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Poisson-Dirichlet Distribution

Definition (Kingman 1978; Pitman 1995)

For 0 ≤ α < 1 and θ > −α, or α < 0 and θ = −αm, m ∈ N, let

P1 = W1, Pi = Wi

i−1∏
j=1

(1 − Wj), i = 2, 3, ...,

with Wi ∼ Beta(1 − α, θ + iα), iid. The ranked sequence of (Pi) is

the 2-parameter Poisson-Dirichlet distribution PD(α, θ).

Remark

I P(·) =
∞∑
i=1

PiδYi(·) is the 2-parameter Dirichlet process.

I Most general such that (Pi) is invariant under size-biased

permutation.
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Pitman’s Random Partition

A partition of n ∈ N by integers is identified by multiplicity (ci) such that

‖c‖ :=
n∑

i=1

ci = kn, |c| :=
n∑

i=1

ici = n.

Definition (Ewens 1972; Pitman 1992)

An exchangeable random partition

P((Ci) = (ci), Kn = k) =

(
θ
α

)
k

(θ)n

(−1)n−kn!
n∏

j=1

(
α

j

)cj

1

cj!
,

where (θ)n = θ(θ + 1) · · · (θ + n − 1).

The sampling distribution from PD(α, θ); the ranked sizes converges as

n−1(L
(n)
1 , L

(n)
2 , ...)

d−→ (P(1), P(2), ...), n → ∞,

but how are the limiting distributions and in o(n)?
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Incomplete Dirichlet Integrals

A collection of random variables (Y1, ..., Yd) ∼ Dir(ν; ρ) if the pdf is

Γ(ρ + dν)

Γ(ρ)Γ(ν)d

1 −
d∑

j=1

yj

ρ−1
d∏

i=1

yν−1
i

over the simplex ∆d = {0 < yi, i = 1, ..., d,
∑d

j=1 yj < 1}. Let us

introduce an extension of the incomplete Dirichlet integrals of Type I

(Sobel et al. 1970)

I(d)
p,q(ν; ρ) :=

Γ(ρ + dν)

Γ(ρ)Γ(ν)d

∫
∆d(p,q)

1 −
d∑

j=1

yj

ρ−1
d∏

i=1

yν−1
i dyi,

where ∆d(p, q) = {p < yi, i = 1, ..., d;
∑d

j=1 yj < 1 − q}.
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Limiting Distribution of Maximum

For α < 0 and θ = −αm, m ∈ N, (Pi) ∼ Dir(−α), so we skip and

assume α ≥ 0.

Theorem (Pitman & Yor 1997)

For 0 ≤ α < 1 and θ > −α, the maximium, P(1), has cdf

ρα,θ(x) = 1 +

bx−1c∑
k=1

α−k(θ)k:α

k!
I(k)

x,0(−α; kα + θ),

where (θ)k:α = θ(θ + α) · · · (θ + (k − 1)α).

Remark

I Appears as the limiting distribution of n−1L
(n)
1 with r/n → x.

I In the number theory ρ0,1(u) is known as Dickman’s function

(1930) on the distribution of the smooth numbers.
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Limiting Distribution of Minimum

Theorem (Arratia, Barbour, Tavaré 2003)

For α = 0 and θ > 0, the minimum, L
(n)
Kn

, has

P(L
(n)
Kn

> r) ∼ Γ(θ)(nx)−θωθ(x), n, r → ∞, r/n → x,

where

ωθ(x) = θxθ

1 +
∑

1≤k≤x−1−1

θk

(k + 1)!
I(k)

x,x (0; 0)

 .

Remark

The distribution is degenerate. In the number theory ω1(x) is known as

Buchstab’s function (1937) on the distribution of the rough numbers.
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Limiting Distribution of Minimum (cont.)

Theorem (Arratia, Tavaré 1992)

For α = 0 and θ > 0, the minimum, L
(n)
Kn

, has

P(L
(n)
Kn

> r) ∼ exp

−θ

r−1∑
j=1

j−1

 , n → ∞, r = o(n).

