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I. Anderson-Darling statistic and its extension
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Goodness-of-fit tests

▶ X1, . . . ,Xn : i.i.d. sequence from cdf F

▶ Goodness-of-fit test:

H0 : F = G vs. H1 : F ̸= G

(G is a given cdf)

▶ When G is continuous, we can assume G (x) = x (i.e.,
Unif(0,1)) WLOG.

▶ Empirical distribution function

Fn(x) =
1

n

n∑
i=1

1l(Xi ≤ x)

▶ Test statistic is defined as a measure of discrepancy between
Fn(x) and G (x) = x .
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Goodness-of-fit tests (cont)

▶ We focus on two integral-type test statistics.

▶ Anderson-Darling (1952) statistic:

An = n

∫ 1

0

1

x(1− x)
(Fn(x)− x)2dx

▶ Watson (1961) statistic
(for testing uniformity on the unit sphere in R2):

Un = n

∫ 1

0
(Fn(x)− x)2dx − n

{∫ 1

0
(Fn(x)− x)dx

}2

▶ Limiting null distributions:
Let ξ1, ξ2, . . . be i.i.d. sequence from N(0, 1). As n → ∞,

An
d→

∞∑
k=1

1

k(k + 1)
ξ2k , Un

d→
∞∑
k=1

1

2π2k2
(ξ22k−1 + ξ22k)
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Closely looking at Anderson-Darling

▶ Anderson-Darling statistic

An =

∫ 1

0

Bn(x)
2

x(1− x)
dx where Bn(x) =

√
n(Fn(x)− x)

Here,

Bn(x) =
√
n

∫ 1

0
h[0](t; x)dFn(t), h[0](t; x) = 1l(t ≤ x)− x

▶ h[0](t; x)

t
x 10
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An extension to Anderson-Darling

▶ To propose a new class of test statistics, instead of h[0](·; x),
we prepare different type h[m](·; x).

▶ Note first that h[0](·; x) is piecewise constant s.t.∫ 1
0 h[0](t; x) · 1 dt = 0

▶ Define h[1](·; x) to be continuous and piecewise linear s.t.∫ 1
0 h[1](t; x) · (at + b) dt = 0, ∀a, b

▶ h[1](·; x)

t
1x0
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An extension to Anderson-Darling (cont)

▶ General from of h[m](t; x):

h[m](t; x) =
1

m!
(x − t)m1l(t ≤ x)

−
m∑

k=0

∫ x

0

1

m!
(x − u)mLk(u)du × Lk(t)

where Lk(·) is the Legendre polynomial of degree k

▶ h[2](·; x)

t
1x0
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An extension to Anderson-Darling (cont)

▶ We propose an extension of Anderson-Darling:

A
[m]
n =

∫ 1

0

B
[m]
n (x)2

{x(1− x)}m+1
dx

where

B
[m]
n (x) =

√
n

∫ 1

0
h[m](t; x)dFn(t)

=
√
n

{ ∫
· · ·

∫
x>xm>···>x1>0

Fn(x1)dx1 · · · dxm

−
m∑

k=0

∫
· · ·

∫
x>xm>···>x1>0

Lk(x1)dx1 · · · dxm
∫ 1

0
Lk(t)dFn(t)

}
(m-fold integral of empirical distribution function)

▶ A
[m]
n is well-defined (the integral exists) whenever Xi ∈ (0, 1).

▶ A
[0]
n is the original Anderson-Darling.
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II. Limiting null distribution
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Main results — Limiting null distribution

▶ W (·) : the Winer process on [0, 1]
B(x) = W (x)− xW (1) : Brownian bridge

▶ Let B
[m]
n (x) =

∫ 1
0 h[m](t; x)dBn(x).

