Extremes of Pitman's Random Partition and their

Asymptotics

Shuhei Mano
The Institite of Statistical Mathematics
Satellite Meeting to ISI Congress 2013
© Sanjo Hall, University of Tokyo
September 4, 2013

Poisson-Dirichlet Distribution

Definition (Kingman 1978; Pitman 1995)
For $\mathbf{0} \leq \boldsymbol{\alpha}<\mathbf{1}$ and $\boldsymbol{\theta}>-\boldsymbol{\alpha}$, or $\boldsymbol{\alpha}<\mathbf{0}$ and $\boldsymbol{\theta}=-\boldsymbol{\alpha} \mathbf{m}, \mathbf{m} \in \mathbb{N}$, let

$$
P_{1}=W_{1}, \quad P_{i}=W_{i} \prod_{j=1}^{i-1}\left(1-W_{j}\right), \quad i=2,3, \ldots
$$

with $\mathbf{W}_{\mathbf{i}} \sim \operatorname{Beta}(\mathbf{1}-\alpha, \theta+\mathbf{i} \alpha)$, iid. The ranked sequence of $\left(\mathbf{P}_{\mathbf{i}}\right)$ is the 2-parameter Poisson-Dirichlet distribution $\operatorname{PD}(\alpha, \theta)$.

Remark

- $\mathbf{P}(\cdot)=\sum_{\mathrm{i}=1}^{\infty} \mathbf{P}_{\mathrm{i}} \delta_{\mathbf{Y}_{\mathrm{i}}}(\cdot)$ is the 2-parameter Dirichlet process.
- Most general such that $\left(\mathbf{P}_{\mathbf{i}}\right)$ is invariant under size-biased permutation.

Pitman's Random Partition

A partition of $\mathbf{n} \in \mathbb{N}$ by integers is identified by multiplicity $\left(\mathbf{c}_{\mathbf{i}}\right)$ such that

$$
\|c\|:=\sum_{i=1}^{n} c_{i}=k_{n}, \quad|c|:=\sum_{i=1}^{n} i c_{i}=n .
$$

Definition (Ewens 1972; Pitman 1992)
An exchangeable random partition

$$
P\left(\left(C_{i}\right)=\left(c_{i}\right), K_{n}=k\right)=\frac{\left(\frac{\theta}{\alpha}\right)_{k}}{(\theta)_{n}}(-1)^{n-k} n!\prod_{j=1}^{n}\binom{\alpha}{j}^{c_{j}} \frac{1}{c_{j}!},
$$

where $(\theta)_{\mathrm{n}}=\theta(\theta+1) \cdots(\theta+\mathbf{n}-1)$.
The sampling distribution from $\operatorname{PD}(\alpha, \theta)$; the ranked sizes converges as

$$
\mathrm{n}^{-1}\left(\mathrm{~L}_{1}^{(\mathrm{n})}, \mathrm{L}_{2}^{(n)}, \ldots\right) \xrightarrow{\mathrm{d}}\left(\mathrm{P}_{(1)}, \mathrm{P}_{(2)}, \ldots\right), \quad \mathrm{n} \rightarrow \infty
$$

but how are the limiting distributions and in $\mathbf{o}(\mathbf{n})$?

Incomplete Dirichlet Integrals

A collection of random variables $\left(\mathbf{Y}_{1}, \ldots, \mathbf{Y}_{\mathrm{d}}\right) \sim \operatorname{Dir}(\nu ; \rho)$ if the pdf is

$$
\frac{\Gamma(\rho+\mathrm{d} \nu)}{\Gamma(\rho) \Gamma(\nu)^{\mathrm{d}}}\left(1-\sum_{\mathrm{j}=1}^{\mathrm{d}} \mathrm{y}_{\mathrm{j}}\right)^{\rho-1} \prod_{\mathrm{i}=1}^{\mathrm{d}} \mathrm{y}_{\mathrm{i}}^{\nu-1}
$$

