \leq \rho \\
(ii) \text{ normalization condition } \text{Tr}\rho = 1
\end{cases}
\]

When $\dim H = d < \infty$, every quantum state can be represented as

\[
\rho = U \text{diag}(p_1, \ldots, p_d) U^*.
\]
When physical objects are identically and independently prepared, the quantum state has a tensor product form.

<table>
<thead>
<tr>
<th>i.i.d. system and i.i.d. state</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-i.i.d quantum system</td>
</tr>
<tr>
<td>⇔ tensor product space $H^\otimes n$,</td>
</tr>
<tr>
<td>n-i.i.d quantum state</td>
</tr>
<tr>
<td>⇔ quantum state of tensor product form $\rho^\otimes n$ on $H^\otimes n$</td>
</tr>
</tbody>
</table>

corresponds to i.i.d. random variable
Gaussian State

Quantum state of optical laser with Gaussian noise

\[\rho_{\zeta,N} = \int_{\mathbb{C}} \frac{1}{\pi N} e^{-|\zeta - \omega|^2/N} C(\omega) \, d\omega \]

- \(\zeta \in \mathbb{C} \): mean parameter
- \(N > 0 \): number parameter

Mean photon number in the Gaussian state

2-dim Gaussian noise

quantum state of laser
For quantum state model $S = \{ \sigma_\theta \mid \| \theta \| < c \}$ on 2-dim quantum system,

$$S_n = \{ \sigma_{\theta/\sqrt{n}} \mid \| \theta \| < c \} \xrightarrow{\text{Le Cam}} S_{Gauss} = \{ G(\theta, J_0) \otimes \rho_{\zeta(\theta), N_0} \mid \| \theta \| < c \}$$

i.i.d. quantum state

Gaussian state

Gaussian distribution

Uniform Convergence

(Quantum Le Cam Distance)

\Rightarrow **Gaussian state** = Quantum version of **Gaussian distribution**
Contents

• Quantum System and Gaussian State

• Formulation of Quantum Hypothesis Testing

• Optimal Test in Min-Max Criterion

• Conclusion
Quantum Hypothesis Testing

A method to statistically decide whether a quantum state satisfies a hypothesis (=condition) of interest

For an unknown quantum state ρ_θ in a model $S = \{\rho_\theta | \theta \in \Theta\}$,

$$H_0 : \theta \in \Theta_0 \text{ vs. } H_1 : \theta \in \Theta_1 \quad (\Theta = \Theta_0 \cup \Theta_1)$$

Decision method

test operator $0 \leq T \leq I$ (\ifftwo-valued measurement)

Error probability

Type I error prob.: $\alpha_T(\theta) = \text{Tr}(\rho_\theta T) \quad (\theta \in \Theta_0)$

Type II error prob.: $\beta_T(\theta) = 1 - \text{Tr}(\rho_\theta T) \quad (\theta \in \Theta_1)$
Min-Max Criterion

Level of test

Test operator T with level $\alpha \Leftrightarrow \alpha_T(\theta) \leq \alpha (\theta \in \Theta_0)$.

Min-Max criterion

When quantum state model has a nuisance parameter ξ

$$S = \{ \rho_{\theta, \xi} \mid \theta \in \Theta, \xi \in \Xi \}$$

$$H_0 : \theta \in \Theta_0 \text{ vs. } H_1 : \theta \in \Theta_1 \quad (\Theta = \Theta_0 \cup \Theta_1)$$

⇒ Min-Max criterion requires that the type II error probability of a test operator is as little as possible w.r.t. the nuisance parameter

Min-Max test

$$T = \arg \min_{T \text{'test}} \sup_{\xi \in \Xi} \beta_{T'}(\theta, \xi) \text{ for } \forall \theta$$
Correspondence Table

<table>
<thead>
<tr>
<th>Conventional Setting</th>
<th>Quantum Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample space</td>
<td>Quantum system</td>
</tr>
<tr>
<td>Probability distribution</td>
<td>Quantum state (i.i.d. quantum state)</td>
</tr>
<tr>
<td>(i.i.d probability distribution)</td>
<td></td>
</tr>
<tr>
<td>LAN</td>
<td>Quantum LAN</td>
</tr>
<tr>
<td>Gaussian distribution</td>
<td>Gaussian state</td>
</tr>
<tr>
<td>Test function</td>
<td>Test operator</td>
</tr>
</tbody>
</table>
Contents

• Quantum System and Gaussian State
• Formulation of Quantum Hypothesis Testing
• Optimal Test in Min-Max Criterion
• Conclusion
Min-Max Test

Theorem (WK, MH 2013)

For the Gaussian model \(\{ \rho_{\zeta,N}^{\otimes n} \mid \zeta \in \mathbb{C}, N > 0 \} \), testing problem \(H_0 : N \leq N_0 \) vs. \(H_1 : N > N_0 \), Min-Max test is given as follows.

BS=Beam splitter, PNM=Photon number measurement, OTF=Optimal testing function.
Min-Max Test

1. **Invertible Transformation**

\[\rho_{\zeta,N} \otimes n \xrightarrow{BS} \rho_{\sqrt{n}\zeta,N} \otimes \rho_{0,N}^{\otimes n-1} \]

Min-Max test is given as follows.

