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Motivation

◮ Continuous-time models are widely applied for analyzing
financial time series, e.g., for asset pricing, portfolio and asset
management, and risk-management.

◮ Examples: diffusion, jump-diffusion, Levy processes, and Levy
driven processes, etc.

◮ A key theme in empirical study: statistical inference and
econometric assessment based on discretely observed data

◮ Likelihood-based inference (e.g., Maximum-likelihood
estimation) is a natural choice among many other methods
because of its efficiency.

◮ However, for most sophisticated models, likelihood functions
are analytically intractable and thus involve heavy
computational load, in particular, in the repetition of
valuation for optimization.



For Diffusion Models

◮ Various methods for approximating likelihood functions, e.g.,
Yoshida (1992), Kessler (1997), Uchida and Yoshida (2012)
among many others.

◮ Expansion of (transition densities) likelihood functions:
established in Äıt-Sahalia (1999, 2002, 2008) and its
extensions and refinements, e.g., Bakshi et al. (2006).

◮ Thanks to the theory of Watanabe-Yoshida (1987, 1992), an
alternative widely applicable method has been proposed for
approximate maximum-likelihood estimation of any arbitrary
multivariate diffusion model; see, Li (2013).

◮ A closed-form small-time asymptotic expansion for transition
density (likelihood) was proposed and accompanied by an
algorithm for delivering any arbitrary order of the expansion.



Our Goal: How to Deal with Jumps?

◮ Jump-diffusions have been widely used for modeling real-world
dynamics of random fluctuations involving both relatively mild
diffusive evolutions and discontinuity caused by significant
shocks.

◮ Existing expansions: e.g., Schumburg (2001), Yu (2007), and
Filipovic (2013).

◮ I propose a closed-form expansion for transition density of
jump-diffusion processes, for which any arbitrary order of
corrections can be systematically obtained.

◮ As an application, likelihood function is approximated
explicitly and thus employed in a new method of approximate
maximum-likelihood estimation for jump-diffusion process
from discretely sampled data.

◮ Using the theory of Watanabe-Yoshida (1987, 1992) and its
generalization to the Levy-driven models in Hayashi and
Ishikawa (2012), the convergence related to the density
expansion and the approximate estimation method can be
theoretically justified under some standard conditions.



A Jump-Diffusion Model

dX (t) = µ(X (t); θ)dt + σ(X (t); θ)dW (t) + dJ(t; θ), X (0) = x0
(1)

where X (t) is a d−dimensional random vector; {W (t)} is a
d−dimensional standard Brownian motion; the unknown parameter
θ belonging to a multidimensional open bounded set Θ; J(t) is a
vector valued jump process modeled by a compounded Poisson
process:

J(t) ≡ (J1(t), · · · , Jd (t))T :=

N(t)∑

k=1

Zk ≡
N(t)∑

k=1

(Zk,1,Zk,2, · · · ,Zk,d )
⊤ ,

where {N(t)} is a Possion process with an intensity process
{λ(t)}. Let E ⊂ R

d denote the state space of X . We note that
various popular jump-diffusion models takes or can be easily
transformed into the form of (1), e.g., JD, SVJ, and SVJJ.



The Model and Some Assumptions

◮ Relaxed the condition in the linear drift and diffusion of the
affine jump-diffusion model (Duffie et al. (1996)).

◮ As supported by various empirical evidence, the intensity
{λ(t)} can be choosen as a positive constant λ, which results
in the existence and uniqueness of the solution.

◮ For different integers k , Zk = (Zk,1,Zk,2, · · · ,Zk,d )
⊤ are i.i.d.

multivariate distributions, e.g., normal (double-sided) or
(one-sided) exponential.

◮ Without loss of generality, we assume the jump size Zk has a
multivariate normal distribution with mean vector
α = (α1, α2, · · · , αd) and convariance matrix
β =diag

(
β2
1, β

2
2, · · · , β2

d

)
; or Zk has a multivariate

exponential distribution, in which Zk,j ’s are independent and
Zk,j has an exponential distribution with intensity γ j .



A Closed-form Expansion of Transition Density

◮ Denote by p(∆, x |x0; θ) the conditional density of X (t +∆)
given X (t) = x0, i.e.

P(X (t +∆) ∈ dx |X (t) = x0) = p(∆, x |x0; θ)dx . (2)

◮ We will propose a closed-form asymptotic expansion
approximation for its transition density (2) in the following
form:

pM(∆, x |x0; θ) =
(

1√
∆

)d

detD(x0)
M∑

m=0

Ψm(∆, x |x0; θ).

