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Backward Stochastic Differential Equation

Problem: We are given a stochastic differential equation (called

forward)
dXt = b(t,Xt) d¢ + CL(t,Xt) th, XO = X, 0 S t S T,

and two functions f (t,z,y,2) and ® (z). We have to construct a

couple of processes (Y;, Z;) such that the solution of the equation
d}/t — _f(taXhYt’Zt) d¢ + Zt th7 Y07 0 S t S T7

(called backward) has the final value Y = @ (X7).

For the existence and uniqueness of the solution see Pardoux and
Peng (1990). The Markovian case considered here was introduced
by El Karoui & al. (1997).




Solution: Suppose that u (¢, x) satisfies the equation

ou ou 1 25’2u_ ou
E+b(t )%—l— —a (t,x) @——f(tazua(taz)ax)

with the final condition u (T, x) = ® (x). Then if we put
Yi=u(t,Xy), Z: = a(t, Xy)ul, (t, X;). Then by It6’s formula

ou ou 1 282
a(t,Xt)‘l'b(t,Xt)a—(t Xt)+ a(t ZC) 82

dY; = 5

(t, Xt)] dt

ou
+ a (t, Xt) % (t7 Xt) th

= —f(t, X4, Yy, Zy) dt + Z, AWy, Yo =u (0, Xo).

The final value Yy = u (T, X7) = ® (X7).




Small noise asymptotics (joint work with L.Zhou)
The observed diffusion process (forward) is
dXt :S(ﬁ,t,Xt) dt + o (t,Xt) th, Xo, 0 StST

where ¥ € © = («, 8) is unknown parameter. We are given two

functions f (t,z,y, z), ® () and we have to find a couple of

stochastic processes (X't, Zt, 0<t<T ) which approximate well
the solution of the BSDE

d)/t — _f (thtvlftazt) dt+thWt7 YO) OStST

satisfying the condition Y7 = ® (X7). The functions S (-) and o (-)

are known and smooth. We have to minimize the errors

~ 2 . 2
E, (Xt _ Xt> S min,  Ey (Zt _ Zt> s min.

as € — 0.




Solution: Let us introduce a family of functions
U={(ult,z,9),t€|0,T],z€R),¥ € O}
such that for all ¥ € © the function u(t, x,?) satisfies the equation

ou ou e?o(t,x)* 0%u ou

at —|_ ( ) 733) 033 —|_ 2 81’2 f ( 7337?1’780-(33) ax)
and condition u(T,z,v) = ® (x). If we put Y; = u (¢, Xy, 1), then by
[t6’s formula we obtain BSDE with Z; = eo (t, Xy) ul, (t, X;,9). As

we do not know the value ¥ we propose first to estimate it using

some estimator 9% and then to put

Y, = u(t, X, 07), Zy = eo (¢, X)) u, (¢, Xy, 0F)

Important: J7 = v; !




Construction of the Estimator: Introduce a family of
deterministic functions {(zs (¢),0 < s < T),9 € O} solution of

ODE
dx,

ds
It is known that X converges to xs (¥)) uniformly in s € [0, T].

= S (¥, s,xs), xo, 0<s<T.

Introduce the LR function

E S (W, s, X, LS (0, s X,)
L(ﬁ,Xt)—exp{/ 59,5, Xs) dX, — 59,8, Xs) ds}
0

20 (s, X,) 0 2e20 (s, X,)°

and define the MLE @t,s by the equation

L (ﬁt,g,Xt) = sup L (ﬁ,Xt) :
YeO

It is known that e ! (19,5,5 — 190) — N (0,1(19, xt)_1>, but to use

it for Y; = u (t, X4, @t,g) can be computantionally difficult problem.




) t s 9,8, x5 (V 2
(0.0 ) = [ 2R

Fix some (small) § > 0 and introduce the MDE 9} _:

)
/0 X, — z, (V)] dt.

|X =2 (95.)]° = inf |X -2 @) = inf

Suppose that the identifiability condition is fulfilled: for any v > 0

inf 9) — x (U > 0.
Lt e () =@ (0)]

This estimator is consistent and asymptotically normal
1 /% 2
= (95, — ) = N (0. D5 (90)?)

where I (9,20 (9)) > D5 (90)° > 0 (K. 1994).




Let us introduce the one-step MLE
Ay (950 X8) + Ag (95, X0)

I (?9357 zt (1936)) |

&t,&“ — ﬁ§,€ —I_

where

tg D, s, X
Ay (9, X1) = /5 U((S N )2)

dXs — S (9,8, X,) ds], teldT],

)
As (9, X°) = A (9,6, X5) — / A (9,5, X,) ds
0

2 o) e
19 XS 197 7XS
- [ B x)o s x ) as - AGLEOLIULEORN
2 Jo 0 o (s, Xs)

B(ﬁ,s,x)zsw’s’i), A(z?,s,a:):/ B (9,s,z2) dz

o(s,x)

0




Theorem 1 Let the conditions of reqularity be fulfilled then the
processes

A

Y, =u (taXta{gt,s) : Zy = eo (t, Xy) u, (ttha{gt,e)
for the values t € |9, T] have the representation

Y, =Y, + et (t, Xy, Vo) & (90) +0(e),
ZAt = Zt -+ 820' (t, Xt) ’U,; (t, Xt, ﬁo) gt (190) + 0 (€2> y

(190, S,Tg (19()))

o (s, s (Y9)) dWs.