For 0 < α < 1 and θ > −α, the limiting distribution has not been

considered, but L
(n)
kn

p−→ 1, since

Theorem (Yamato & Sibuya 2000)

n−α(C1, ..., Cm)
d−→ (pα(1), ..., pα(m))M, i = 1, 2, ..., m, n → ∞,

where pα(i) =

(
α

i

)
(−1)i+1 is pmf of Sibuya’s distribution (1979)

and M has pdf of xθ/α× Mittag-Leffler’s distribution.
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Outline

In summary, known facts are

P(L
(n)
1 < r) P(L

(n)
Kn

> r)

r O(n) o(n) O(n) o(n)

α < 0 Dir(−α) and back to Fisher (1929)

α = 0 Dickman1 ? Buchstab2 (degenerate) Poisson3

α > 0 Dickman1 ? ? (degenerate4) ? (degenerate4)

1 Pitman & Yor (1997); 2 Arratia et al (2003); 3 Arratia & Tavaré (1992); 4 Yamato

& Sibuya (2000). But for the random permutation (α = 0, θ = 1) it is a classic back

to Goncharov (1942), Shepp & Lloyd (1966).

In this talk, the table is filled out with reproductions. All results have

been obtained by probability techniques, but here singularity analysis in

analytic combinatrics (Flajolet & Odolyzko 1990) is employed.
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Use of Sufficiency

Assume α is known.

P(Kn = k) =
∑

‖c‖=k

P((Ci) = (ci), Kn = k)

=

(
θ
α

)
k

(θ)n

(−1)n−kn!
∑

‖c‖=k

n∏
j=1

(
α

j

)cj

1

cj!

=

(
θ
α

)
k

(θ)n

(−1)n−kC(n, k; α).

Kn is the complete and sufficient statistic of θ:

P((Ci) = (ci)|Kn = k) =
n!

C(n, k; α)

n∏
j=1

(
α

j

)cj

1

cj!
,

where C(n, k; α) is the generalized factorial coefficient .
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Generalized Factorial Coefficient

A generalized factorial of t of order n and scale parameter is α,

[αt]n = αt(αt − 1) · · · (αt − n + 1), [αt]0 = 1.

The generalized factorial coefficients is defined as (Charalambides 2005)

[αt]n =
n∑

k=1

C(n, k; α)[t]k,

with the exponential generating function (egf):

∞∑
n=k

C(n, k; α)
un

n!
=

1

k!
((1 + u)α − 1)k

.
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Generalized Factorial Coefficient (cont.)

Suppose α (≥ n) ∈ N and partitions of n like balls into k urns. Each urn

consists of α distinguishable cells and each cell accept one ball.

∑
|a|=n

k∏
j=1

(
α

aj

)
.

Let ci = |{j : aj = i}|.

∑
‖c‖=k

k!

c1!c2! · · · cn!

n∏
j=1

(
α

j

)cj

=
k!

n!
C(n, k; α).

Example (K4 = 2)

(1, 2)(1, 2) [α]22/(2!)2

(1)(1, 2, 3),(1, 2, 3)(1) 2α[α]3/(1! · 3!)

Therefore C(4, 2; α) = 3[α]22 + 4α[α]3.
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Associated Generalized Factorial Coefficients

If each urn has at least r balls,

n!
∑

cj<r=0

n∏
j=r

(
α

j

)cj

1

cj!
=: Cr(n, k; α), n = rk, rk + 1, ...

which is known as the r-associated generalized factorial coefficient

(Charalambides 2005). Let us define an extension, in which (ci) are

restricted such that the i-th smallest has at least r balls.

Definition (Mano 2013)

An extension of the r-associated generalized factorial coefficient is

C(i)
r (n, k; α) := n!

∑
Pr−1

j=1 cj<i

n∏
j=r

(
α

j

)cj

1

cj!
, i = 1, ..., k,

where n = rk − (i − 1)(r − 1), rk − (i − 1)(r − 1) + 1, ....
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Exact Marginal Distribution

Definition (cont.)

Cr(i)(n, k; α) := n!
∑

Pn
j=r+1 cj<i

n∏
j=r

(
α

j

)cj

1

cj!
, i = 1, ..., k,

where n = k, ..., rk for i = 1 and n = k, k + 1, ... for i > 1.

