Anderson-Darling Type Goodness-of-fit Statistic Based on a Multifold Integrated Empirical Distribution Function

S. Kuriki (Inst. Stat. Math., Tokyo) and H.-K. Hwang (Academia Sinica)

Bernoulli Society Satellite Meeting to ISI2013
Wed 4 Sept 2013, Univ Tokyo

Outline

I. Anderson-Darling statistic and its extension
II. Limiting null distribution
III. Moment generating function
IV. Statistical power
V. Extension of Watson's statistic

Summary
I. Anderson-Darling statistic and its extension

Goodness-of-fit tests

- X_{1}, \ldots, X_{n} : i.i.d. sequence from cdf F
- Goodness-of-fit test:

$$
H_{0}: F=G \quad \text { vs. } \quad H_{1}: F \neq G
$$

(G is a given cdf)

- When G is continuous, we can assume $G(x)=x$ (i.e., Unif(0,1)) WLOG.
- Empirical distribution function

$$
F_{n}(x)=\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\left(X_{i} \leq x\right)
$$

- Test statistic is defined as a measure of discrepancy between $F_{n}(x)$ and $G(x)=x$.

Goodness-of-fit tests (cont)

- We focus on two integral-type test statistics.
- Anderson-Darling (1952) statistic:

$$
A_{n}=n \int_{0}^{1} \frac{1}{x(1-x)}\left(F_{n}(x)-x\right)^{2} d x
$$

- Watson (1961) statistic
(for testing uniformity on the unit sphere in \mathbb{R}^{2}):

$$
U_{n}=n \int_{0}^{1}\left(F_{n}(x)-x\right)^{2} d x-n\left\{\int_{0}^{1}\left(F_{n}(x)-x\right) d x\right\}^{2}
$$

- Limiting null distributions:

Let ξ_{1}, ξ_{2}, \ldots be i.i.d. sequence from $N(0,1)$. As $n \rightarrow \infty$,

$$
A_{n} \xrightarrow{d} \sum_{k=1}^{\infty} \frac{1}{k(k+1)} \xi_{k}^{2}, \quad U_{n} \xrightarrow{d} \sum_{k=1}^{\infty} \frac{1}{2 \pi^{2} k^{2}}\left(\xi_{2 k-1}^{2}+\xi_{2 k}^{2}\right)
$$

Closely looking at Anderson-Darling

- Anderson-Darling statistic

$$
A_{n}=\int_{0}^{1} \frac{B_{n}(x)^{2}}{x(1-x)} d x \quad \text { where } \quad B_{n}(x)=\sqrt{n}\left(F_{n}(x)-x\right)
$$

Here,

$$
B_{n}(x)=\sqrt{n} \int_{0}^{1} h^{[0]}(t ; x) d F_{n}(t), \quad h^{[0]}(t ; x)=\mathbb{1}(t \leq x)-x
$$

- $h^{[0]}(t ; x)$

An extension to Anderson-Darling

- To propose a new class of test statistics, instead of $h^{[0]}(\cdot ; x)$, we prepare different type $h^{[m]}(\cdot ; x)$.
- Note first that $h^{[0]}(\cdot ; x)$ is piecewise constant s.t.

$$
\int_{0}^{1} h^{[0]}(t ; x) \cdot 1 d t=0
$$

- Define $h^{[1]}(\cdot ; x)$ to be continuous and piecewise linear s.t.

$$
\int_{0}^{1} h^{[1]}(t ; x) \cdot(a t+b) d t=0, \quad \forall a, b
$$

- $h^{[1]}(\cdot ; x)$

An extension to Anderson-Darling (cont)

- General from of $h^{[m]}(t ; x)$:

$$
\begin{aligned}
h^{[m]}(t ; x)= & \frac{1}{m!}(x-t)^{m} \mathbb{1}(t \leq x) \\
& -\sum_{k=0}^{m} \int_{0}^{x} \frac{1}{m!}(x-u)^{m} L_{k}(u) d u \times L_{k}(t)
\end{aligned}
$$

where $L_{k}(\cdot)$ is the Legendre polynomial of degree k

- $h^{[2]}(\cdot ; x)$

An extension to Anderson-Darling (cont)

