Extremes of Pitman's Random Partition and their Asymptotics

Shuhei Mano

The Institite of Statistical Mathematics

Satellite Meeting to ISI Congress 2013 @ Sanjo Hall, University of Tokyo September 4, 2013

Poisson-Dirichlet Distribution

Definition (Kingman 1978; Pitman 1995) For $0 \le \alpha < 1$ and $\theta > -\alpha$, or $\alpha < 0$ and $\theta = -\alpha m$, $m \in \mathbb{N}$, let

$$P_1 = W_1,$$
 $P_i = W_i \prod_{j=1}^{i-1} (1 - W_j),$ $i = 2, 3, ...,$

with $W_i \sim \text{Beta}(1 - \alpha, \theta + i\alpha)$, iid. The ranked sequence of (P_i) is the 2-parameter Poisson-Dirichlet distribution $PD(\alpha, \theta)$.

Remark

•
$$P(\cdot) = \sum_{i=1}^{\infty} P_i \delta_{Y_i}(\cdot)$$
 is the 2-parameter Dirichlet process.

 Most general such that (P_i) is invariant under size-biased permutation.

Pitman's Random Partition

A partition of $n \in \mathbb{N}$ by integers is identified by multiplicity (c_i) such that

$$\|c\|:=\sum_{i=1}^n c_i=k_n, \qquad |c|:=\sum_{i=1}^n ic_i=n.$$

Definition (Ewens 1972; Pitman 1992)

An exchangeable random partition

$$\mathsf{P}((\mathsf{C}_{\mathsf{i}})=(\mathsf{c}_{\mathsf{i}}),\mathsf{K}_{\mathsf{n}}=\mathsf{k})=\frac{\left(\frac{\theta}{\alpha}\right)_{\mathsf{k}}}{(\theta)_{\mathsf{n}}}(-1)^{\mathsf{n}-\mathsf{k}}\mathsf{n}!\prod_{\mathsf{j}=1}^{\mathsf{n}}\left(\begin{array}{c}\alpha\\\mathsf{j}\end{array}\right)^{\mathsf{c}_{\mathsf{j}}}\frac{1}{\mathsf{c}_{\mathsf{j}}!},$$

where $(\theta)_n = \theta(\theta + 1) \cdots (\theta + n - 1)$.

The sampling distribution from $PD(\alpha, \theta)$; the ranked sizes converges as

$$\mathsf{n}^{-1}(\mathsf{L}_1^{(n)},\mathsf{L}_2^{(n)},...)\xrightarrow{\mathsf{d}}(\mathsf{P}_{(1)},\mathsf{P}_{(2)},...),\qquad\mathsf{n}\to\infty,$$

but how are the limiting distributions and in **o(n)**?

Incomplete Dirichlet Integrals

A collection of random variables $(Y_1, ..., Y_d) \sim Dir(\nu; \rho)$ if the pdf is

$$\frac{\Gamma(\rho+d\nu)}{\Gamma(\rho)\Gamma(\nu)^{d}}\left(1-\sum_{j=1}^{d}y_{j}\right)^{\rho-1}\prod_{i=1}^{d}y_{i}^{\nu-1}$$

over the simplex $\Delta_d = \{0 < y_i, i = 1, ..., d, \sum_{j=1}^d y_j < 1\}$. Let us introduce an extension of the incomplete Dirichlet integrals of Type I (Sobel et al. 1970)

$$\begin{split} \mathcal{I}_{p,q}^{(d)}(\nu;\rho) &:= \frac{\Gamma(\rho+d\nu)}{\Gamma(\rho)\Gamma(\nu)^d} \int_{\Delta_d(p,q)} \left(1-\sum_{j=1}^d y_j\right)^{\rho-1} \prod_{i=1}^d y_i^{\nu-1} dy_i, \\ \text{where } \Delta_d(p,q) &= \{p < y_i, i=1,...,d; \sum_{i=1}^d y_j < 1-q\}. \end{split}$$

Limiting Distribution of Maximum

For $\alpha < 0$ and $\theta = -\alpha m$, $m \in \mathbb{N}$, (P_i) $\sim \text{Dir}(-\alpha)$, so we skip and assume $\alpha \ge 0$.

