# Approximation of the Solution of the Backward Stochastic Differential Equation 

Yu.A. Kutoyants

Laboratoire de Statistique \& Processus,
Université du Maine, FRANCE

Tokyo, September, 2013

## Backward Stochastic Differential Equation

Problem: We are given a stochastic differential equation (called forward)

$$
\mathrm{d} X_{t}=b\left(t, X_{t}\right) \mathrm{d} t+a\left(t, X_{t}\right) \mathrm{d} W_{t}, \quad X_{0}=x_{0}, 0 \leq t \leq T
$$

and two functions $f(t, x, y, z)$ and $\Phi(x)$. We have to construct a couple of processes $\left(Y_{t}, Z_{t}\right)$ such that the solution of the equation

$$
\mathrm{d} Y_{t}=-f\left(t, X_{t}, Y_{t}, Z_{t}\right) \mathrm{d} t+Z_{t} \mathrm{~d} W_{t}, \quad Y_{0}, 0 \leq t \leq T
$$

(called backward) has the final value $Y_{T}=\Phi\left(X_{T}\right)$.
For the existence and uniqueness of the solution see Pardoux and Peng (1990). The Markovian case considered here was introduced by El Karoui \& al. (1997).

Solution: Suppose that $u(t, x)$ satisfies the equation

$$
\frac{\partial u}{\partial t}+b(t, x) \frac{\partial u}{\partial x}+\frac{1}{2} a(t, x)^{2} \frac{\partial^{2} u}{\partial x^{2}}=-f\left(t, x, u, a(t, x) \frac{\partial u}{\partial x}\right)
$$

with the final condition $u(T, x)=\Phi(x)$. Then if we put $Y_{t}=u\left(t, X_{t}\right), Z_{t}=a\left(t, X_{t}\right) u_{x}^{\prime}\left(t, X_{t}\right)$. Then by Itô's formula

$$
\begin{aligned}
\mathrm{d} Y_{t}= & {\left[\frac{\partial u}{\partial t}\left(t, X_{t}\right)+b\left(t, X_{t}\right) \frac{\partial u}{\partial x}\left(t, X_{t}\right)+\frac{1}{2} a(t, x)^{2} \frac{\partial^{2} u}{\partial x^{2}}\left(t, X_{t}\right)\right] \mathrm{d} t } \\
& \quad+a\left(t, X_{t}\right) \frac{\partial u}{\partial x}\left(t, X_{t}\right) \mathrm{d} W_{t} \\
= & -f\left(t, X_{t}, Y_{t}, Z_{t}\right) \mathrm{d} t+Z_{t} \mathrm{~d} W_{t}, \quad Y_{0}=u\left(0, X_{0}\right) .
\end{aligned}
$$

The final value $Y_{T}=u\left(T, X_{T}\right)=\Phi\left(X_{T}\right)$.

## Small noise asymptotics (joint work with L.Zhou)

The observed diffusion process (forward) is

$$
\mathrm{d} X_{t}=S\left(\vartheta, t, X_{t}\right) \mathrm{d} t+\varepsilon \sigma\left(t, X_{t}\right) \mathrm{d} W_{t}, \quad X_{0}, 0 \leq t \leq T
$$

where $\vartheta \in \Theta=(\alpha, \beta)$ is unknown parameter. We are given two functions $f(t, x, y, z), \Phi(x)$ and we have to find a couple of stochastic processes $\left(\hat{X}_{t}, \hat{Z}_{t}, 0 \leq t \leq T\right)$ which approximate well the solution of the BSDE

$$
\mathrm{d} Y_{t}=-f\left(t, X_{t}, Y_{t}, Z_{t}\right) \mathrm{d} t+Z_{t} \mathrm{~d} W_{t}, \quad Y_{0}, \quad 0 \leq t \leq T
$$

satisfying the condition $Y_{T}=\Phi\left(X_{T}\right)$. The functions $S(\cdot)$ and $\sigma(\cdot)$ are known and smooth. We have to minimize the errors

$$
\mathbf{E}_{\vartheta}\left(\hat{X}_{t}-X_{t}\right)^{2} \rightarrow \min , \quad \mathbf{E}_{\vartheta}\left(\hat{Z}_{t}-Z_{t}\right)^{2} \rightarrow \min
$$

as $\varepsilon \rightarrow 0$.