- We propose an extension of Anderson-Darling:

$$
A_{n}^{[m]}=\int_{0}^{1} \frac{B_{n}^{[m]}(x)^{2}}{\{x(1-x)\}^{m+1}} d x
$$

where

$$
\begin{aligned}
B_{n}^{[m]}(x)= & \sqrt{n} \int_{0}^{1} h^{[m]}(t ; x) d F_{n}(t) \\
= & \sqrt{n}\left\{\int_{x>x_{m}>\cdots>x_{1}>0} \cdots F_{n}\left(x_{1}\right) d x_{1} \cdots d x_{m}\right. \\
& \left.-\sum_{k=0}^{m} \int_{x>x_{m}>\cdots>x_{1}>0} \cdots L_{k}\left(x_{1}\right) d x_{1} \cdots d x_{m} \int_{0}^{1} L_{k}(t) d F_{n}(t)\right\}
\end{aligned}
$$

(m-fold integral of empirical distribution function)

- $A_{n}^{[m]}$ is well-defined (the integral exists) whenever $X_{i} \in(0,1)$.
- $A_{n}^{[0]}$ is the original Anderson-Darling.
II. Limiting null distribution

Main results - Limiting null distribution

- $W(\cdot)$: the Winer process on $[0,1]$
$B(x)=W(x)-x W(1)$: Brownian bridge
- Let $B_{n}^{[m]}(x)=\int_{0}^{1} h^{[m]}(t ; x) d B_{n}(x)$.

We can prove that as $n \rightarrow \infty$,
$B_{n}^{[m]}(\cdot) \xrightarrow{d} B^{[m]}(\cdot)$ in L^{2}, where $B^{[m]}(x)=\int_{0}^{1} h^{[m]}(t ; x) d B(t)$
and hence (by continuous mapping)

$$
A_{n}^{[m]}=\int_{0}^{1} \frac{B_{n}^{[m]}(x)^{2}}{\{x(1-x)\}^{m+1}} d x \xrightarrow{d} A^{[m]}:=\int_{0}^{1} \frac{B^{[m]}(x)^{2}}{\{x(1-x)\}^{m+1}} d x
$$

- We will examine these limiting distributions $B^{[m]}(\cdot)$ and $A^{[m]}$.

Main results - Limiting null distribution (cont)

Theorem (Karhunen-Loève expansion)

$$
\frac{B^{[m]}(x)}{\{x(1-x)\}^{(m+1) / 2}}=\sum_{k=m+1}^{\infty} \sqrt{\frac{(k-m-1)!}{(k+m+1)!}} L_{k}^{(m+1)}(x) \xi_{k}
$$

(uniformly in x, with prob. 1), where

$$
\xi_{k}=\int_{0}^{1} L_{k}(t) d B(t) \text {, i.i.d. } N(0,1)
$$

$L_{k}^{(m+1)}$ is the associate Legendre function.
Corollary (Limiting null distribution of $A_{n}^{[m]}$)

$$
A^{[m]}=\int_{0}^{1} \frac{B^{[m]}(x)^{2}}{\{x(1-x)\}^{m+1}} d x=\sum_{k=m+1}^{\infty} \frac{(k-m-1)!}{(k+m+1)!} \xi_{k}^{2}
$$

$\xi_{k}^{2} \sim \chi^{2}(1)$ i.i.d.
III. Moment generating function

Moment generating function

- The moment generating function (Laplace transform) of

$$
A^{[m]}=\sum_{k=1}^{\infty} \frac{1}{\lambda_{k}} \xi_{k}^{2}, \quad \lambda_{k}=k(k+1) \cdots(k+2 m+1)
$$

is

$$
E\left[e^{\left.s A^{[m]}\right]}=\prod_{k=1}^{\infty}\left(1-\frac{2 s}{\lambda_{k}}\right)^{-\frac{1}{2}}\right.
$$

Theorem
Let $x_{j}(s)(j=0,1, \ldots, 2 m+1)$ be the solution of

$$
\lambda_{x}-2 s=0, \text { i.e., } x(x+1) \cdots(x+2 m+1)-2 s=0
$$

Then

$$
E\left[e^{s s^{[m]}}\right]=\prod_{j=0}^{2 m+1} \sqrt{\frac{\Gamma\left(1-x_{j}(s)\right)}{j!}}
$$

Moment generating function $(m=0)$

- When $m=0$ (Anderson-Darling), $\lambda_{k}=k(k+1)$

The equation

$$
x(x+1)-2 s=0
$$

has a solution

$$
x_{0}(s), x_{1}(s)=-\frac{1}{2} \pm \sqrt{1+8 s}
$$

- Hence,

$$
\begin{aligned}
E\left[e^{s A^{[0]}}\right] & =\sqrt{\Gamma\left(1-x_{0}(s)\right) \Gamma\left(1-x_{1}(s)\right)} \\
& =\sqrt{\frac{2 \pi s}{-\cos \frac{\pi}{2} \sqrt{1+8 s}}}
\end{aligned}
$$

(Anderson and Darling, 1952)

- Euler's reflection formula $\Gamma(z) \Gamma(1-z)=\pi / \sin (\pi z)$ is used.