Theorem (Pitman & Yor 1997)

For $\mathbf{0} \leq lpha < \mathbf{1}$ and heta > -lpha, the maximium, $\mathsf{P}_{(1)}$, has cdf

$$\rho_{\alpha,\theta}(\mathsf{x}) = 1 + \sum_{\mathsf{k}=1}^{\lfloor \mathsf{x}^{-1} \rfloor} \frac{\alpha^{-\mathsf{k}}(\theta)_{\mathsf{k}:\alpha}}{\mathsf{k}!} \mathcal{I}_{\mathsf{x},0}^{(\mathsf{k})}(-\alpha;\mathsf{k}\alpha+\theta),$$

where $(\theta)_{\mathbf{k}:\alpha} = \theta(\theta + \alpha) \cdots (\theta + (\mathbf{k} - 1)\alpha).$

Remark

- Appears as the limiting distribution of $n^{-1}L_1^{(n)}$ with $r/n \rightarrow x$.
- In the number theory ρ_{0,1}(u) is known as Dickman's function (1930) on the distribution of the smooth numbers.

Limiting Distribution of Minimum

Theorem (Arratia, Barbour, Tavaré 2003) For $\alpha = \mathbf{0}$ and $\theta > \mathbf{0}$, the minimum, $\mathbf{L}_{\mathbf{K}_{n}}^{(n)}$, has

$$\mathsf{P}(\mathsf{L}_{\mathsf{K}_{\mathsf{n}}}^{(\mathsf{n})} > \mathsf{r}) \sim \mathsf{\Gamma}(\theta)(\mathsf{n}\mathsf{x})^{-\theta} \omega_{\theta}(\mathsf{x}), \qquad \mathsf{n}, \mathsf{r} \to \infty, \qquad \mathsf{r}/\mathsf{n} \to \mathsf{x},$$

where

$$\omega_{\theta}(\mathsf{x}) = \theta \mathsf{x}^{\theta} \left\{ 1 + \sum_{1 \leq \mathsf{k} \leq \mathsf{x}^{-1} - 1} \frac{\theta^{\mathsf{k}}}{(\mathsf{k} + 1)!} \mathcal{I}_{\mathsf{x},\mathsf{x}}^{(\mathsf{k})}(0;0) \right\}.$$

Remark

The distribution is degenerate. In the number theory $\omega_1(\mathbf{x})$ is known as Buchstab's function (1937) on the distribution of the rough numbers.

Limiting Distribution of Minimum (cont.)

Theorem (Arratia, Tavaré 1992)

For $\alpha = \mathbf{0}$ and $\theta > \mathbf{0}$, the minimum, $\mathbf{L}_{\mathbf{K}_n}^{(n)}$, has

$$\mathsf{P}(\mathsf{L}_{\mathsf{K}_n}^{(\mathsf{n})} > \mathsf{r}) \sim \exp\left(-\theta \sum_{j=1}^{\mathsf{r}-1} j^{-1}\right), \qquad \mathsf{n} \to \infty, \qquad \mathsf{r} = \mathsf{o}(\mathsf{n}).$$

For $0 < \alpha < 1$ and $\theta > -\alpha$, the limiting distribution has not been considered, but $L_{k_n}^{(n)} \xrightarrow{p} 1$, since

Theorem (Yamato & Sibuya 2000)

$$\mathsf{n}^{-\alpha}(\mathsf{C}_1,...,\mathsf{C}_{\mathsf{m}})\xrightarrow{\mathsf{d}}(\mathsf{p}_\alpha(1),...,\mathsf{p}_\alpha(\mathsf{m}))\mathsf{M},\,\mathsf{i}=1,2,...,\mathsf{m},\,\mathsf{n}\to\infty,$$

where $\mathbf{p}_{\alpha}(\mathbf{i}) = \begin{pmatrix} \alpha \\ \mathbf{i} \end{pmatrix} (-1)^{\mathbf{i}+1}$ is pmf of Sibuya's distribution (1979) and **M** has pdf of $\mathbf{x}^{\theta/\alpha} \times$ Mittag-Leffler's distribution.