◮ Here pM denotes an expansion up to the Mth order; the
functions D(x0) and Ψm(∆, x |x0; θ) explicitly depending on
the drift vector µ, dispersion matrix σ and jump components,
will be defined or calculated in what follows.

◮ How to obtain such an expansion and how to pragmatically
calculate them symbolically?



Parameterization

◮ For computational convenience, we start from the following
equivalent Stratonovich form:

dX (t) = b(X (t))dt + σ(X (t)) ◦ dW (t) + dJ(t), X (0) = x0.
(3)

◮ We parameterize the dynamics (3) as

dX ǫ(t) = ǫ[b(X ǫ(t))dt+σ(X ǫ(t))◦dW (t)+dJ(t)],X ǫ(0) = x0.

◮ Therefore, if we obtain an expansion for the transition density

pǫ(∆, x |x0; θ)dx = P(X ǫ(∆) ∈ dx |X ǫ(0) = x0) (4)

as a series of ǫ, an approximation for (2) can be directly
obtained by plugging in ǫ = 1.



Pathwise Expansions

◮ Expand X ǫ(t) as a power series of ǫ around ǫ = 0. As X ǫ(t)
admits

X ǫ(t) =

M∑

m=0

Xm(t)ǫ
m +O(ǫM+1),

◮ It is easy to have X0(t) ≡ x0 and

X1(t) = b(x0)t + σ(x0)W (t) + J(t).

◮ Differentiation of the parameterized SDE on both sides, we
obtain an iteration algorithm for obtaining higher-order
correction terms:

dXm(t) = bm−1(t)dt + σm−1(t) ◦ dW (t), for m ≥ 2,

where bm−1(t) and σm−1(t) involves products and
summations of Xm−1(t),Xm−2(t), ...,X1(t),X0(t).



Pathwise Expansion

◮ We introduce an iterated Stratonovich integration

Si,f(t) :=

∫ t

0

∫ t1

0
· · ·
∫ tl−1

0
fl(tl)◦dWil (tl) · · · f1(t1)◦dWi1(t1),

for an arbitrary index i = (i1, i2 · · · , il) ∈ {0, 1, 2, · · · , d}l and
a stochastic process f = {(f1(t), f2(t), · · · , fl (t))}

◮ The correction term Xn(t) can be expressed by iterations and
multiplications of Stratonovich integrals.

◮ The integrands involve the step function created by jump
arrivals,

J(t) =

∞∑

l=1

(
l∑

i=1

(Zi ,1,Zi ,2, · · · ,Zi ,d)
T

)
1[τ l ,τ l+1](t),

where τ1, τ2, · · · , are the jump arrival times.



Expansion for Transition Density

◮ A starting point:

pǫ(∆, x |x0; θ)=E [δ(X ǫ(∆)− x)|X ǫ(0) = x0] .

◮ To guarantee the convergence, our expansion starts from a
standardization of X ǫ(∆) into

Y ǫ(∆) :=
D(x0)√

∆

X ǫ(∆)− x0

ǫ
=

M∑

m=0

Ym(∆)ǫm +O(ǫM+1),

(5)
where D(x) is a diagonal matrix depending on σ(x).

◮ As ǫ → 0, Y ǫ(∆) converges to

Y0(∆) =
D(x0)√

∆
(σ(x0)W (∆) + b(x0)∆ + J(∆)) . (6)

This is nondegerate in the sense of Watanabe-Yoshida (1987,
1992) and Hayashi and Ishikawa (2012).



Expansion of Transition Density: a Road Map

◮ By the scaling property of Dirac Delta function, we have

Eδ(X ǫ(∆)− x)

=

(
1√
∆ǫ

)d

detD(x0)E [δ (Y ǫ(∆)− y)] |
y=

D(x0)
√

∆

(

x−x0
ǫ

).

◮ We use the classical rule of differentiation to obtain a Taylor
expansion of δ(Y ǫ(∆)− y) as

δ(Y ǫ(∆)− y) =

M∑

m=0

Φm(y)ǫ
m +O(ǫM+1),

◮ Thus, take expectation to obtain that

E [δ(Y ǫ(∆)− y)] :=

M∑

m=0

Ψm(y)ǫ
m +O(ǫM+1),

where Ψm(y) := E [Φm(y)] .



Expansion of Transition Density: a Road Map

The Mth order expansion of the density pǫ(∆, x |x0; θ):

pǫM(∆, x |x0; θ) =
(

1√
∆ǫ

)d

detD(x0)

M∑

m=0

Ψm

(
D(x0)√

∆

(
x − x0

ǫ

))
ǫm.