over the simplex $\boldsymbol{\Delta}_{\mathrm{d}}=\left\{\mathbf{0}<\mathbf{y}_{\mathbf{i}}, \mathbf{i}=\mathbf{1}, \ldots, \mathbf{d}, \sum_{\mathrm{j}=1}^{\mathrm{d}} \mathbf{y}_{\mathrm{j}}<\mathbf{1}\right\}$. Let us introduce an extension of the incomplete Dirichlet integrals of Type I (Sobel et al. 1970)

$$
\mathcal{I}_{\mathrm{p}, \mathrm{q}}^{(\mathrm{d})}(\nu ; \rho):=\frac{\Gamma(\rho+\mathrm{d} \nu)}{\Gamma(\rho) \Gamma(\nu)^{\mathrm{d}}} \int_{\Delta_{\mathrm{d}}(\mathrm{p}, \mathrm{q})}\left(1-\sum_{\mathrm{j}=1}^{\mathrm{d}} \mathrm{y}_{\mathrm{j}}\right)^{\rho-1} \prod_{\mathrm{i}=1}^{\mathrm{d}} \mathrm{y}_{\mathrm{i}}^{\nu-1} \mathrm{dy}_{\mathrm{i}}
$$

where $\boldsymbol{\Delta}_{\mathrm{d}}(\mathbf{p}, \mathbf{q})=\left\{\mathrm{p}<\mathrm{y}_{\mathrm{i}}, \mathrm{i}=1, \ldots, \mathrm{~d} ; \sum_{j=1}^{\mathrm{d}} \mathrm{y}_{\mathrm{j}}<\mathbf{1}-\mathbf{q}\right\}$.

Limiting Distribution of Maximum

For $\boldsymbol{\alpha}<\mathbf{0}$ and $\boldsymbol{\theta}=-\boldsymbol{\alpha} \mathbf{m}, \mathbf{m} \in \mathbb{N},\left(\mathbf{P}_{\mathbf{i}}\right) \sim \operatorname{Dir}(-\boldsymbol{\alpha})$, so we skip and assume $\boldsymbol{\alpha} \geq \mathbf{0}$.

Theorem (Pitman \& Yor 1997)
For $\mathbf{0} \leq \boldsymbol{\alpha}<\mathbf{1}$ and $\boldsymbol{\theta}>-\boldsymbol{\alpha}$, the maximium, $\mathbf{P}_{(\mathbf{1})}$, has $c d f$

$$
\rho_{\alpha, \theta}(\mathrm{x})=1+\sum_{\mathrm{k}=1}^{\left\lfloor\mathrm{x}^{-1}\right\rfloor} \frac{\alpha^{-\mathrm{k}}(\theta)_{\mathrm{k}: \alpha}}{\mathrm{k}!} \mathcal{I}_{\mathrm{x}, 0}^{(\mathrm{k})}(-\alpha ; \mathrm{k} \alpha+\theta)
$$

where $(\theta)_{\mathrm{k}: \alpha}=\theta(\theta+\alpha) \cdots(\theta+(\mathrm{k}-1) \alpha)$.

Remark

- Appears as the limiting distribution of $\mathbf{n}^{-1} \mathbf{L}_{1}^{(\mathbf{n})}$ with $\mathbf{r} / \mathbf{n} \rightarrow \mathrm{x}$.
- In the number theory $\rho_{0,1}(\mathbf{u})$ is known as Dickman's function (1930) on the distribution of the smooth numbers.