We can prove that as n → ∞,

B
[m]
n (·) d→ B [m](·) in L2, where B [m](x) =

∫ 1

0
h[m](t; x)dB(t)

and hence (by continuous mapping)

A
[m]
n =

∫ 1

0

B
[m]
n (x)2

{x(1− x)}m+1
dx

d→ A[m] :=

∫ 1

0

B [m](x)2

{x(1− x)}m+1
dx

▶ We will examine these limiting distributions B [m](·) and A[m].
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Main results — Limiting null distribution (cont)

Theorem (Karhunen-Loève expansion)

B [m](x)

{x(1− x)}(m+1)/2
=

∞∑
k=m+1

√
(k −m − 1)!

(k +m + 1)!
L
(m+1)
k (x) ξk

(uniformly in x, with prob. 1), where

ξk =

∫ 1

0
Lk(t)dB(t), i.i.d. N(0, 1)

L
(m+1)
k is the associate Legendre function. □

Corollary (Limiting null distribution of A
[m]
n )

A[m] =

∫ 1

0

B [m](x)2

{x(1− x)}m+1
dx =

∞∑
k=m+1

(k −m − 1)!

(k +m + 1)!
ξ2k

ξ2k ∼ χ2(1) i.i.d. □ 12 / 27



III. Moment generating function
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Moment generating function

▶ The moment generating function (Laplace transform) of

A[m] =
∞∑
k=1

1

λk
ξ2k , λk = k(k + 1) · · · (k + 2m + 1)

is

E
[
esA

[m]
]
=

∞∏
k=1

(
1− 2s

λk

)− 1
2

Theorem
Let xj(s) (j = 0, 1, . . . , 2m + 1) be the solution of

λx − 2s = 0, i.e., x(x + 1) · · · (x + 2m + 1)− 2s = 0
Then

E
[
esA

[m]
]
=

2m+1∏
j=0

√
Γ(1− xj(s))

j!

□
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Moment generating function (m = 0)

▶ When m = 0 (Anderson-Darling), λk = k(k + 1)
The equation

x(x + 1)− 2s = 0

has a solution

x0(s), x1(s) = −1

2
±

√
1 + 8s

▶ Hence,

E
[
esA

[0]
]
=
√
Γ(1− x0(s))Γ(1− x1(s))

=

√
2πs

− cos π
2

√
1 + 8s

(Anderson and Darling, 1952)

▶ Euler’s reflection formula Γ(z)Γ(1− z) = π/ sin(πz) is used.
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Moment generating function (m = 1)

▶ When m = 1. λk = k(k + 1)(k + 2)(k + 3).
▶ The equation

x(x + 1)(x + 2)(x + 3)− 2s = 0

has the explicit solution , because by letting x = y − 3/2,

LHS =(y − 3/2)(y − 1/2)(y + 1/2)(y + 3/2)− 2s

=
{
y2 − (3/2)2

}{
y2 − (1/2)2

}
− 2s

is a quadratic equation in y2 = (x + 3/2)2.
▶ As a result,

x0(s), x1(s), x2(s), x3(s) =
1

2

(
±
√

5± 4
√
2s + 1− 3

)
,

E
[
esA

[1]
]
=

πs√
3 cos(π2

√
5− 4

√
1 + 2s) cos(π2

√
5 + 4

√
1 + 2s)
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Moment generating function (m = 2)

▶ When m = 2,

E
[
esA

[2]
]
=

(πs)3/2√
−4320 cos(π

√
η1) cosh(π

√
η2) cosh(π

√
η3)

where

η =
3

√
27s + 80 + 3

√
81s2 + 480s − 1728

and

η1 =
1

12η

(
4η2 + 35η + 112

)
η2 =

1

12η

(
4e−πi/3η2 − 35η + 112eπi/3

)
η3 =

1

12η

(
4eπi/3η2 − 35η + 112e−πi/3

)
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Calculation of upper prob.

▶ Finite representation is useful in numerical calculation.