Outline

In summary, known facts are

	$P(L_1^{(n)} < r)$		$P(L_{K_{n}}^{(n)} > r)$	
r	O(n)	o(n)	O(n)	o(n)
$\alpha < 0$	Dir(-lpha) and back to Fisher (1929)			
$\alpha = 0$	Dickman ¹	?	Buchstab ² (degenerate)	Poisson ³
$\alpha > 0$	$Dickman^1$?	? (degenerate ⁴)	? (degenerate ⁴)

1 Pitman & Yor (1997); 2 Arratia et al (2003); 3 Arratia & Tavaré (1992); 4 Yamato & Sibuya (2000). But for the random permutation ($\alpha = 0, \theta = 1$) it is a classic back to Goncharov (1942), Shepp & Lloyd (1966).

In this talk, the table is filled out with reproductions. All results have been obtained by probability techniques, but here singularity analysis in analytic combinatrics (Flajolet & Odolyzko 1990) is employed.

Use of Sufficiency

Assume α is known.

$$\begin{split} \mathsf{P}(\mathsf{K}_{\mathsf{n}}=\mathsf{k}) &= \sum_{\|\mathsf{c}\|=\mathsf{k}} \mathsf{P}((\mathsf{C}_{\mathsf{i}})=(\mathsf{c}_{\mathsf{i}}),\mathsf{K}_{\mathsf{n}}=\mathsf{k}) \\ &= \frac{\left(\frac{\theta}{\alpha}\right)_{\mathsf{k}}}{(\theta)_{\mathsf{n}}}(-1)^{\mathsf{n}-\mathsf{k}}\mathsf{n}!\sum_{\|\mathsf{c}\|=\mathsf{k}}\prod_{\mathsf{j}=1}^{\mathsf{n}} \left(\begin{array}{c} \alpha\\ \mathsf{j} \end{array}\right)^{\mathsf{c}_{\mathsf{j}}} \frac{1}{\mathsf{c}_{\mathsf{j}}!} \\ &= \frac{\left(\frac{\theta}{\alpha}\right)_{\mathsf{k}}}{(\theta)_{\mathsf{n}}}(-1)^{\mathsf{n}-\mathsf{k}}\mathsf{C}(\mathsf{n},\mathsf{k};\alpha). \end{split}$$

 K_n is the complete and sufficient statistic of θ :

$$\mathsf{P}((\mathsf{C}_i)=(\mathsf{c}_i)|\mathsf{K}_{\mathsf{n}}=\mathsf{k})=\frac{\mathsf{n}!}{\mathsf{C}(\mathsf{n},\mathsf{k};\alpha)}\prod_{j=1}^{\mathsf{n}}\left(\begin{array}{c}\alpha\\j\end{array}\right)^{\mathsf{c}_j}\frac{1}{\mathsf{c}_j!},$$

where $C(n, k; \alpha)$ is the generalized factorial coefficient .

Generalized Factorial Coefficient

A generalized factorial of t of order n and scale parameter is α ,

$$[\alpha t]_n = \alpha t(\alpha t - 1) \cdots (\alpha t - n + 1), \qquad [\alpha t]_0 = 1.$$

The generalized factorial coefficients is defined as (Charalambides 2005)

$$[\alpha t]_n = \sum_{k=1}^n C(n,k;\alpha)[t]_k,$$

with the exponential generating function (egf):

$$\sum_{n=k}^{\infty} \mathsf{C}(n,k;\alpha) \frac{\mathsf{u}^n}{n!} = \frac{1}{k!} \left((1+\mathsf{u})^{\alpha} - 1 \right)^k.$$

Generalized Factorial Coefficient (cont.)