Solution: Let us introduce a family of functions

$$
\mathcal{U}=\{(u(t, x, \vartheta), t \in[0, T], x \in \mathbb{R}), \vartheta \in \Theta\}
$$

such that for all $\vartheta \in \Theta$ the function $u(t, x, \vartheta)$ satisfies the equation

$$
\frac{\partial u}{\partial t}+S(\vartheta, t, x) \frac{\partial u}{\partial x}+\frac{\varepsilon^{2} \sigma(t, x)^{2}}{2} \frac{\partial^{2} u}{\partial x^{2}}=-f\left(t, x, u, \varepsilon \sigma(x) \frac{\partial u}{\partial x}\right)
$$

and condition $u(T, x, \vartheta)=\Phi(x)$. If we put $Y_{t}=u\left(t, X_{t}, \vartheta\right)$, then by Itô's formula we obtain BSDE with $Z_{t}=\varepsilon \sigma\left(t, X_{t}\right) u_{x}^{\prime}\left(t, X_{t}, \vartheta\right)$. As we do not know the value $\vartheta$ we propose first to estimate it using some estimator $\vartheta_{\varepsilon}^{\star}$ and then to put

$$
\hat{Y}_{t}=u\left(t, X_{t}, \vartheta_{\varepsilon}^{\star}\right), \quad \hat{Z}_{t}=\varepsilon \sigma\left(t, X_{t}\right) u_{x}^{\prime}\left(t, X_{t}, \vartheta_{\varepsilon}^{\star}\right)
$$

Important: $\vartheta_{\varepsilon}^{\star}=\vartheta_{t, \varepsilon}^{\star}$ !

Construction of the Estimator: Introduce a family of deterministic functions $\left\{\left(x_{s}(\vartheta), 0 \leq s \leq T\right), \vartheta \in \Theta\right\}$ solution of ODE

$$
\frac{\mathrm{d} x_{s}}{\mathrm{~d} s}=S\left(\vartheta, s, x_{s}\right), \quad x_{0}, \quad 0 \leq s \leq T
$$

It is known that $X_{s}$ converges to $x_{s}(\vartheta)$ uniformly in $s \in[0, T]$. Introduce the LR function

$$
L\left(\vartheta, X^{t}\right)=\exp \left\{\int_{0}^{t} \frac{S\left(\vartheta, s, X_{s}\right)}{\varepsilon^{2} \sigma\left(s, X_{s}\right)^{2}} \mathrm{~d} X_{s}-\int_{0}^{t} \frac{S\left(\vartheta, s, X_{s}\right)^{2}}{2 \varepsilon^{2} \sigma\left(s, X_{s}\right)^{2}} \mathrm{~d} s\right\}
$$

and define the MLE $\hat{\vartheta}_{t, \varepsilon}$ by the equation

$$
L\left(\hat{\vartheta}_{t, \varepsilon}, X^{t}\right)=\sup _{\vartheta \in \Theta} L\left(\vartheta, X^{t}\right)
$$

It is known that $\varepsilon^{-1}\left(\hat{\vartheta}_{t, \varepsilon}-\vartheta_{0}\right) \Longrightarrow \mathcal{N}\left(0, \mathrm{I}\left(\vartheta, x^{t}\right)^{-1}\right)$, but to use it for $\bar{Y}_{t}=u\left(t, X_{t}, \hat{\vartheta}_{t, \varepsilon}\right)$ can be computantionally difficult problem.

Here

$$
\mathrm{I}\left(\vartheta, x^{t}(\vartheta)\right)=\int_{0}^{t} \frac{\dot{S}\left(\vartheta, s, x_{s}(\vartheta)\right)^{2}}{\sigma\left(s, x_{s}(\vartheta)\right)^{2}} \mathrm{~d} s
$$

Fix some (small) $\delta>0$ and introduce the $\operatorname{MDE} \vartheta_{\delta, \varepsilon}^{*}$ :

$$
\left\|X-x\left(\vartheta_{\delta, \varepsilon}^{*}\right)\right\|^{2}=\inf _{\vartheta \in \Theta}\|X-x(\vartheta)\|^{2}=\inf _{\vartheta \in \Theta} \int_{0}^{\delta}\left[X_{t}-x_{t}(\vartheta)\right]^{2} \mathrm{~d} t
$$

Suppose that the identifiability condition is fulfilled: for any $\nu>0$

$$
\inf _{\left|\vartheta-\vartheta_{0}\right|>\nu}\left\|x(\vartheta)-x\left(\vartheta_{0}\right)\right\|>0
$$

This estimator is consistent and asymptotically normal

$$
\varepsilon^{-1}\left(\vartheta_{\delta, \varepsilon}^{*}-\vartheta_{0}\right) \Longrightarrow \mathcal{N}\left(0, D_{\delta}\left(\vartheta_{0}\right)^{2}\right)
$$

where $\mathrm{I}\left(\vartheta, x^{\delta}(\vartheta)\right) \geq D_{\delta}\left(\vartheta_{0}\right)^{2}>0(\mathrm{~K} .1994)$.