Limiting Distribution of Minimum

Theorem (Arratia, Barbour, Tavaré 2003)
For $\boldsymbol{\alpha}=\mathbf{0}$ and $\boldsymbol{\theta}>\mathbf{0}$, the minimum, $\mathrm{L}_{\mathrm{k}_{\mathrm{n}}}^{(\mathrm{n})}$, has

$$
\mathrm{P}\left(\mathrm{~L}_{\mathrm{k}_{\mathrm{n}}^{(n)}}^{(\mathrm{n}} \mathrm{r}\right) \sim \Gamma(\theta)(\mathrm{nx})^{-\theta} \omega_{\theta}(\mathrm{x}), \quad \mathrm{n}, \mathrm{r} \rightarrow \infty, \quad \mathrm{r} / \mathrm{n} \rightarrow \mathrm{x},
$$

where

$$
\omega_{\theta}(\mathrm{x})=\theta \mathrm{x}^{\theta}\left\{1+\sum_{1 \leq \mathrm{k} \leq x^{-1}-1} \frac{\theta^{\mathrm{k}}}{(\mathrm{k}+1)!} \mathcal{I}_{x, \mathrm{x}}^{(\mathrm{k})}(0 ; 0)\right\} .
$$

Remark

The distribution is degenerate. In the number theory $\omega_{1}(x)$ is known as Buchstab's function (1937) on the distribution of the rough numbers.

Limiting Distribution of Minimum (cont.)

Theorem (Arratia, Tavaré 1992)
For $\boldsymbol{\alpha}=\mathbf{0}$ and $\boldsymbol{\theta}>\mathbf{0}$, the minimum, $\mathbf{L}_{\mathbf{k}_{\mathrm{n}}}^{(\mathbf{n})}$, has

$$
\mathrm{P}\left(\mathrm{~L}_{\mathrm{K}_{\mathrm{n}}}^{(\mathrm{n})}>\mathrm{r}\right) \sim \exp \left(-\theta \sum_{\mathrm{j}=1}^{\mathrm{r}-1} \mathrm{j}^{-1}\right), \quad \mathrm{n} \rightarrow \infty, \quad \mathrm{r}=\mathrm{o}(\mathrm{n}) .
$$

For $\mathbf{0}<\boldsymbol{\alpha}<\mathbf{1}$ and $\boldsymbol{\theta}>-\boldsymbol{\alpha}$, the limiting distribution has not been considered, but $\mathrm{L}_{\mathrm{k}_{\mathrm{n}}}^{(\mathrm{n})} \xrightarrow{\mathrm{p}} \mathbf{1}$, since
Theorem (Yamato \& Sibuya 2000)

$$
n^{-\alpha}\left(C_{1}, \ldots, C_{m}\right) \xrightarrow{d}\left(p_{\alpha}(1), \ldots, p_{\alpha}(m)\right) M, i=1,2, \ldots, m, n \rightarrow \infty,
$$

where $\mathbf{p}_{\alpha}(\mathbf{i})=\binom{\alpha}{\mathbf{i}}(-1)^{\mathbf{i + 1}}$ is pmf of Sibuya's distribution (1979) and \mathbf{M} has pdf of $\mathbf{x}^{\theta / \alpha} \times$ Mittag-Leffler's distribution.

Outline

In summary, known facts are

r	$\mathrm{P}\left(\mathrm{L}_{1}^{(\mathrm{n})}<\mathrm{r}\right)$		$P\left(L_{K_{n}}^{(n)}>r\right)$	
	O(n)	o(n)	O(n)	o(n)
$\alpha<0$	$\operatorname{Dir}(-\alpha)$ and back to Fisher (1929)			
$\alpha=0$	Dickman ${ }^{1}$?	Buchstab ${ }^{2}$ (degenerate)	Poisson ${ }^{3}$
$\alpha>0$	Dickman ${ }^{1}$?	? (degenerate ${ }^{4}$)	? (degenerate ${ }^{4}$)

1 Pitman \& Yor (1997); 2 Arratia et al (2003); 3 Arratia \& Tavaré (1992); 4 Yamato \& Sibuya (2000). But for the random permutation $(\boldsymbol{\alpha}=\mathbf{0}, \boldsymbol{\theta}=1)$ it is a classic back to Goncharov (1942), Shepp \& Lloyd (1966).