Moment generating function $(m=1)$

- When $m=1 . \lambda_{k}=k(k+1)(k+2)(k+3)$.
- The equation

$$
x(x+1)(x+2)(x+3)-2 s=0
$$

has the explicit solution, because by letting $x=y-3 / 2$,

$$
\begin{aligned}
\text { LHS } & =(y-3 / 2)(y-1 / 2)(y+1 / 2)(y+3 / 2)-2 s \\
& =\left\{y^{2}-(3 / 2)^{2}\right\}\left\{y^{2}-(1 / 2)^{2}\right\}-2 s
\end{aligned}
$$

is a quadratic equation in $y^{2}=(x+3 / 2)^{2}$.

- As a result,

$$
\begin{gathered}
x_{0}(s), x_{1}(s), x_{2}(s), x_{3}(s)=\frac{1}{2}(\pm \sqrt{5 \pm 4 \sqrt{2 s+1}}-3), \\
E\left[e^{s A^{[1]}}\right]=\frac{\pi s}{\sqrt{3 \cos \left(\frac{\pi}{2} \sqrt{5-4 \sqrt{1+2 s}}\right) \cos \left(\frac{\pi}{2} \sqrt{5+4 \sqrt{1+2 s}}\right.}}
\end{gathered}
$$

Moment generating function $(m=2)$

- When $m=2$,

$$
E\left[e^{\left.s A^{[2]}\right]}\right]=\frac{(\pi s)^{3 / 2}}{\sqrt{-4320 \cos \left(\pi \sqrt{\eta_{1}}\right) \cosh \left(\pi \sqrt{\eta_{2}}\right) \cosh \left(\pi \sqrt{\eta_{3}}\right)}}
$$

where

$$
\eta=\sqrt[3]{27 s+80+3 \sqrt{81 s^{2}+480 s-1728}}
$$

and

$$
\begin{aligned}
& \eta_{1}=\frac{1}{12 \eta}\left(4 \eta^{2}+35 \eta+112\right) \\
& \eta_{2}=\frac{1}{12 \eta}\left(4 e^{-\pi i / 3} \eta^{2}-35 \eta+112 e^{\pi i / 3}\right) \\
& \eta_{3}=\frac{1}{12 \eta}\left(4 e^{\pi i / 3} \eta^{2}-35 \eta+112 e^{-\pi i / 3}\right)
\end{aligned}
$$

Calculation of upper prob.

- Finite representation is useful in numerical calculation.
(Smirnov-Slepian technique, see Slepian (1958)).
- The case $m=0$:

IV. Statistical power

Statistical power

- We have the sample counterpart of the KL-expansion:

$$
\frac{B_{n}^{[m]}(x)}{\{x(1-x)\}^{(m+1) / 2}}=\sum_{k \geq m+1} \sqrt{\frac{(k-m-1)!}{(k+m+1)!}} L_{k}^{(m+1)}(x) \widehat{\xi}_{k}
$$

where

$$
\widehat{\xi}_{k}=\int_{0}^{1} L_{k}(x) d B_{n}(x)=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} L_{k}\left(X_{i}\right), \quad k \geq 1
$$

- The (extended) Anderson-Darling statistics are also written in terms of $\widehat{\xi}_{k}$'s as

$$
\begin{aligned}
& A_{n}^{[0]}=\sum_{k \geq 1} \frac{1}{k(k+1)} \widehat{\xi}_{k}^{2}=\frac{1}{2} \widehat{\xi}_{1}^{2}+\frac{1}{6} \widehat{\xi}_{2}^{2}+\frac{1}{12} \widehat{\xi}_{3}^{2}+\cdots \\
& A_{n}^{[1]}=\sum_{k \geq 2} \frac{1}{(k-1) k(k+1)(k+2)} \widehat{\xi}_{k}^{2}=\frac{1}{24} \widehat{\xi}_{2}^{2}+\frac{1}{120} \widehat{\xi}_{3}^{2}+\cdots
\end{aligned}
$$