Let us introduce the one-step $M L E$

$$
\tilde{\vartheta}_{t, \varepsilon}=\vartheta_{\delta, \varepsilon}^{*}+\frac{\Delta_{t}\left(\vartheta_{\delta, \varepsilon}^{*}, X_{\delta}^{t}\right)+\Delta_{\delta}\left(\vartheta_{\delta, \varepsilon}^{*}, X^{\delta}\right)}{\mathrm{I}\left(\vartheta_{\delta, \varepsilon}^{*}, x^{t}\left(\vartheta_{\delta, \varepsilon}^{*}\right)\right)},
$$

where

$$
\begin{aligned}
& \Delta_{t}\left(\vartheta, X_{\delta}^{t}\right)=\int_{\delta}^{t} \frac{\dot{S}\left(\vartheta, s, X_{s}\right)}{\sigma\left(s, X_{s}\right)^{2}}\left[\mathrm{~d} X_{s}-S\left(\vartheta, s, X_{s}\right) \mathrm{d} s\right], \quad t \in[\delta, T], \\
& \Delta_{\delta}\left(\vartheta, X^{\delta}\right)=A\left(\vartheta, \delta, X_{\delta}\right)-\int_{0}^{\delta} A_{s}^{\prime}\left(\vartheta, s, X_{s}\right) \mathrm{d} s \\
& -\frac{\varepsilon^{2}}{2} \int_{0}^{\delta} B_{x}^{\prime}\left(\vartheta, s, X_{s}\right) \sigma\left(s, X_{s}\right)^{2} \mathrm{~d} s-\int_{0}^{\delta} \frac{\dot{S}\left(\vartheta, s, X_{s}\right) S\left(\vartheta, s, X_{s}\right)}{\sigma\left(s, X_{s}\right)^{2}} \mathrm{~d} s, \\
& B(\vartheta, s, x)=\frac{\dot{S}(\vartheta, s, x)}{\sigma(s, x)^{2}}, \quad A(\vartheta, s, x)=\int_{x_{0}}^{x} B(\vartheta, s, z) \mathrm{d} z
\end{aligned}
$$

Theorem 1 Let the conditions of regularity be fulfilled then the processes

$$
\hat{Y}_{t}=u\left(t, X_{t}, \tilde{\vartheta}_{t, \varepsilon}\right), \quad \hat{Z}_{t}=\varepsilon \sigma\left(t, X_{t}\right) u_{x}^{\prime}\left(t, X_{t}, \tilde{\vartheta}_{t, \varepsilon}\right)
$$

for the values $t \in[\delta, T]$ have the representation

$$
\begin{align*}
& \hat{Y}_{t}=Y_{t}+\varepsilon \dot{u}\left(t, X_{t}, \vartheta_{0}\right) \xi_{t}\left(\vartheta_{0}\right)+o(\varepsilon)  \tag{1}\\
& \hat{Z}_{t}=Z_{t}+\varepsilon^{2} \sigma\left(t, X_{t}\right) \dot{u}_{x}^{\prime}\left(t, X_{t}, \vartheta_{0}\right) \xi_{t}\left(\vartheta_{0}\right)+o\left(\varepsilon^{2}\right) \tag{2}
\end{align*}
$$

where

$$
\xi_{t}\left(\vartheta_{0}\right)=\mathrm{I}\left(\vartheta_{0}, x^{t}\left(\vartheta_{0}\right)\right)^{-1} \int_{0}^{t} \frac{\dot{S}\left(\vartheta_{0}, s, x_{s}\left(\vartheta_{0}\right)\right)}{\sigma\left(s, x_{s}\left(\vartheta_{0}\right)\right)} \mathrm{d} W_{s} .
$$

Let us show that the proposed approximation is asymptotically efficient.

This means, that the means-quare errors

$$
\mathbf{E}_{\vartheta}\left|Y_{t}-\hat{Y}_{t}\right|^{2}, \quad \mathbf{E}_{\vartheta}\left|Z_{t}-\hat{Z}_{t}\right|^{2}
$$

of estimation $Y_{t}$ and $Z_{t}$ can not be improved. This will be done in two steps. First we establish a low bound on the risks of all estimators and then show that the proposed estimators attaint this bound.