& (90) = I (¥, 2" (190))‘1/0 5

Let us show that the proposed approximation is asymptotically

efficient.




This means, that the means-quare errors

2 2

By |Vi-Vi| . Eo|Z-2.

of estimation Y; and Z; can not be improved. This will be done in
two steps. First we establish a low bound on the risks of all
estimators and then show that the proposed estimators attaint this

bound.
Theorem 2 For all estimators Y; and Z; and all t € [5,T) we have

the relations

-0 2
. . _ — 2 u (t, Lt (190) , 190)
lim lim sup e ’Ey|Y;—Y,| > )
v—0e—0 |9—19¢|<v t t’ I (1907 Tt (190))

} 2

lim lim  sup cYEy |Z, — 7,
v—>0e—=0|9—19¢|<v

(@)’ (t, 24 (Do) ,90)° & (£, ¢ (99))°

>
o I(l?o,ib’t (190 )




We call an approximation Y, asymptotically efficient if for all
Yo € O we have the equality

O (¢, 24 (90) , 90)°
lim lim sup 5_2E19|Y15*_Yt|2 _ U ( 733t(t0)7 0)
vr—0e—0 |19 —o|<v 1(190,;13 (190))

and the similar definition is valid in the case of the bound for Z;.

Theorem 3 The approxrimations

5\/,5 = U (t, Xt, T§t7€) and Zt = &0 (t, Xt) u; (t, Xt, @t’g)

are asymptotically efficient, i.e.,

~ 2 -0 t 19 ?9 2
lim lim sup 5_2E19 Y; - Y, = U ( s Lt (tO) ) O) ’
v—=0e—019_9)1<v I (Y9, xt (Yg))

> o t,ZC ; 2 Z'LO / t,.CU ,?9 2
lim lim sup e By | Z, — Z,| = (¢, 2+ (o)) (t )x( t,Y0)
vr—0e—0 |9 —1 |<v I(ﬁ(bx (190))




Miscellaneous

1. Uniform approrimation. It is possible to show that these
approximations are true uniformly in ¢ € [d,T]. We have the

convergence

Pgo{ sup ﬁ—}/t‘>u}%0.

§<t<T

2. Case § — 0. The representations (1), (2) are valid for each
t € |0,T] with fixed 6 > 0. It is possible to show that Y, = Y; and
5_1Zt — 717, as € = 0 in the situation, where § = §. — 0 but

slowly.




Example. Let us consider the linear case
dXt = T?Xtdt -+ €th, XO = Tg > O, 0 S t S 1.
Then the MLE can be written explicitly

t
A XdX,
J, X2ds

5 X dW,
f; X2ds

Oc

7.95 —19:€f0 XSdWS ~ 8W58 ~ €W1

foée X2ds 7o Oc 0 5;/2.

Therefore, if e6- % 50 (for example, . = €% 1n %) then Y; — Y;
for all t € [0, T].




3. Approximation of the BSDE. Note that Y, is approximation of
the solution of the BSDE but the stochastic process Y; itself
satisfies another stochastic differential equation. It can be written

as follows

dY; = — f (tth, Yi, Zt) dt + Z,dW,

+ ’UJ;S S (190, t, Xt) dt + U It_lbt (Xt) [Ct (Xt) — It_lbt (l’t) At} dt

2

+ %u I,72b, (X;)2 dt + en I 10, (X)) AW,

52

+ L' (Xy)o (6, X)dt, Ys, 6<t<T.




4. Linear case. Suppose that
dXt :ﬁdt—FgUth, XO = Xy, OStST,

where ¥ € © = (a,b) and we are given two functions
f(x,2) = By + vz and ® (x). The variables o, 5,~ are known
constants and ¢ is unknown parameter. The function ® () has two

continuous derivatives with polynomial majorants. We have to
construct the BSDE

dY, = — (BY, +~Z,) dt + Z,dW,, Yy = (Xr).

The corresponding PDE is

ou 1, 50 9
o 2028 L (Wt eoy) et 4 fu=0, 0<t<T,

ot 2 Ox?
u(T,x,9) = ®(x), z € R.

ox




Solution
u(t, x,9) = eP(T—1) G(t,xz, ),

where

i [ e M,
o —o \V/2me20?(T —t)

Then we can put

Ve = u(t, X3, 9) = P T7Y G(t, X, 0),
Zy=cou(t,X,0) =co TV G (t, Xy,0),

and obtain the BSDE




Note that

| ) P (2 + (9 +€09)(T — 1) - 2)
G (t,x,0) —[w V/2me202(T —t)

dz.

and
W' (t,z,9) = (T —t)ePT=VG"(t, z,9),
i(t,z,9) = (T —t)2ePT=9G"(t, x,0).
In this model the MLE 19,5’8 can be explicitly written
A X Wi

e20?
ﬁt,527200+507NN<7907 . )

and for all ¢t € (0,7 is consistent. Therefore we can put
}A/t — QB(T_t) G(ta X, ét,€)7 t € (07 T]
Zy =eo TV G (t, X,00),  te(0,T]

and is asymptotically efficient.