Suppose $\alpha \ (\geq n) \in \mathbb{N}$ and partitions of **n** like balls into **k** urns. Each urn consists of α distinguishable cells and each cell accept one ball.

$$\sum_{|\mathbf{a}|=\mathbf{n}}\prod_{j=1}^{\mathbf{k}}\left(\begin{array}{c}\alpha\\\mathbf{a}_{j}\end{array}\right)$$

Let $c_i = |\{j : a_j = i\}|$.

$$\sum_{\|\mathbf{c}\|=\mathbf{k}} \frac{\mathbf{k}!}{\mathbf{c}_1!\mathbf{c}_2!\cdots\mathbf{c}_n!} \prod_{j=1}^n \left(\begin{array}{c} \alpha\\ j \end{array}\right)^{\mathbf{c}_j} = \frac{\mathbf{k}!}{\mathbf{n}!} \mathsf{C}(\mathbf{n},\mathbf{k};\alpha).$$

Example $(K_4 = 2)$

 $\begin{array}{ll} (1,2)(1,2) & [\alpha]_2^2/(2!)^2 \\ (1)(1,2,3).(1,2,3)(1) & 2\alpha[\alpha]_3/(1!\cdot 3!) \end{array}$

Therefore $C(4, 2; \alpha) = 3[\alpha]_2^2 + 4\alpha[\alpha]_3$.

Associated Generalized Factorial Coefficients

If each urn has at least r balls,

$$n! \sum_{c_{j < r}=0} \prod_{j=r}^{n} \left(\begin{array}{c} \alpha \\ j \end{array}\right)^{c_{j}} \frac{1}{c_{j}!} =: C_{r}(n,k;\alpha), \qquad n = rk, rk + 1, ...$$

which is known as the **r**-associated generalized factorial coefficient (Charalambides 2005). Let us define an extension, in which (c_i) are restricted such that the *i*-th smallest has at least **r** balls.

Definition (Mano 2013)

An extension of the r-associated generalized factorial coefficient is

$$\mathsf{C}_{\mathsf{r}}^{(i)}(\mathsf{n},\mathsf{k};\alpha):=\mathsf{n}!\sum_{\sum_{j=1}^{r-1}\mathsf{c}_j<\mathsf{i}}\prod_{j=\mathsf{r}}^{\mathsf{n}}\left(\begin{array}{c}\alpha\\\mathsf{j}\end{array}\right)^{\mathsf{c}_j}\frac{1}{\mathsf{c}_j!},\qquad\mathsf{i}=1,...,\mathsf{k},$$

where n = rk - (i - 1)(r - 1), rk - (i - 1)(r - 1) + 1,

Exact Marginal Distribution

Definition (cont.)

$$\mathsf{C}^{\mathsf{r}(\mathsf{i})}(\mathsf{n},\mathsf{k};\alpha) := \mathsf{n}! \sum_{\sum_{j=r+1}^{n} c_j < \mathsf{i}} \prod_{j=r}^{\mathsf{n}} \left(\begin{array}{c} \alpha \\ \mathsf{j} \end{array}\right)^{c_j} \frac{1}{c_j!}, \qquad \mathsf{i}=1,...,\mathsf{k},$$

where n = k, ..., rk for i = 1 and n = k, k + 1, ... for i > 1.