Theorem 2 For all estimators $\bar{Y}_{t}$ and $\bar{Z}_{t}$ and all $t \in[\delta, T]$ we have the relations

$$
\begin{aligned}
& \varliminf_{\nu \rightarrow 0} \lim _{\varepsilon \rightarrow 0} \sup _{\left|\vartheta-\vartheta_{0}\right| \leq \nu} \varepsilon^{-2} \mathbf{E}_{\vartheta}\left|\bar{Y}_{t}-Y_{t}\right|^{2} \geq \frac{\dot{u}^{0}\left(t, x_{t}\left(\vartheta_{0}\right), \vartheta_{0}\right)^{2}}{\mathrm{I}\left(\vartheta_{0}, x^{t}\left(\vartheta_{0}\right)\right)} \\
& \underline{\lim _{\nu \rightarrow 0}} \lim _{\varepsilon \rightarrow 0} \sup _{\left|\vartheta-\vartheta_{0}\right| \leq \nu} \varepsilon^{-4} \mathbf{E}_{\vartheta}\left|\bar{Z}_{t}-Z_{t}\right|^{2} \\
& \quad \geq \frac{\left(\dot{u}^{0}\right)_{x}^{\prime}\left(t, x_{t}\left(\vartheta_{0}\right), \vartheta_{0}\right)^{2} \sigma\left(t, x_{t}\left(\vartheta_{0}\right)\right)^{2}}{\mathrm{I}\left(\vartheta_{0}, x^{t}\left(\vartheta_{0}\right)\right)}
\end{aligned}
$$

We call an approximation $Y_{t}^{\star}$ asymptotically efficient if for all $\vartheta_{0} \in \Theta$ we have the equality

$$
\lim _{\nu \rightarrow 0} \lim _{\varepsilon \rightarrow 0} \sup _{\left|\vartheta-\vartheta_{0}\right| \leq \nu} \varepsilon^{-2} \mathbf{E}_{\vartheta}\left|Y_{t}^{\star}-Y_{t}\right|^{2}=\frac{\dot{u}^{0}\left(t, x_{t}\left(\vartheta_{0}\right), \vartheta_{0}\right)^{2}}{\mathrm{I}\left(\vartheta_{0}, x^{t}\left(\vartheta_{0}\right)\right)}
$$

and the similar definition is valid in the case of the bound for $Z_{t}$.
Theorem 3 The approximations

$$
\hat{Y}_{t}=u\left(t, X_{t}, \tilde{\vartheta}_{t, \varepsilon}\right) \quad \text { and } \quad \hat{Z}_{t}=\varepsilon \sigma\left(t, X_{t}\right) u_{x}^{\prime}\left(t, X_{t}, \tilde{\vartheta}_{t, \varepsilon}\right)
$$

are asymptotically efficient, i.e.,

$$
\begin{aligned}
& \lim _{\nu \rightarrow 0} \lim _{\varepsilon \rightarrow 0} \sup _{\left|\vartheta-\vartheta_{0}\right| \leq \nu} \varepsilon^{-2} \mathbf{E}_{\vartheta}\left|\hat{Y}_{t}-Y_{t}\right|^{2}=\frac{\dot{u}^{0}\left(t, x_{t}\left(\vartheta_{0}\right), \vartheta_{0}\right)^{2}}{\mathrm{I}\left(\vartheta_{0}, x^{t}\left(\vartheta_{0}\right)\right)} \\
& \lim _{\nu \rightarrow 0} \lim _{\varepsilon \rightarrow 0} \sup _{\left|\vartheta-\vartheta_{0}\right| \leq \nu} \varepsilon^{-4} \mathbf{E}_{\vartheta}\left|\hat{Z}_{t}-Z_{t}\right|^{2}=\frac{\sigma\left(t, x_{t}\left(\vartheta_{0}\right)\right)^{2}\left(\dot{u}^{0}\right)_{x}^{\prime}\left(t, x_{t}, \vartheta_{0}\right)^{2}}{\mathrm{I}\left(\vartheta_{0}, x^{t}\left(\vartheta_{0}\right)\right)}
\end{aligned}
$$

## Miscellaneous

1. Uniform approximation. It is possible to show that these approximations are true uniformly in $t \in[\delta, T]$. We have the convergence

$$
\mathbf{P}_{\vartheta_{0}}\left\{\sup _{\delta \leq t \leq T}\left|\hat{Y}_{t}-Y_{t}\right|>\nu\right\} \longrightarrow 0
$$

2. Case $\delta \rightarrow 0$. The representations (1), (2) are valid for each $t \in[\delta, T]$ with fixed $\delta>0$. It is possible to show that $\hat{Y}_{t} \rightarrow Y_{t}$ and $\varepsilon^{-1} \hat{Z}_{t} \rightarrow \varepsilon^{-1} Z_{t}$ as $\varepsilon \rightarrow 0$ in the situation, where $\delta=\delta_{\varepsilon} \rightarrow 0$ but slowly.