In this talk, the table is filled out with reproductions. All results have been obtained by probability techniques, but here singularity analysis in analytic combinatrics (Flajolet \& Odolyzko 1990) is employed.

Use of Sufficiency

Assume $\boldsymbol{\alpha}$ is known.

$$
\begin{aligned}
P\left(K_{n}=k\right) & =\sum_{\|c\|=k} P\left(\left(C_{i}\right)=\left(c_{i}\right), K_{n}=k\right) \\
& =\frac{\left(\frac{\theta}{\alpha}\right)_{k}}{(\theta)_{n}}(-1)^{n-k} n!\sum_{\|c\|=k} \prod_{j=1}^{n}\binom{\alpha}{j}^{c_{j}} \frac{1}{c_{j}!} \\
& =\frac{\left(\frac{\theta}{\alpha}\right)_{k}}{(\theta)_{n}}(-1)^{n-k} C(n, k ; \alpha) .
\end{aligned}
$$

$\mathbf{K}_{\mathbf{n}}$ is the complete and sufficient statistic of $\boldsymbol{\theta}$:

$$
P\left(\left(C_{i}\right)=\left(c_{i}\right) \mid K_{n}=k\right)=\frac{n!}{C(n, k ; \alpha)} \prod_{j=1}^{n}\binom{\alpha}{j}^{c_{j}} \frac{1}{c_{j}!},
$$

where $\mathbf{C}(\mathbf{n}, \mathbf{k} ; \boldsymbol{\alpha})$ is the generalized factorial coefficient .

Generalized Factorial Coefficient

A generalized factorial of \mathbf{t} of order \mathbf{n} and scale parameter is $\boldsymbol{\alpha}$,

$$
[\alpha \mathbf{t}]_{\mathrm{n}}=\alpha \mathbf{t}(\alpha \mathrm{t}-1) \cdots(\alpha \mathrm{t}-\mathrm{n}+1), \quad[\alpha \mathrm{t}]_{0}=1
$$

The generalized factorial coefficients is defined as (Charalambides 2005)

$$
[\alpha \mathrm{t}]_{\mathrm{n}}=\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{C}(\mathrm{n}, \mathrm{k} ; \alpha)[\mathrm{t}]_{\mathrm{k}},
$$

with the exponential generating function (egf):

$$
\sum_{n=k}^{\infty} \mathrm{C}(\mathrm{n}, \mathrm{k} ; \alpha) \frac{\mathbf{u}^{\mathrm{n}}}{\mathrm{n}!}=\frac{1}{\mathrm{k}!}\left((1+\mathrm{u})^{\alpha}-1\right)^{k} .
$$

Generalized Factorial Coefficient (cont.)

Suppose $\boldsymbol{\alpha}(\geq \mathbf{n}) \in \mathbb{N}$ and partitions of \mathbf{n} like balls into \mathbf{k} urns. Each urn consists of $\boldsymbol{\alpha}$ distinguishable cells and each cell accept one ball.

$$
\sum_{|a|=n} \prod_{j=1}^{k}\binom{\alpha}{a_{j}} .
$$

Let $\mathbf{c}_{\mathbf{i}}=\left|\left\{\mathbf{j}: \mathbf{a}_{\mathbf{j}}=\mathbf{i}\right\}\right|$.

$$
\sum_{\|c\|=k} \frac{k!}{c_{1}!c_{2}!\cdots c_{n}!} \prod_{j=1}^{n}\binom{\alpha}{j}^{c_{j}}=\frac{k!}{n!} C(n, k ; \alpha)
$$

Example $\left(\mathrm{K}_{4}=2\right)$

$(1,2)(1,2)$	$[\alpha]_{2}^{2} /(2!)^{2}$
$(1)(1,2,3),(1,2,3)(1)$	$2 \alpha[\alpha]_{3} /(1!\cdot 3!)$

Therefore $\mathbf{C}(4,2 ; \alpha)=3[\alpha]_{2}^{2}+4 \alpha[\alpha]_{3}$.