By letting ǫ = 1, we define a Mth order approximation to the
transition density p(∆, x |x0; θ) as

pM(∆, x |x0; θ) :=
(

1√
∆

)d

detD(x0)
M∑

m=0

Ψm

(
D(x0)√

∆
(x − x0)

)
.



Practical Calculation of the Correction Term
Conditioning on the total number of jump arrivals, we have

Ψm(y) = E [Φm(y)] =

∞∑

n=0

E [Φm(y)|N(∆) = n]P(N(∆) = n).

We just need to calculate Tm,n(y) := E [Φm(y)|N(∆) = n] .Define
Nth order approximation of Ψm(y) as

Ψm,N(y) =

N∑

n=0

exp(−λ∆)
λn∆n

n!
Tm,n(y).

Thus, the Mth order approximation of the transition density is
further approximated by the following double summation

pM,N(∆, x |x0; θ) : =

(
1√
∆

)d

detD(x0)

M∑

m=0

N∑

n=0

exp(−λ∆)
λn∆n

n!

Tm,n

(
D(x0)√

∆

(
x − x0

ǫ

))
.



Calculation of the Leading Order Term

T0,n(y) = E [δ(Y0(∆)− y)|N(∆) = n]

= E

[
φΣ(x0)

(
y − D(x0)√

∆
(b(x0)∆ + J(∆))

)
|N(∆) = n

]
,

where φΣ(x0)(y) denotes the probability density of a normal
distribution with zero mean and covariance matrix

Σ(x0) = D(x0)σ(x0)σ(x0)
TD(x0).

Based on the distribution of jump size, we calculate this
expectation in closed-form.



Calculation of Higher Order Terms

◮ The mth order correction term for δ(Y ǫ(∆)− y):

Φm(y) =
∑ 1

ℓ!

(
D(x0)√

∆

)ℓ ∂(ℓ)δ (Y0(∆)− y)

∂xr1∂xr2 · · · ∂xrℓ

ℓ∏

i=1

Xji+1,ri (∆).

◮ To calculate EΦm(y), our key idea is to conditioning on the
jump path. Calculate the conditional expectation and then
calculate the expectation with respect jumps.

◮ Denote by {J (t)} = σ(J(s), s ≤ t). For j(ℓ) = (j1, j2, · · · , jℓ)
and r(ℓ) =(r1, r2, · · · , rℓ), we define

Pn,(ℓ,j(ℓ),r(ℓ))(w)

: = E

(
ℓ∏

i=1

Xji+1,ri (∆)|W (∆) = w ,N(∆) = n,J (∆)

)
.

◮ Pn,(ℓ,j(ℓ),r(ℓ))(w) will be calculated as a polynomial in w with
coefficients involving polynomials of the jump arrival times
τ1, τ2, · · · , τ n as well as jump amplitudes Z1,Z2, · · · ,Zn.



An Algorithm for Calculating Conditional Expectations

An algorithm for calculating Pn,(ℓ,j(ℓ),r(ℓ))(w) :

◮ Convert the multiplications of iterated Stratonovich integrals
to linear combinations.

◮ Convert each iterated Stratonovich integral resulted from the
previous step into a linear combination of iterated Ito
integrals.

◮ Compute conditional expectation of iterated Ito integrals.

Practical implementation:

◮ Iteration-based

◮ Much more technical than the case without jumps, see, Li
(2013)



Theorem
For any integer m ≥ 1, the correction term Tm,n(y) admits the

following explicit expression:

Tm,n(y) =
∑ 1

ℓ!

(
−D(x0)√

∆

)ℓ

×E

(
Fn,(ℓ,j(ℓ),r(ℓ))

(
y − D(x0)√

∆
(b(x0)∆ + J(∆))

))
,

where Fn,(ℓ,j(ℓ),r(ℓ))(z) is a polynomial explicitly calculated from

Fn,(ℓ,j(ℓ),r(ℓ))(z) := φΣ(x0)(z)

×Dr1

(
Dr2

(
· · · Drℓ

(
Pn,(ℓ,j(ℓ),r(ℓ))(σ(x0)

−1D(x0)
−1

√
∆z)

)
· · ·
))

with coefficients involving polynomials of the jump arrival times

τ1, τ2, · · · , τ n as well as jump amplitudes Z1,Z2, · · · ,Zn. Here,

Diu(z) :=
∂u(z)

∂zi
− u(z)(Σ(x0)

−1z)i .