Example. Let us consider the linear case

$$
\mathrm{d} X_{t}=\vartheta X_{t} \mathrm{~d} t+\varepsilon \mathrm{d} W_{t}, \quad X_{0}=x_{0}>0, \quad 0 \leq t \leq T
$$

Then the MLE can be written explicitly

$$
\hat{\vartheta}_{t, \varepsilon}=\frac{\int_{0}^{t} X_{s} \mathrm{~d} X_{s}}{\int_{0}^{t} X_{s}^{2} \mathrm{~d} s}=\vartheta+\varepsilon \frac{\int_{0}^{t} X_{s} \mathrm{~d} W_{s}}{\int_{0}^{t} X_{s}^{2} \mathrm{~d} s}
$$

and

$$
\hat{\vartheta}_{\delta_{\varepsilon}, \varepsilon}-\vartheta=\varepsilon \frac{\int_{0}^{\delta_{\varepsilon}} X_{s} \mathrm{~d} W_{s}}{\int_{0}^{\delta_{\varepsilon}} X_{s}^{2} \mathrm{~d} s} \sim \frac{\varepsilon W_{\delta_{\varepsilon}}}{x_{0} \delta_{\varepsilon}} \sim \frac{\varepsilon W_{1}}{x_{0} \delta_{\varepsilon}^{1 / 2}} .
$$

Therefore, if $\varepsilon \delta_{\varepsilon}^{-1 / 2} \rightarrow 0$ (for example, $\delta_{\varepsilon}=\varepsilon^{2} \ln \frac{1}{\varepsilon}$ ) then $\hat{Y}_{t} \rightarrow Y_{t}$ for all $t \in\left[\delta_{\varepsilon}, T\right]$.
3. Approximation of the BSDE. Note that $\hat{Y}_{t}$ is approximation of the solution of the BSDE but the stochastic process $\hat{Y}_{t}$ itself satisfies another stochastic differential equation. It can be written as follows

$$
\begin{aligned}
\mathrm{d} \hat{Y}_{t}=- & f\left(t, X_{t}, \hat{Y}_{t}, \hat{Z}_{t}\right) \mathrm{d} t+\hat{Z}_{t} \mathrm{~d} W_{t} \\
& +u_{x}^{\prime} S\left(\vartheta_{0}, t, X_{t}\right) \mathrm{d} t+\dot{u} \mathrm{I}_{t}^{-1} b_{t}\left(X_{t}\right)\left[c_{t}\left(X_{t}\right)-\mathrm{I}_{t}^{-1} b_{t}\left(x_{t}\right) \Delta_{t}\right] \mathrm{d} t \\
& +\frac{\varepsilon^{2}}{2} \ddot{u} \mathrm{I}_{t}^{-2} b_{t}\left(X_{t}\right)^{2} \mathrm{~d} t+\varepsilon \dot{u} \mathrm{I}_{t}^{-1} b_{t}\left(X_{t}\right) \mathrm{d} W_{t} \\
& +\frac{\varepsilon^{2}}{2} \dot{u}_{x}^{\prime} \mathrm{I}_{t}^{-1} b_{t}\left(X_{t}\right) \sigma\left(t, X_{t}\right) \mathrm{d} t, \quad \hat{Y}_{\delta}, \quad \delta \leq t \leq T
\end{aligned}
$$

4. Linear case. Suppose that

$$
\mathrm{d} X_{t}=\vartheta \mathrm{d} t+\varepsilon \sigma \mathrm{d} W_{t}, \quad X_{0}=x_{0}, \quad 0 \leq t \leq T
$$

where $\vartheta \in \Theta=(a, b)$ and we are given two functions $f(x, z)=\beta y+\gamma z$ and $\Phi(x)$. The variables $\sigma, \beta, \gamma$ are known constants and $\vartheta$ is unknown parameter. The function $\Phi(x)$ has two continuous derivatives with polynomial majorants. We have to construct the BSDE

$$
\mathrm{d} Y_{t}=-\left(\beta Y_{t}+\gamma Z_{t}\right) \mathrm{d} t+Z_{t} \mathrm{~d} W_{t}, \quad Y_{T}=\Phi\left(X_{T}\right)
$$

The corresponding PDE is

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}+\frac{1}{2} \varepsilon^{2} \sigma^{2} \frac{\partial^{2} u}{\partial x^{2}}+(\vartheta+\varepsilon \sigma \gamma) \frac{\partial u}{\partial x}+\beta u=0,0 \leq t \leq T \\
u(T, x, \vartheta)=\Phi(x), x \in \mathbb{R}
\end{array}\right.
$$

Solution

$$
u(t, x, \vartheta)=e^{\beta(T-t)} G(t, x, \vartheta)
$$

where

$$
G(t, x, \vartheta)=\int_{-\infty}^{\infty} e^{-\frac{z^{2}}{2 \varepsilon^{2} \sigma^{2}(T-t)}} \frac{\Phi(x+(\vartheta+\varepsilon \sigma \gamma)(T-t)-z)}{\sqrt{2 \pi \varepsilon^{2} \sigma^{2}(T-t)}} \mathrm{d} z
$$