Lemma

The i-th smallest, $L_{K_n-i+1}^{(n)},$ has

$$\mathsf{P}(\mathsf{L}_{\mathsf{K}_{n}-i+1}^{(n)} \geq \mathsf{r}) = \sum_{\mathsf{k}=1}^{\lfloor \frac{\mathsf{n}+(i-1)(r-1)}{\mathsf{r}} \rfloor} \frac{(-1)^{\mathsf{n}}}{(-\alpha)^{\mathsf{k}}} \frac{(\theta)_{\mathsf{k};\alpha}}{(\theta)_{\mathsf{n}}} \mathsf{C}_{\mathsf{r}}^{(i)}(\mathsf{n},\mathsf{k};\alpha).$$

and the i-th largest, $\boldsymbol{L}_{i}^{\left(n\right)},$ has cdf

$$\mathsf{P}(\mathsf{L}_{\mathsf{i}}^{(\mathsf{n})} \leq \mathsf{r}) = \sum_{\mathsf{k} = \lceil \frac{\mathsf{n}}{\mathsf{r}} \rceil, 1}^{\mathsf{n}} \frac{(-1)^{\mathsf{n}}}{(-\alpha)^{\mathsf{k}}} \frac{(\theta)_{\mathsf{k};\alpha}}{(\theta)_{\mathsf{n}}} \mathsf{C}^{\mathsf{r}(\mathsf{i})}(\mathsf{n},\mathsf{k};\alpha).$$

Exponential Generating Functions

$$\sum_{n=k}^{rk} C^{r}(n,k;\alpha) \frac{u^{n}}{n!} = \frac{1}{k!} \left(\sum_{j=1}^{r} \left(\begin{array}{c} \alpha \\ j \end{array} \right) u^{j} \right)^{k}$$

and

Lemma

$$\sum_{n=rk}^{\infty} C_r(n,k;\alpha) \frac{u^n}{n!} = \frac{1}{k!} \left((1+u)^{\alpha} - \sum_{j=0}^{r-1} \left(\begin{array}{c} \alpha \\ j \end{array} \right) u^j \right)^k.$$

Proof.

By combinatrics. But more general assertion is possible via Faà di Bruno's formula (1855; but Arbogast 1800; Comtet 1974; Shimizu et al. 2000); for h(u) = g(f(u)),

$$h^{(n)}(u) = \sum_{d=1}^{n} g^{(d)}(f(u)) \sum_{\|c\|=d} n! \prod_{j=1}^{n} \left(\frac{f^{(j)}(u)}{j!}\right)^{c_j} \frac{1}{c_j!}$$

Inversion Formulae

Proposition (Shimizu in private communication)

If an egf a r-associated number $G_r(n,k)$ is defined in terms of a series q_j ,

$$\sum_{n=rk}^{\infty}G_r(n,k)\frac{u^n}{n!}=\frac{1}{k!}\left(\sum_{j=r}^{\infty}q_ju^j\right)^k.$$

Then the number has an expression

$$\mathsf{G}_{\mathsf{r}}(\mathsf{n},\mathsf{k})=\mathsf{n}! \sum_{c_{j < \mathsf{r}}=0} \prod_{j=\mathsf{r}}^{\mathsf{n}} \frac{\mathsf{q}_{j}^{c_{j}}}{c_{j}!}, \qquad \mathsf{n}=\mathsf{r}\mathsf{k},\mathsf{r}\mathsf{k}+1,...$$

Remark

Similar formula holds for $\mathbf{G^r(n, k)}$. $\mathbf{j^{-1}}$ gives the **r**-associated Stirling number of the first kind, $\begin{pmatrix} \alpha \\ \mathbf{j} \end{pmatrix}$ gives the **r**-associated generalized factorial coefficient.