Explicit Calculation w.r.t. Jump Components

◮ We need to consider the following type of expectation

E

(
n∏

i=1

τ
aj
i

d∏

l=1

n∏

k=1

Z
bk,l
k,l φΣ(x0)

(
y − D(x0)√

∆
(b(x0)∆ + J(∆))

))
.

◮ Independence leads to

E

(
n∏

i=1

τ
aj
i

)
E

(
d∏

l=1

n∏

k=1

Z
bk,l
k,l φΣ(x0) (A+ BJ(∆))

)
.

◮ Apply the underlying distribution to calculate these
conditional expectation in closed-form.



Validity of the Expansion

◮ We establish the uniform convergence of the asymptotic
expansion around the neighborhood of ǫ = 0.

◮ As demonstrated in the numerical experiments, accuracy of
the approximation is enhanced as the order increases.

◮ Standard assumptions and the theory of Watanabe-Yoshida
(1987, 1992) and Hayashi and Ishikawa (2012) leads to:

sup
(x ,x0,θ)∈E×K×Θ

|pǫM(∆, x |x0; θ)− pǫ(∆, x |x0; θ)| = O(ǫM−d+1),

as ǫ → 0 for M ≥ d .

◮ This gives a theoretical (not necessarily tight) upper bound
estimate of the uniform approximation error.

◮ The effects of dimensionality: the multiplier ǫ−d in the
expansion, which leads to the error magnitude ǫM−d+1.



Approximate MLE

◮ At time grids {∆, 2∆, · · · , n∆}, the likelihood function is
constructed as

l ǫn(θ) =

n∏

i=1

pǫ(∆t,X (i∆)|X ((i − 1)∆); θ). (7)

◮ The Mth order approximate likelihood function:

l
ǫ,(M)
n (θ) =

n∏

i=1

pǫM(∆t,X (i∆)|X ((i − 1)∆); θ). (8)

◮ Assume, for simplicity, that the true likelihood function l ǫn(θ)

admits a unique maximizer θ̂
ǫ

n. Similarly, let θ̂
ǫ,(M)

n be the
approximate MLE of order M obtained from maximizing

l
ǫ,(M)
n (θ).

◮ Convergence of density expansion leads to

θ̂
ǫ,(M)

n − θ̂
ǫ

n
P→ 0, (9)

as ǫ → 0 for M ≥ d .



Computational Results: Density Expansion

◮ ABMJ (arithmetic Brownian motion with jump) model:

dX (t) = µdt + σdW (t) + d




N(t)∑

n=0

Zn


 , Zn ∼ N

(
α, β2

)

◮ MROUJ (mean-reverting Ornstein-Uhlenbeck with jump)
model:

dX (t) = κ(θ−X (t))dt+σdW (t)+d




N(t)∑

n=0

Zn


 , Zn ∼ N

(
α, β2

)

◮ SQRJ (square root diffusion with jump) model:

dX (t) = κ(θ − X (t))dt + σ
√
X (t)dW (t) + d




N(t)∑

n=0

Zn


 ,

Zn ∼ expo(γ)



Computational Results: Density Expansion

◮ BMROUJ (bivariate mean-reverting Ornstein-Uhlenbeck with
jump) model:

d

(
X1(t)
X2(t)

)
=

(
κ11 0
κ21 κ22

)(
θ1 − X1(t)
θ2 − X2(t)

)
dt

+d

(
W1(t)
W2(t)

)
+ d

( ∑N(t)
n=1 Zn,1∑N(t)
n=1 Zn,2

)
,

(
Zn,1

Zn,2

)
∼ N

((
α1

α2

)
,

(
β2
1 0

0 β2
2

))

◮ Benchmarks calculated from either closed-form formula or
Fourier transfrom inversions (Abate and Whitt (1992)):

f (t) =
1

2π

∫
∞

−∞

e−itωφ (ω) dω ≈
m∑

k=1

(
m

k

)
2−m

×
(

h

2π
+

h

π

n+k∑

k=1

[Re (φ) (kh) cos kht + Im (φ) (kh) sin kht]

)
.



Numerical Performance: Density Expansion
Consider maximum relative errors
maxx∈D |eM,N(∆, x |x0; θ)/p(∆, x |x0; θ)| over in a region D, where
the errors are defined by

eM,N(∆, x |x0; θ) := pM,N(∆, x |x0; θ)− p(∆, x |x0; θ).
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(c) BMROUJ model

Figure: M = 0, 1, 2, 3 and fixed N = 3.



Numerical Performance: Density Expansion
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Figure: N = 0, 1, 2, 3 and fixed M = 3.