Then we can put

$$
\begin{aligned}
Y_{t} & =u\left(t, X_{t}, \vartheta\right)=e^{\beta(T-t)} G\left(t, X_{t}, \vartheta\right) \\
Z_{t} & =\varepsilon \sigma u^{\prime}\left(t, X_{t}, \vartheta\right)=\varepsilon \sigma e^{\beta(T-t)} G_{x}^{\prime}\left(t, X_{t}, \vartheta\right)
\end{aligned}
$$

and obtain the BSDE

$$
\mathrm{d} Y_{t}=-\left(\beta Y_{t}+\gamma Z_{t}\right) \mathrm{d} t+Z_{t} \mathrm{~d} W_{t}, \quad Y_{T}=\Phi\left(X_{T}\right)
$$

Note that

$$
G_{x}^{\prime}(t, x, \vartheta)=\int_{-\infty}^{\infty} e^{-\frac{z^{2}}{2 \varepsilon^{2} \sigma^{2}(T-t)}} \frac{\Phi^{\prime}(x+(\vartheta+\varepsilon \sigma \gamma)(T-t)-z)}{\sqrt{2 \pi \varepsilon^{2} \sigma^{2}(T-t)}} \mathrm{d} z
$$

and

$$
\begin{aligned}
& \dot{u}^{\prime}(t, x, \vartheta)=(T-t) e^{\beta(T-t)} G^{\prime \prime}(t, x, \vartheta), \\
& \ddot{u}(t, x, \vartheta)=(T-t)^{2} e^{\beta(T-t)} G^{\prime \prime}(t, x, \vartheta) .
\end{aligned}
$$

In this model the MLE $\hat{\vartheta}_{t, \varepsilon}$ can be explicitly written

$$
\hat{\vartheta}_{t, \varepsilon}=\frac{X_{t}}{t}=\vartheta_{0}+\varepsilon \sigma \frac{W_{t}}{t} \sim \mathcal{N}\left(\vartheta_{0}, \frac{\varepsilon^{2} \sigma^{2}}{t}\right)
$$

and for all $t \in(0, T]$ is consistent. Therefore we can put

$$
\begin{aligned}
& \hat{Y}_{t}=e^{\beta(T-t)} G\left(t, X_{t}, \hat{\vartheta}_{t, \varepsilon}\right), \quad t \in(0, T] \\
& \hat{Z}_{t}=\varepsilon \sigma e^{\beta(T-t)} G_{x}^{\prime}\left(t, X_{t}, \hat{\vartheta}_{t, \varepsilon}\right), \quad t \in(0, T]
\end{aligned}
$$

and is asymptotically efficient.
4. Black and Scholes model. Suppose that

$$
\mathrm{d} X_{t}=\vartheta X_{t} \mathrm{~d} t+\varepsilon \sigma X_{t} \mathrm{~d} W_{t}, \quad X_{0}=x_{0}, \quad 0 \leq t \leq T
$$

and we have the same problem with the function $f(x, y, z)=\beta y+\gamma x z$. The MLE is

$$
\hat{\vartheta}_{\varepsilon, t}=\frac{1}{t} \int_{0}^{t} \frac{\mathrm{~d} X_{t}}{X_{t}}, \quad \frac{\hat{\vartheta}_{\varepsilon, t}-\vartheta}{\varepsilon}=\sigma \frac{W_{t}}{t} .
$$

It is sufficient to note that the transformation $\bar{X}_{t}=\ln X_{t}$ reduces the forward equation to the linear case

$$
\mathrm{d} \bar{X}_{t}=\left[\vartheta-\frac{\varepsilon^{2} \sigma^{2}}{2}\right] \mathrm{d} t+\varepsilon \sigma \mathrm{d} W_{t}, \quad \bar{X}_{0}=\ln x_{0}, \quad 0 \leq t \leq T,
$$

The equation

$$
\left\{\begin{array}{l}
\frac{\partial v}{\partial t}+\frac{\varepsilon^{2} \sigma^{2} x^{2}}{2} \frac{\partial^{2} v}{\partial x^{2}}+(\vartheta+\varepsilon \sigma \gamma) x \frac{\partial v}{\partial x}+\beta v=0,0 \leq t \leq T \\
v(T, x, \vartheta)=\Phi(x), x \in \mathbb{R}
\end{array}\right.
$$

by this change of variables is transformed in $(u(t, x, \vartheta)=v(t, y, \vartheta))$

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}+\frac{\varepsilon^{2} \sigma^{2}}{2} \frac{\partial^{2} u}{\partial y^{2}}+\left(\vartheta-\frac{\varepsilon^{2} \sigma^{2}}{2}+\varepsilon \sigma \gamma\right) \frac{\partial u}{\partial y}+\beta u=0,0 \leq t \leq T \\
v(T, y, \vartheta)=\Phi\left(e^{y}\right), x \in \mathbb{R}
\end{array}\right.
$$

and the solution of this one is described above.