Lemma

The i-th smallest, L
(n)
Kn−i+1, has

P(L
(n)
Kn−i+1 ≥ r) =

b n+(i−1)(r−1)
r c∑

k=1

(−1)n

(−α)k

(θ)k;α

(θ)n

C(i)
r (n, k; α).

and the i-th largest, L
(n)
i , has cdf

P(L
(n)
i ≤ r) =

n∑
k=d n

r e,1

(−1)n

(−α)k

(θ)k;α

(θ)n

Cr(i)(n, k; α).
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Exponential Generating Functions

Lemma
rk∑

n=k

Cr(n, k; α)
un

n!
=

1

k!

 r∑
j=1

(
α

j

)
ui

k

and

∞∑
n=rk

Cr(n, k; α)
un

n!
=

1

k!

(1 + u)α −
r−1∑
j=0

(
α

j

)
uj

k

.

Proof.

By combinatrics. But more general assertion is possible via Faà di

Bruno’s formula (1855; but Arbogast 1800; Comtet 1974; Shimizu et al.

2000); for h(u) = g(f(u)),

h(n)(u) =
n∑

d=1

g(d)(f(u))
∑

‖c‖=d

n!
n∏

j=1

(
f(j)(u)

j!

)cj

1

cj!
,
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Inversion Formulae

Proposition (Shimizu in private communication)

If an egf a r-associated number Gr(n, k) is defined in terms of a series qj,

∞∑
n=rk

Gr(n, k)
un

n!
=

1

k!

 ∞∑
j=r

qju
j

k

.

Then the number has an expression

Gr(n, k) = n!
∑

cj<r=0

n∏
j=r

q
cj

j

cj!
, n = rk, rk + 1, ...

Remark

Similar formula holds for Gr(n, k). j−1 gives the r-associated Stirling

number of the first kind,

(
α

j

)
gives the r-associated generalized

factorial coefficient.
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Minimum with α > 0 and r = o(n)

Theorem

For 0 < α < 1 and θ > α, the minimum, L
(n)
Kn

, has

P(LKn > r) ∼
Γ(1 + θ)

Γ(1 − α)
n−θ−α(cα(r − 1))−1− θ

α , n → ∞, r = o(n),

where r = 2, 3, ... and cα(r) is cdf of Sibuya’s distribution.

Proof.

Applying the Cauchy-Goursat theorem to the egf,

P(LKn > r) =
n!

[θ]n

1

2π
√

−1

∮
(fα,r(u))− θ

α

un+1
du,

where fα,r(u) = (1 − u)α −
r−1∑
j=1

(
α

j

)
(−u)j.
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Minimum with α > 0 and r = o(n) (cont.)

Proof. (cont.)

According to Rouché’s theorem, we can show that fα,r(u) = 0 has no

roots in |u| ≤ 1. Therefore taking the cut [1, ∞) and η > 0 we can

deform the contour for the Cauchy integral without changing the value.

PSfrag replacements

γ1

γ2

γ3

γ4

1 1 + η

γ2, γ1, γ4 avoid the cut with distance

1/n. Contribution comes from the part

of the contour, which is similar to

Hankel’s contour for the asymptotic

expansion of the Gamma function.

Taking n → ∞ the theorem follows. �
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Maximum with α = 0 and r = o(n)

Theorem

For α = 0 and θ > 0, the maximum, L
(n)
1 , has cdf

P(L
(n)
1 < r) ∼

Γ(θ)n−θ+1/2

√
2πr

r−1∑
j=0

ρ−n
θ,r,n,j exp

(
θ

r∑
k=1

ρk
θ,r,n,j

k

)
, n → ∞,

where r = o(n) and ρθ,r,n.j ∼ (n/θ)1/r, j = 0, 1, ..., r − 1 are the roots

of the equation u + u2 + · · · + ur = (n + 1)/θ.

Proof.

Applying the Cauchy-Goursat theorem to egf, we have an integral

expression. Taking contour as a polygon which goes through each saddle

point (absolute values are ρθ,r,n.j) along the direction of the steepest

descent, the Cauchy integral is evaluated.
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Summary

I Exact formule for marginal distributions of ranked sequence were

obtained in terms of an extension of the associated generalized

factorial coefficient.

I For the limiting distributions, singularity analysis yielded

P(L
(n)
1 < r) P(L

(n)
Kn

> r)

r O(n) o(n) O(n) o(n)

α < 0 Dickman 0 I (m−1)
x,x (−α, −α) 1 − arn

α

α = 0 Dickman brn
1/2−θρ−n

r Buchstab·n−θ Poisson

α > 0 Dickman crn
θ/α −θρ−n

r n−θ−α Sibuya·n−θ−α

I Details: arXiv:1306.2056
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