P
(
A[m] > x

)
=

∞∑
k=1

(−1)k−1

π

∫ λ2k/2

λ2k−1/2

e−xs

s

√∣∣∣E[esA[m]
]∣∣∣ds

(Smirnov-Slepian technique, see Slepian (1958)).
▶ The case m = 0:

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

Upper Prob

x

18 / 27



IV. Statistical power
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Statistical power

▶ We have the sample counterpart of the KL-expansion:

B
[m]
n (x)

{x(1− x)}(m+1)/2
=

∑
k≥m+1

√
(k −m − 1)!

(k +m + 1)!
L
(m+1)
k (x) ξ̂k

where

ξ̂k =

∫ 1

0
Lk(x)dBn(x) =

1√
n

n∑
i=1

Lk(Xi ), k ≥ 1

▶ The (extended) Anderson-Darling statistics are also written in
terms of ξ̂k ’s as

A
[0]
n =

∑
k≥1

1

k(k + 1)
ξ̂2k =

1

2
ξ̂21 +

1

6
ξ̂22 +

1

12
ξ̂23 + · · ·

A
[1]
n =

∑
k≥2

1

(k − 1)k(k + 1)(k + 2)
ξ̂2k =

1

24
ξ̂22 +

1

120
ξ̂23 + · · ·
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Statistical power (cont)

▶ First two components:

ξ̂1 =
√
12nm1, ξ̂2 = 6

√
5n × (m2 − 1/12),

where mk = 1
n

∑n
i=1(Xi − 1/2)k (the sample kth moment

around 1/2)

▶ A
[0]
n = ξ̂21/2 + · · · has much power for mean-shift alternative,

and

▶ A
[1]
n = ξ̂22/24 + · · · has much power for dispersion-change

alternative
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V. Extension of Watson’s statistic
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Watson’s statistic and its extension

▶ Similar extensions are possible for Watson’s statistic. Let

U
[m]
n =

∫ 1

0
C

[m]
n (x)2dx , C

[m]
n =

∫ 1

0
h[m](t; x)dFn(t),

where

h[m](t; x) =
(t − x)m

m!
1l(t − x ≤ 0) +

1

(m + 1)!
bm+1(t − x)

▶ bm(y) is the Bernoulli polynomial, which satisfies

bm(y + 1) = bm(y) +mym−1.

▶ U
[0]
n is the original Watson statistic.

▶ U
[1]
n is proposed by Henze and Nikitin (2002).
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Watson’s statistic and its extension (cont)

▶ h[0](·; x)

0 x

1-x

t
1

▶ h[1](·; x) and h[2](·; x)

0 x 1
t

0 x 1
t
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Limiting null distribution

▶ Let
C

[m]
n (·) d→C [m](·) and U

[m]
n

d→U [m].

▶ KL-expansion of C [m](x):

C [m](x) =
∞∑
k=1

1

(2kπ)m+1

{
l
[m]
2k−1(x)ξ2k−1 + l

[m]
2k−1(x)ξ2k

}
,

where

l
[m]
2k−1(x) = sin

(
2kπx−m + 1

2
π
)
, l

[m]
2k (x) = cos

(
2kπx−m + 1

2
π
)
,

ξ2k−1 =

∫ 1

0
sin(2kπx)dB(x), ξ2k =

∫ 1

0
cos(2kπx)dB(x).

▶ Consequently,

U [m] =
∞∑
k=1

1

(2kπ)2(m+1)
{ξ22k−1 + ξ22k}.
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Summary

▶ We proposed a class of extended Anderson-Darling statistics

A
[m]
n (m ≥ 0) based on m-fold integrated empirical

distribution function.

▶ The limiting null distribution A[m] is explicitly derived as
weighted infinite sums of chi-square random variables.

▶ We provided moment generating function of A[m] without
using infinite product.

▶ The same-type extension for Watson’s statistic Un is possible.

▶ Acknowledgment: The authors thank Y. Nishiyama of ISM.
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