Associated Generalized Factorial Coefficients

If each urn has at least \mathbf{r} balls,

$$
n!\sum_{c_{j}<r=0} \prod_{j=r}^{n}\binom{\alpha}{j}^{c_{j}} \frac{1}{c_{j}!}=: C_{r}(n, k ; \alpha), \quad n=r k, r k+1, \ldots
$$

which is known as the \mathbf{r}-associated generalized factorial coefficient (Charalambides 2005). Let us define an extension, in which ($\mathbf{c}_{\mathbf{i}}$) are restricted such that the \mathbf{i}-th smallest has at least \mathbf{r} balls.

Definition (Mano 2013)
An extension of the \mathbf{r}-associated generalized factorial coefficient is

$$
\mathbf{C}_{r}^{(i)}(n, k ; \alpha):=n!\sum_{\sum_{j=1}^{r-1} c_{j}<i} \prod_{j=r}^{n}\binom{\alpha}{j}^{c_{j}} \frac{1}{c_{j}!}, \quad i=1, \ldots, k,
$$

where $\mathbf{n}=\mathbf{r k}-(\mathbf{i}-\mathbf{1})(\mathbf{r}-\mathbf{1}), r \mathbf{r} \mathbf{(i}-\mathbf{1})(r-1)+1, \ldots$

Exact Marginal Distribution

Definition (cont.)

$$
\mathbf{C}^{r(i)}(n, k ; \alpha):=n!\sum_{\sum_{j=1}^{n}=1+1} \prod_{j^{<}<i} \prod_{j=r}^{n}\binom{\alpha}{j}^{c_{j}} \frac{1}{c_{j}!}, \quad i=1, \ldots, k,
$$

where $\mathbf{n}=\mathbf{k}, \ldots, \mathbf{r k}$ for $\mathbf{i}=\mathbf{1}$ and $\mathbf{n}=\mathbf{k}, \mathbf{k}+\mathbf{1}, \ldots$ for $\mathbf{i}>\mathbf{1}$.

Lemma

The \mathbf{i}-th smallest, $\mathbf{L}_{\mathrm{K}_{\mathrm{n}}-\mathbf{i}+\mathbf{1}}^{\left(\mathbf{n}_{1}\right)}$, has

$$
P\left(L_{k_{n}-i+1}^{(n)} \geq r\right)=\sum_{k=1}^{\left\lfloor\frac{n+(i-1)(r-1)}{r}\right\rfloor} \frac{(-1)^{n}}{(-\alpha)^{k}} \frac{(\theta)_{k ; \alpha}}{(\theta)_{n}} C_{r}^{(i)}(n, k ; \alpha) .
$$

and the \mathbf{i}-th largest, $\mathbf{L}_{\mathbf{i}}^{(\mathbf{n})}$, has cdf

$$
\mathrm{P}\left(\mathrm{~L}_{\mathrm{i}}^{(\mathrm{n})} \leq \mathrm{r}\right)=\sum_{\mathrm{k}=\left\lceil\frac{\mathrm{n}}{\mathrm{r}}, 1\right.}^{\mathrm{n}} \frac{(-1)^{\mathrm{n}}}{(-\alpha)^{\mathrm{k}}} \frac{(\theta)_{\mathrm{k} ; \alpha}}{(\theta)_{\mathrm{n}}} \mathrm{C}^{r(\mathrm{i})}(\mathrm{n}, \mathrm{k} ; \alpha) .
$$

Exponential Generating Functions

Lemma

$$
\sum_{n=k}^{r k} C^{r}(n, k ; \alpha) \frac{u^{n}}{n!}=\frac{1}{k!}\left(\sum_{j=1}^{r}\binom{\alpha}{j} u^{i}\right)^{k}
$$

and

$$
\sum_{n=r k}^{\infty} C_{r}(n, k ; \alpha) \frac{u^{n}}{n!}=\frac{1}{k!}\left((1+u)^{\alpha}-\sum_{j=0}^{r-1}\binom{\alpha}{j} u^{j}\right)^{k}
$$