4. Black and Scholes model. Suppose that
dXt = ﬁXtdt + €O'Xtth, XO = X, 0 S t S T,

and we have the same problem with the function
f(x,y,2) = By + yxz. The MLE is

s 1 tdXy e -9 W

= — , = 0—.
Tt )y X £ t
It is sufficient to note that the transformation X; = In X; reduces

the forward equation to the linear case

252

2

1%, — [19—

] dt + codW;, Xo=1Ilnzy, 0<t<T,




The equation

ov  e202%x? 0%v ov
8t+ 5 ax2—|—(19—|—€0fy)x——|—ﬁv:0,Ogth,

9,
v(T,x,9) = ®(x), x € R.

by this change of variables is transformed in (u (¢, z,9) = v (¢, y,v))

( 2 2 02 2 9
ou e“0” 0%u e4o ou
+ + (¥ — —+ — 4+ —0. 0<t<T
ot 2 0y? ( 2 co) Pu o= =

Jy
v(T,y,9) = ®(e¥), z € R.

\

and the solution of this one is described above.




Large samples asymptotics (joint work with A.
Abakirova)

The observed diffusion process (forward) is
dXt:S(ﬁ,Xt)dt—FO'(Xt) th, Xo, OStST

where ¢ € © = («, 8). The process X;,t > 0 has ergodic properties.
We are given two functions f (z,y), ® () and we have to find a

couple of stochastic processes (fft, Zt, 0<t<T ) which
approximate well the solution of the BSDE

dl/;ﬁ — _f (Xtai/;fa Zt) d¢ =+ Zt th7 Y07 0 S t S T

satisfying the condition Y7 = ® (Xp). The functions S (-) and o (-)

are known and smooth. We have to minimize the errors

A 2 R 2
Ey (Yt _ Yt> S min,  Ey (Zt _ Zt) s min.

as T — oo.




Solution: Let us introduce a family of functions
U={(u(t,z,9),t €[0,T],z € R),¥ € O} such that for all ¢ € ©
the function u(t, x, 1) satisfies the equation

ou ou  o(x)? 0%u

5 S(ﬁx)%Jr 5 axZZ—f(:c,u,a(x)uw)

and condition u(T, z,v) = ® (x). If we put Y; = u (¢, Xy, 1), then by
[t6’s formula we obtain BSDE with Z; = o (X;) u!, (t, X, 7).

Let us change the variables t = sT', s € [0, 1], and put
Ve (s,x) = u (8T, x), then

(%5 Ov,
88 + 50, x) 8:1:

_f (CE,UE,U (aj) <U€);:) )

where v, (1,2,9) = ® () and e = T~!. The limit is ¢ — 0.




We have a family of solutions v, (s,y,9),0 < s < 1. Fix some
(small) 9 > 0 and define the estimators

A A

Yor = ve (8, Xs, Vi) Zsr =0 (Xsr) (v ) (s, Xs, 0%

where V%, s € [0, 1] is one-step MLE, which is constructed as

follows. Suppose that we have an estimator ¥sr constructed by the
observations X°T = (X;,0 <t < 6T, which is consistent and

asymptotically normal
VT (V57 —9) = N (0, Dj) .
Then we calculate the one-step MLE

= 95 AST (ﬁgTvXéSS%) + As (ﬁgTvX(ST)
o7 = Yot ¥ STI(05,)




where

Aur (9, X5E) = /

sT ¢ X
SWXe) ax, —s(9.X,) dt]. se o]

oT O'(Xt)2

1 1)
85 (9.X°T) = 4(0.X5) ~ 5 [ BL(0.X)) o (X))
0

) /5 S (9, X0) S (9, X0) 4,
0

o (X)?

B(ﬁ,x):%, A(ﬁ,x):/mB(ﬁ,z) dz.

Note that under regularity conditions (K. 2004)

0

VST (9%, — 0) :>N(O,I(19)_1)




Now

VsT (ifsT _ Y3T> ~ B (8, Xy, 0) VST (5 — 09)

VsT (ZsT — Zyr ~ o (Xor) (82). (5, X) ,19) VST (9% — 0)

For the values s < 1 — ¢ the function v, (s,x,9) (under regularity
conditions) can be well approximated by the solution vg (z, ) of

the equation

ov o(x)? 0%v
S0, ) (9:1? + (2> (9:1320

and we can put Y.r = v (XsT, 0%p).
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