## Large samples asymptotics (joint work with A.

Abakirova)
The observed diffusion process (forward) is

$$
\mathrm{d} X_{t}=S\left(\vartheta, X_{t}\right) \mathrm{d} t+\sigma\left(X_{t}\right) \mathrm{d} W_{t}, \quad X_{0}, 0 \leq t \leq T
$$

where $\vartheta \in \Theta=(\alpha, \beta)$. The process $X_{t}, t \geq 0$ has ergodic properties. We are given two functions $f(x, y), \Phi(x)$ and we have to find a couple of stochastic processes $\left(\hat{Y}_{t}, \hat{Z}_{t}, 0 \leq t \leq T\right)$ which approximate well the solution of the BSDE

$$
\mathrm{d} Y_{t}=-f\left(X_{t}, Y_{t}, Z_{t}\right) \mathrm{d} t+Z_{t} \mathrm{~d} W_{t}, \quad Y_{0}, \quad 0 \leq t \leq T
$$

satisfying the condition $Y_{T}=\Phi\left(X_{T}\right)$. The functions $S(\cdot)$ and $\sigma(\cdot)$ are known and smooth. We have to minimize the errors

$$
\mathbf{E}_{\vartheta}\left(\hat{Y}_{t}-Y_{t}\right)^{2} \rightarrow \min , \quad \mathbf{E}_{\vartheta}\left(\hat{Z}_{t}-Z_{t}\right)^{2} \rightarrow \min
$$

as $T \rightarrow \infty$.

Solution: Let us introduce a family of functions $\mathcal{U}=\{(u(t, x, \vartheta), t \in[0, T], x \in \mathbb{R}), \vartheta \in \Theta\}$ such that for all $\vartheta \in \Theta$ the function $u(t, x, \vartheta)$ satisfies the equation

$$
\frac{\partial u}{\partial t}+S(\vartheta, x) \frac{\partial u}{\partial x}+\frac{\sigma(x)^{2}}{2} \frac{\partial^{2} u}{\partial x^{2}}=-f\left(x, u, \sigma(x) u_{x}^{\prime}\right)
$$

and condition $u(T, x, \vartheta)=\Phi(x)$. If we put $Y_{t}=u\left(t, X_{t}, \vartheta\right)$, then by Itô's formula we obtain BSDE with $Z_{t}=\sigma\left(X_{t}\right) u_{x}^{\prime}\left(t, X_{t}, \vartheta\right)$.

Let us change the variables $t=s T, s \in[0,1]$, and put $v_{\varepsilon}(s, x)=u(s T, x)$, then

$$
\varepsilon \frac{\partial v_{\varepsilon}}{\partial s}+S(\vartheta, x) \frac{\partial v_{\varepsilon}}{\partial x}+\frac{\sigma(x)^{2}}{2} \frac{\partial^{2} v_{\varepsilon}}{\partial x^{2}}=-f\left(x, v_{\varepsilon}, \sigma(x)\left(v_{\varepsilon}\right)_{x}^{\prime}\right),
$$

where $v_{\varepsilon}(1, x, \vartheta)=\Phi(x)$ and $\varepsilon=T^{-1}$. The limit is $\varepsilon \rightarrow 0$.

We have a family of solutions $v_{\varepsilon}(s, y, \vartheta), 0 \leq s \leq 1$. Fix some (small) $\delta>0$ and define the estimators

$$
\hat{Y}_{s T}=v_{\varepsilon}\left(s, X_{s T}, \vartheta_{s T}^{\star}\right), \quad \hat{Z}_{s T}=\sigma\left(X_{s T}\right)\left(v_{\varepsilon}\right)_{x}^{\prime}\left(s, X_{s T}, \vartheta_{s T}^{\star}\right)
$$

where $\vartheta_{s T}^{\star}, s \in[\delta, 1]$ is one-step MLE, which is constructed as follows. Suppose that we have an estimator $\bar{\vartheta}_{\delta T}$ constructed by the observations $X^{\delta T}=\left(X_{t}, 0 \leq t \leq \delta T\right)$, which is consistent and asymptotically normal

$$
\sqrt{\delta T}\left(\bar{\vartheta}_{\delta T}-\vartheta\right) \Longrightarrow \mathcal{N}\left(0, D_{\delta}^{2}\right)
$$