Minimum with $\alpha > 0$ and $\mathbf{r} = \mathbf{o}(\mathbf{n})$

Theorem

For $0 < \alpha < 1$ and $\theta > \alpha$, the minimum, $L_{K_n}^{(n)}$, has

$$\mathsf{P}(\mathsf{L}_{\mathsf{K}_{\mathsf{n}}} > \mathsf{r}) \sim \frac{\mathsf{\Gamma}(1+\theta)}{\mathsf{\Gamma}(1-\alpha)} \mathsf{n}^{-\theta-\alpha} (\mathsf{c}_{\alpha}(\mathsf{r}-1))^{-1-\frac{\theta}{\alpha}}, \, \mathsf{n} \to \infty, \, \mathsf{r} = \mathsf{o}(\mathsf{n}),$$

where r = 2, 3, ... and $c_{\alpha}(r)$ is cdf of Sibuya's distribution.

Proof.

Applying the Cauchy-Goursat theorem to the egf,

$$\begin{split} \mathsf{P}(\mathsf{L}_{\mathsf{K}_n} > \mathsf{r}) &= \ \frac{\mathsf{n}!}{[\theta]_n} \frac{1}{2\pi\sqrt{-1}} \oint \frac{(f_{\alpha,\mathsf{r}}(\mathsf{u}))^{-\frac{\vartheta}{\alpha}}}{\mathsf{u}^{\mathsf{n}+1}} \mathsf{d}\mathsf{u}, \\ \text{where } f_{\alpha,\mathsf{r}}(\mathsf{u}) = (1-\mathsf{u})^\alpha - \sum_{j=1}^{\mathsf{r}-1} \left(\begin{array}{c} \alpha\\ j \end{array}\right) (-\mathsf{u})^j. \end{split}$$

Minimum with $\alpha > 0$ and $\mathbf{r} = \mathbf{o}(\mathbf{n})$ (cont.)

Proof. (cont.)

According to Rouché's theorem, we can show that $f_{\alpha,r}(u) = 0$ has no roots in $|u| \leq 1$. Therefore taking the cut $[1, \infty)$ and $\eta > 0$ we can deform the contour for the Cauchy integral without changing the value.

 γ_2 , γ_1 , γ_4 avoid the cut with distance 1/n. Contribution comes from the part of the contour, which is similar to Hankel's contour for the asymptotic expansion of the Gamma function. Taking $\mathbf{n} \rightarrow \infty$ the theorem follows. \Box Maximum with $\alpha = 0$ and $\mathbf{r} = \mathbf{o}(\mathbf{n})$

Theorem

For $\alpha = \mathbf{0}$ and $\theta > \mathbf{0}$, the maximum, $\mathbf{L}_{1}^{(n)}$, has cdf

$$\mathsf{P}(\mathsf{L}_1^{(n)} < \mathsf{r}) \sim \frac{\mathsf{\Gamma}(\theta)\mathsf{n}^{-\theta+1/2}}{\sqrt{2\pi\mathsf{r}}} \sum_{j=0}^{\mathsf{r}-1} \rho_{\theta,\mathsf{r},\mathsf{n},j}^{-\mathsf{n}} \exp\left(\theta \sum_{\mathsf{k}=1}^{\mathsf{r}} \frac{\rho_{\theta,\mathsf{r},\mathsf{n},j}^{\mathsf{k}}}{\mathsf{k}}\right), \, \mathsf{n} \to \infty,$$

where $\mathbf{r} = \mathbf{o}(\mathbf{n})$ and $\rho_{\theta,r,n,j} \sim (\mathbf{n}/\theta)^{1/r}$, $\mathbf{j} = 0, 1, ..., \mathbf{r} - 1$ are the roots of the equation $\mathbf{u} + \mathbf{u}^2 + \cdots + \mathbf{u}^r = (\mathbf{n} + 1)/\theta$.

Proof.

Applying the Cauchy-Goursat theorem to egf, we have an integral expression. Taking contour as a polygon which goes through each saddle point (absolute values are $\rho_{\theta,r,n,j}$) along the direction of the steepest descent, the Cauchy integral is evaluated.

Summary

- Exact formule for marginal distributions of ranked sequence were obtained in terms of an extension of the associated generalized factorial coefficient.
- For the limiting distributions, singularity analysis yielded

Details: arXiv:1306.2056