Proof.
By combinatrics. But more general assertion is possible via Faà di Bruno's formula (1855; but Arbogast 1800; Comtet 1974; Shimizu et al. 2000); for $\mathbf{h}(\mathbf{u})=\mathbf{g}(\mathbf{f}(\mathbf{u}))$,

$$
h^{(n)}(u)=\sum_{d=1}^{n} g^{(d)}(f(u)) \sum_{\|c\|=d} n!\prod_{j=1}^{n}\left(\frac{f^{(j)}(u)}{j!}\right)^{c_{j}} \frac{1}{c_{j}!}
$$

Inversion Formulae

Proposition (Shimizu in private communication)

If an egf a \mathbf{r}-associated number $\left.\mathbf{G}_{\mathbf{r}} \mathbf{(} \mathbf{n}, \mathbf{k}\right)$ is defined in terms of a series $\mathbf{q}_{\mathbf{j}}$,

$$
\sum_{n=r k}^{\infty} G_{r}(n, k) \frac{u^{n}}{n!}=\frac{1}{k!}\left(\sum_{j=r}^{\infty} q_{j} u^{j}\right)^{k}
$$

Then the number has an expression

$$
G_{r}(n, k)=n!\sum_{c_{j}<r=0} \prod_{j=r}^{n} \frac{q_{j}^{c_{j}}}{c_{j}!}, \quad n=r k, r k+1, \ldots
$$

Remark

 number of the first kind, $\binom{\boldsymbol{\alpha}}{\mathbf{j}}$ gives the \mathbf{r}-associated generalized factorial coefficient.

Minimum with $\boldsymbol{\alpha}>\mathbf{0}$ and $\mathbf{r}=\mathbf{o (n)}$

Theorem
For $\mathbf{0}<\boldsymbol{\alpha}<\mathbf{1}$ and $\boldsymbol{\theta}>\boldsymbol{\alpha}$, the minimum, $\mathbf{L}_{\mathrm{K}_{\mathrm{n}}}^{\left(\mathbf{n}^{\mathbf{n}}\right)}$, has
$\mathbf{P}\left(\mathrm{L}_{\mathrm{K}_{\mathrm{n}}}>\mathrm{r}\right) \sim \frac{\Gamma(1+\theta)}{\Gamma(1-\alpha)} \mathrm{n}^{-\theta-\alpha}\left(\mathrm{c}_{\alpha}(\mathrm{r}-1)\right)^{-1-\frac{\theta}{\alpha}}, \mathbf{n} \rightarrow \infty, \mathbf{r}=\mathbf{o}(\mathrm{n})$,
where $\mathbf{r}=2,3, \ldots$ and $\mathbf{c}_{\alpha}(\mathbf{r})$ is cdf of Sibuya's distribution.
Proof.
Applying the Cauchy-Goursat theorem to the egf,

$$
\begin{aligned}
& \mathrm{P}\left(\mathrm{~L}_{\mathrm{K}_{n}}>\mathrm{r}\right)=\frac{\mathrm{n}!}{[\theta]_{\mathrm{n}}} \frac{1}{2 \pi \sqrt{-1}} \oint \frac{\left(\mathbf{f}_{\alpha, r}(\mathbf{u})\right)^{-\frac{\theta}{\alpha}}}{\mathbf{u}^{\mathrm{n}+1}} \mathrm{du} \\
& \text { where } \mathrm{f}_{\alpha, r}(\mathbf{u})=(\mathbf{1}-\mathbf{u})^{\alpha}-\sum_{j=1}^{r-1}\binom{\alpha}{j}(-\mathbf{u})^{j} .
\end{aligned}
$$

Minimum with $\boldsymbol{\alpha}>\mathbf{0}$ and $\mathbf{r}=\mathbf{o (n)}$ (cont.)