BS=Beam splitter, PNM=Photon number measurement, OTF=Optimal testing function.
Min-Max Test

Discard the first component

$$\rho_{\sqrt{n}\zeta,N} \otimes \rho_{0,N}^{\otimes n-1} \rightarrow \rho_{0,N}^{\otimes n-1}$$

Min-Max test is given as follows.

BS=Beam splitter, PNM=Photon number measurement, OTF=Optimal testing function.
Min-Max Test

② Discard the first component
Due to quantum Hunt-Stein theorem, the performance does not change

Min-Max test is given as follows.

BS=Beam splitter, PNM=Photon number measurement, OTF=Optimal testing function.

BS=Beam splitter, PNM=Photon number measurement, OTF=Optimal testing function.
Min-Max Test

Theorem (WK, MH 2013)

\[\rho_{0,N}^{\otimes n-1} \xrightarrow{\text{PNM}} \text{Geom} \left(\frac{1}{N+1} \right)^{n-1} \sim (k_1, \ldots, k_{n-1}) \]

Min-Max test is given as follows.

BS=Beam splitter, PNM=Photon number measurement, OTF=Optimal testing function.
Min-Max Test

Min-Max test is given as follows.

Theorem (WK, MH 2013)

BS=Beam splitter, PNM=Photon number measurement, OTF=Optimal testing function.

BS=Beam splitter, PNM=Photon number measurement, OTF=Optimal testing function.
Min-Max Test

Theorem (WK, MH 2013)

For \(\{ \text{Gaussian } \}\) testing

Min-Max test is given as follows.

\[
\left\{ \begin{array}{l}
\rho_{\zeta,N} \\
\rho_{\zeta,N} \\
\vdots \\
\rho_{\zeta,N}
\end{array} \right\} \xrightarrow{\text{BS}} \left\{ \begin{array}{l}
\rho_{\sqrt{n}\zeta,N} \\
\rho_{0,N} \\
\vdots \\
\rho_{0,N}
\end{array} \right\} \xrightarrow{\text{PNM}} \left\{ \begin{array}{l}
k_1 \\
\vdots \\
k_{n-1}
\end{array} \right\} \xrightarrow{\text{OTF}} i
\]

BS=Beam splitter, PNM=Photon number measurement, OTF=Optimal testing function.
Table of Min-Max Tests

Gaussian distribution $G(\mu, v)$ (μ: mean, v: variance)

| $|\mu| \leq R_0$ vs. $|\mu| > R_0$ | $|\mu| \leq R_0$ vs. $|\mu| > R_0$ | N-P lemma + MLR | χ (Bioequivalence problem) |
|---------------------------------|---------------------------------|-----------------|---------------------|
| $v: \text{known}$ | $v: \text{known}$ | χ^2-test | χ^2-test |
| $v: \text{unknown}$ | $v: \text{unknown}$ | | |

Gaussian state $\rho(\zeta, N)$ (ζ: mean, N: number)

| $|\zeta| \leq R_0$ vs. $|\zeta| > R_0$ | $|\zeta| \leq R_0$ vs. $|\zeta| > R_0$ | ✔ | χ (✔ * if $R_0 = 0$) |
|---------------------------------|---------------------------------|-----------------|---------------------|
| $N: \text{known}$ | $N: \text{known}$ | ✔ | |
| $N: \text{unknown}$ | $N: \text{unknown}$ | | |

✔*: optimal under unbiasedness condition
Table of Min-Max Tests

<table>
<thead>
<tr>
<th>Equivalence between Gaussian distributions $G(\mu_0, v_0)$ and $G(\mu_1, v_1)$</th>
<th>v:known</th>
<th>v:unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu_0 = \mu_1$ vs. $\mu_0 \neq \mu_1 ~ (v_0 = v_1)$</td>
<td>N-P lemma + MLR</td>
<td>t-test</td>
</tr>
<tr>
<td>μ_0, μ_1:known</td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ_0, μ_1:unknown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$v_0 = v_1$ vs. $v_0 \neq v_1$</td>
<td>F-test</td>
<td>F-test</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Equivalence between Gaussian states $\rho(\zeta_0, N_0)$ and $\rho(\zeta_1, N_1)$</th>
<th>N_0:known</th>
<th>N_0:unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\zeta_0 = \zeta_1$ vs. $\zeta_0 \neq \zeta_1 ~ (N_0 = N_1)$</td>
<td>✓</td>
<td>✓ *</td>
</tr>
<tr>
<td>ζ_0, ζ_1:known</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ζ_0, ζ_1:unknown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$N_0 = N_1$ vs. $N_0 \neq N_1$</td>
<td>✓ *</td>
<td>✓ *</td>
</tr>
</tbody>
</table>

✓*: optimal under unbiasedness condition
Contents

• Quantum System and Gaussian State
• Formulation of Quantum Hypothesis Testing
• Optimal Test in Min-Max Criterion
• Conclusion
Conclusion

- **Quantum hypothesis testing** was considered.
- Model of **Gaussian states** was treated.
 Gaussian state corresponds to Gaussian distribution.
- Several optimal tests in Min-max criterion (**Min-Max test**) were derived.
Thank you

References