Statistical power (cont)

- First two components:

$$
\widehat{\xi}_{1}=\sqrt{12 n} m_{1}, \quad \widehat{\xi}_{2}=6 \sqrt{5 n} \times\left(m_{2}-1 / 12\right)
$$

where $m_{k}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-1 / 2\right)^{k}$ (the sample k th moment around $1 / 2$)

- $A_{n}^{[0]}=\widehat{\xi}_{1}^{2} / 2+\cdots$ has much power for mean-shift alternative, and
- $A_{n}^{[1]}=\widehat{\xi}_{2}^{2} / 24+\cdots$ has much power for dispersion-change alternative

V. Extension of Watson's statistic

Watson's statistic and its extension

- Similar extensions are possible for Watson's statistic. Let

$$
U_{n}^{[m]}=\int_{0}^{1} C_{n}^{[m]}(x)^{2} d x, \quad C_{n}^{[m]}=\int_{0}^{1} h^{[m]}(t ; x) d F_{n}(t)
$$

where

$$
h^{[m]}(t ; x)=\frac{(t-x)^{m}}{m!} \mathbb{1}(t-x \leq 0)+\frac{1}{(m+1)!} b_{m+1}(t-x)
$$

- $b_{m}(y)$ is the Bernoulli polynomial, which satisfies

$$
b_{m}(y+1)=b_{m}(y)+m y^{m-1} .
$$

- $U_{n}^{[0]}$ is the original Watson statistic.
- $U_{n}^{[1]}$ is proposed by Henze and Nikitin (2002).

Watson's statistic and its extension (cont)

- $h^{[0]}(\cdot ; x)$

- $h^{[1]}(\cdot ; x)$ and $h^{[2]}(\cdot ; x)$

Limiting null distribution

- Let

$$
C_{n}^{[m]}(\cdot) \xrightarrow{d} C^{[m]}(\cdot) \quad \text { and } \quad U_{n}^{[m]} \xrightarrow{d} U^{[m]} .
$$

- KL-expansion of $C^{[m]}(x)$:

$$
C^{[m]}(x)=\sum_{k=1}^{\infty} \frac{1}{(2 k \pi)^{m+1}}\left\{l_{2 k-1}^{[m]}(x) \xi_{2 k-1}+l_{2 k-1}^{[m]}(x) \xi_{2 k}\right\},
$$

where

$$
\begin{gathered}
I_{2 k-1}^{[m]}(x)=\sin \left(2 k \pi x-\frac{m+1}{2} \pi\right), \quad l_{2 k}^{[m]}(x)=\cos \left(2 k \pi x-\frac{m+1}{2} \pi\right), \\
\xi_{2 k-1}=\int_{0}^{1} \sin (2 k \pi x) d B(x), \quad \xi_{2 k}=\int_{0}^{1} \cos (2 k \pi x) d B(x)
\end{gathered}
$$

- Consequently,

$$
U^{[m]}=\sum_{k=1}^{\infty} \frac{1}{(2 k \pi)^{2(m+1)}}\left\{\xi_{2 k-1}^{2}+\xi_{2 k}^{2}\right\} .
$$

Summary

- We proposed a class of extended Anderson-Darling statistics $A_{n}^{[m]}(m \geq 0)$ based on m-fold integrated empirical distribution function.
- The limiting null distribution $A^{[m]}$ is explicitly derived as weighted infinite sums of chi-square random variables.
- We provided moment generating function of $A^{[m]}$ without using infinite product.
- The same-type extension for Watson's statistic U_{n} is possible.
- Acknowledgment: The authors thank Y. Nishiyama of ISM.

References

- Anderson, T.W. and Darling, D. A. (1952). Asymptotic theory of certain "goodness of fit" criteria based on stochastic processes. Ann. Math. Statist., 23 (2), 193-212.
- Henze, N. and Nikitin, Ya. Yu. (2002). Watson-type goodness-of-fit tests based on the integrated empirical process. Math. Methods. Stat., 11 (2), 183-202.
- Slepian, D. (1957). Fluctuations of random noise power. Bell. Syst. Tech. J., 37, 163-184.
- Watson, G. S. (1961). Goodness-of-fit tests on a circle. Biometrika, 48 (1,2), 109-114.