Proof. (cont.)
According to Rouché's theorem, we can show that $\mathbf{f}_{\boldsymbol{\alpha}, \mathbf{r}} \mathbf{(u)}=\mathbf{0}$ has no roots in $|\mathbf{u}| \leq \mathbf{1}$. Therefore taking the cut $[\mathbf{1}, \infty)$ and $\eta>\mathbf{0}$ we can deform the contour for the Cauchy integral without changing the value.

$\gamma_{2}, \gamma_{1}, \gamma_{4}$ avoid the cut with distance $1 / n$. Contribution comes from the part of the contour, which is similar to
Hankel's contour for the asymptotic expansion of the Gamma function. Taking $\mathbf{n} \rightarrow \infty$ the theorem follows. \square

Maximum with $\boldsymbol{\alpha}=\mathbf{0}$ and $\mathbf{r}=\mathbf{o (n)}$

Theorem

For $\boldsymbol{\alpha}=\mathbf{0}$ and $\boldsymbol{\theta}>\mathbf{0}$, the maximum, $\mathbf{L}_{1}^{(\mathbf{n})}$, has cdf
$\mathbf{P}\left(\mathrm{L}_{1}^{(\mathrm{n})}<\mathrm{r}\right) \sim \frac{\Gamma(\theta) \mathbf{n}^{-\theta+1 / 2}}{\sqrt{2 \pi r}} \sum_{\mathrm{j}=0}^{\mathrm{r}-1} \rho_{\theta, r, n, \mathrm{j}}^{-\mathrm{n}} \exp \left(\theta \sum_{\mathrm{k}=1}^{\mathrm{r}} \frac{\rho_{\theta, r, n, j}^{\mathrm{k}}}{\mathrm{k}}\right), \mathrm{n} \rightarrow \infty$,
where $\mathbf{r}=\mathbf{o}(\mathbf{n})$ and $\rho_{\theta, r, \mathrm{n} . \mathrm{j}} \sim(\mathbf{n} / \theta)^{1 / \mathrm{r}}, \mathbf{j}=\mathbf{0}, \mathbf{1}, \ldots, \mathbf{r}-\mathbf{1}$ are the roots of the equation $\mathbf{u}+\mathbf{u}^{2}+\cdots+\mathbf{u}^{r}=(\mathbf{n}+\mathbf{1}) / \boldsymbol{\theta}$.

Proof.

Applying the Cauchy-Goursat theorem to egf, we have an integral expression. Taking contour as a polygon which goes through each saddle point (absolute values are $\rho_{\theta, \mathrm{r}, \mathrm{n} . \mathrm{j}}$) along the direction of the steepest descent, the Cauchy integral is evaluated.

Summary

- Exact formule for marginal distributions of ranked sequence were obtained in terms of an extension of the associated generalized factorial coefficient.
- For the limiting distributions, singularity analysis yielded

	$\mathbf{P}\left(L_{1}^{(n)}<r\right)$		$P\left(L_{K_{n}}^{(n)}>r\right)$	
r	O(n)	o(n)	O(n)	o(n)
$\alpha<0$	Dickman	0	$\mathcal{I}_{\mathrm{x}, \mathrm{x}}^{(m-1)}(-\alpha,-\alpha)$	$1-a_{r} n^{\alpha}$
$\alpha=0$	Dickman	$\mathbf{b}_{\mathbf{r}} \mathbf{n}^{1 / 2-\theta} \rho_{\mathrm{r}}^{-\mathbf{n}}$	Buchstab• $\mathbf{n}^{-\theta}$	Poisson
$\alpha>0$	Dickman	$\mathrm{c}_{\mathrm{r}} \mathrm{n}^{\theta / \alpha-\theta} \rho_{\mathrm{r}}{ }^{-n}$	$\mathbf{n}^{-\theta-\alpha}$	Sibuya. $\mathbf{n}^{-\theta-\alpha}$

- Details: arXiv:1306.2056