Then we calculate the one-step MLE

$$
\vartheta_{s T}^{\star}=\vartheta_{\delta T}^{*}+\frac{\Delta_{s T}\left(\vartheta_{\delta T}^{*}, X_{\delta T}^{s T}\right)+\Delta_{\delta}\left(\vartheta_{\delta T}^{*}, X^{\delta T}\right)}{s T \mathrm{I}\left(\vartheta_{\delta T}^{*}\right)}, \quad \delta \leq s \leq 1
$$

where

$$
\begin{aligned}
\Delta_{s T}\left(\vartheta, X_{\delta T}^{s T}\right)= & \int_{\delta T}^{s T} \frac{\dot{S}\left(\vartheta, X_{t}\right)}{\sigma\left(X_{t}\right)^{2}}\left[\mathrm{~d} X_{t}-S\left(\vartheta, X_{t}\right) \mathrm{d} t\right], \quad s \in[\delta, 1] \\
\Delta_{\delta}\left(\vartheta, X^{\delta T}\right)= & A\left(\vartheta, X_{\delta}\right)-\frac{1}{2} \int_{0}^{\delta} B_{x}^{\prime}\left(\vartheta, X_{t}\right) \sigma\left(X_{t}\right)^{2} \mathrm{~d} t \\
& -\int_{0}^{\delta} \frac{\dot{S}\left(\vartheta, X_{t}\right) S\left(\vartheta, X_{t}\right)}{\sigma\left(X_{t}\right)^{2}} \mathrm{~d} t \\
B(\vartheta, x)= & \frac{\dot{S}(\vartheta, x)}{\sigma(x)^{2}}, \quad A(\vartheta, x)=\int_{x_{0}}^{x} B(\vartheta, z) \mathrm{d} z
\end{aligned}
$$

Note that under regularity conditions (K. 2004)

$$
\sqrt{s T}\left(\vartheta_{s T}^{\star}-\vartheta\right) \Longrightarrow \mathcal{N}\left(0, \mathrm{I}(\vartheta)^{-1}\right)
$$

Now

$$
\begin{aligned}
& \sqrt{s T}\left(\hat{Y}_{s T}-Y_{s T}\right) \sim \dot{v}_{\varepsilon}\left(s, X_{s T}, \vartheta\right) \sqrt{s T}\left(\vartheta_{s T}^{\star}-\vartheta\right), \\
& \sqrt{s T}\left(\hat{Z}_{s T}-Z_{s T} \sim \sigma\left(X_{s T}\right)\left(\dot{v}_{\varepsilon}\right)_{x}^{\prime}(s, X), \vartheta\right) \sqrt{s T}\left(\vartheta_{s T}^{\star}-\vartheta\right)
\end{aligned}
$$

For the values $s<1-\delta$ the function $v_{\varepsilon}(s, x, \vartheta)$ (under regularity conditions) can be well approximated by the solution $v_{0}(x, \vartheta)$ of the equation

$$
S(\vartheta, x) \frac{\partial v_{0}}{\partial x}+\frac{\sigma(x)^{2}}{2} \frac{\partial^{2} v_{0}}{\partial x^{2}}+f\left(x, v_{0}, \sigma(x)\left(v_{0}\right)_{x}^{\prime}\right)=0
$$

and we can put $\hat{Y}_{s T}=v_{0}\left(X_{s T}, \vartheta_{s T}^{\star}\right)$.

## References

[1] Abakirova, A. and Kutoyants Y.A. (2013) On approximation of the backward stochastic differential equation. Large samples. (arXiv:1305.3728) submitted.
[2] El Karoui N., Mazliak L. (Eds). (1997) Backward Stochastic Differential Equations. Pitman Research Notes in Mathematics Series 364. Longman, Harlow.
[3] El Karoui N., Peng S. and Quenez M. (1997) Backward stochastic differential equations in finance, Math. Finance, 7, 1-71.
[4] Kutoyants Y.A. (1994) Identification of Dynamical Systems with Small Noise, Kluwer Academic Publisher, Dordrecht.
[5] Kutoyants Y.A. (2004) Statiatical Inference for Ergodic Diffusion Processes. Springer, London.
[6] Kutoyants Y.A. and Zhou, L.(2013) On approximation of the backward stochastic differential equation. (arXiv:1305.3728) submitted.
[7] Ma J., Yong J. (1999) Forward-Backward Stochastic Differential Equations and their Applications. Lecture Notes in Mathematics. Springer, Berlin.
[8] Pardoux E. and Peng S. (1990) Adapted solution of a backward stochastic differential equation. System Control Letter, 14, 55-61.
[9] Zhou, L. (2013) Problèmes Statistiques pour des EDS et les EDS Rétrogrades, PhD Thesis, March 2013, Université du Maine, Le Mans.