Monte Carlo Simulation Evidence for Approximate MLE

Table: Monte Carlo Evidence for the MROUJ Model

Parameters Finite sample Finite sample Finite sample

θTrue θ̂n − θTrue θ̂
(1)
n − θ̂n θ̂

(3)
n − θ̂n

Mean Stddev Mean Stddev Mean Stddev
∆ = 1/252

κ = 0.5 0.030645 0.061289 0.018137 0.032763 0.001266 0.002531
θ = 0 −0.000104 0.000208 0.000415 0.000486 −0.000076 0.000152

σ = 0.2 0.000106 0.000212 0.001667 0.003584 −0.000007 0.000014
λ = 0.33 −0.013829 0.027658 0.028869 0.061288 −0.000552 0.001104

α = 0 −0.000723 0.001445 0.000345 0.000635 0.000012 0.000024
β = 0.28 0.068028 0.136055 −0.062129 0.121034 −0.000112 0.000224

∆ = 1/52
κ = 0.5 0.226511 0.076686 0.004611 0.001503 −0.000697 0.000986

θ = 0 0.001394 0.001029 −0.000408 0.001137 0.000019 0.000027
σ = 0.2 0.003059 0.001773 −0.000065 0.000021 0.000062 0.000088

λ = 0.33 0.257111 0.222929 −0.009779 0.005662 −0.000463 0.000655
α = 0 −0.000234 0.001390 0.000267 0.000648 0.000006 0.000009

β = 0.28 −0.091571 0.079626 −0.000028 0.001381 −0.000053 0.000075
∆ = 1/12

κ = 0.5 0.018959 0.115585 0.012132 0.008716 0.000649 0.002034
θ = 0 0.000009 0.000027 0.000095 0.000302 −0.000006 0.000019

σ = 0.2 0.004006 0.005580 0.000231 0.000450 0.000122 0.000287
λ = 0.33 0.079698 0.108969 0.001533 0.004054 −0.000033 0.000104

α = 0 0.000002 0.000007 0.000041 0.000131 0.000004 0.000012
β = 0.28 0.000910 0.049361 0.000335 0.002419 0.000338 0.000713



Monte Carlo Simulation Evidence for Approximate MLE

Table: Monte Carlo Evidence for the SQRJ Model

Parameters Finite sample Finite sample Finite sample

θTrue θ̂n − θTrue θ̂
(1)
n − θ̂n θ̂

(3)
n − θ̂n

Mean Stddev Mean Stddev Mean Stddev
∆ = 1/252

κ = 0.6 −0.073254 0.004977 −0.001686 0.000662 0.000009 0.000013
θ = 0.02 0.005587 0.002711 0.002867 0.003614 −0.000337 0.000477

σ = 0.141 −0.000132 0.000208 −0.000003 0.000005 −0.000002 0.000003
λ = 0.2 0.076182 0.228058 0.007174 0.003860 −0.000046 0.000064
γ = 10 0.196001 0.277187 -0.071938 0.176927 -0.000269 0.000839

∆ = 1/52
κ = 0.6 0.059112 0.016394 −0.000252 0.000489 0.000051 0.000350
θ = 0.02 0.012609 0.024885 0.000541 0.000848 0.000078 0.000442

σ = 0.141 −0.000242 0.000382 −0.000110 0.000036 −0.000008 0.000019
λ = 0.2 −0.033253 0.087899 0.015980 0.017179 0.000104 0.003477
γ = 10 0.161996 0.212702 -0.174539 0.217127 -0.001943 0.003887

∆ = 1/12
κ = 0.6 −0.004761 0.013056 0.000056 0.000962 0.000013 0.000034
θ = 0.02 0.001308 0.002733 0.004804 0.008235 0.000036 0.000082

σ = 0.141 −0.000198 0.000391 −0.000075 0.000141 0.000002 0.000005
λ = 0.2 −0.065673 0.182982 −0.014253 0.078604 0.000483 0.001080
γ = 10 0.082496 0.116678 0.079719 0.346084 0.000208 0.000294



Conclusion

◮ We propose a closed-form expansion for transition density of
jump-diffusion processes, for which any arbitrary order of
corrections can be systematically obtained through a generally
implementable algorithm.

◮ As an application, likelihood function is approximated
explicitly and thus employed in a new method of approximate
maximum-likelihood estimation for jump-diffusion process
from discretely sampled data.

◮ Numerical examples and Monte Carlo evidence for illustrating
the performance of density asymptotic expansion and the
resulting approximate MLE are provided in order to
demonstrate the wide applicability of the method.

◮ The convergence related to the density expansion and the
approximate estimation method are theoretically justified
under some standard (but not necessary) sufficient conditions.
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