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Introduction

This talk is about :

I Presenting a short review of existing Levy insurance risk
models and the ruin problem

I Presenting our Work (in Progress)

I Defining new path-dependent quantities that are relevant in
risk theory.

I Deriving expressions for these new quantities.

This is done through the use of recent developments in
first-passage times for Lévy processes.
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Lévy Insurance Risk Models

Now we find models of the form

R(t) = u + ct − X (t) , t > 0 ,

where X is a spectrally positive Lévy process.

I Compound Poisson Process: Classical Model (Cramer and
Lundberg): Xt =

∑Nt
i=1 Yi .

I Brownian motion: Perturbed Model (Dufresne and Gerber
(1991)): Xt =

∑Nt
i=1 Yi + Wt .

I Gamma Process: Dufresne, Gerber and Shiu (1991)

I α-stable risk process: Furrer (1998)

I General perturbed case: Huzak et al. (2004)

I EDPF for a perturbed subordinator: Morales (2003),
Garrido and Morales (2006) and Morales (2007)

I A generalized EDPF: Biffis and Morales (2010) and Biffis
and Kyprianou (2010)
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Lévy Insurance Risk Models
Now we find models of the form

R(t) = u + ct − X (t) , t > 0 ,

where X is a spectrally positive Lévy process.
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Our Model

We study the following Lévy risk process

R(t) := x + c t − X (t) , t > 0 , (1)

where X is a spectrally positive Lévy process
Laplace exponent

ψX (z) := −1

t
lnE[e−zXt ] , z > 0 , (2)

ψX (z) = iaz +
b2

2
z2 +

∫
R

[
1− eizx + izxI{(−1,1)}(x)

]
ν(dx) , (3)

alternatively,

X (t) = at + bW (t) + J(t) , t > 0 , (4)
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Advantages of Levy Models

I These seem to be good models for the aggregate claims.
Distribution might be in closed-form unlike the compound
Poisson case.

I The ruin problem is well-understood [Biffis and Morales
(2010)].

I Expressions for non-ruin path-dependent quantities seem to be
at hand.



Advantages of Levy Models

I These seem to be good models for the aggregate claims.
Distribution might be in closed-form unlike the compound
Poisson case.

I The ruin problem is well-understood [Biffis and Morales
(2010)].

I Expressions for non-ruin path-dependent quantities seem to be
at hand.



Advantages of Levy Models

I These seem to be good models for the aggregate claims.
Distribution might be in closed-form unlike the compound
Poisson case.

I The ruin problem is well-understood [Biffis and Morales
(2010)].

I Expressions for non-ruin path-dependent quantities seem to be
at hand.



Advantages of Levy Models

I These seem to be good models for the aggregate claims.
Distribution might be in closed-form unlike the compound
Poisson case.

I The ruin problem is well-understood [Biffis and Morales
(2010)].

I Expressions for non-ruin path-dependent quantities seem to be
at hand.



Advantages of Levy Models

I These seem to be good models for the aggregate claims.
Distribution might be in closed-form unlike the compound
Poisson case.

I The ruin problem is well-understood [Biffis and Morales
(2010)].

I Expressions for non-ruin path-dependent quantities seem to be
at hand.



Infinite- and Finite-time Horizon EDPF

Definition
The Infinte-time EDPF φ is defined by

φδ(x) := E
[
e−δτxw

(
|Rτx |,Rτx−,Rτx−

)
I{τx<∞}|R0 = x

]
, (5)

where δ > 0 and w is a penalty function on R3
+ with

w(0, 0, 0) = w0 > 0.

Definition
The Finte-time EDPF φt is defined by

φδt (x) := E
[
e−δτxw

(
|Rτx |,Rτx−,Rτx−

)
I{τx<t}|R0 = x

]
, (6)

where δ > 0 and w is a penalty function on R3
+ with

w(0, 0, 0) = w0 > 0.
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Applications

Inside the EDPF we have the distributions (both infinite- and
finite-time horizon versions) of

I |R(τ)| is the deficit at ruin,

I R(τ−) is the surplus level prior to ruin,

I R(τ−) is last minimum before ruin.

All of which give information about how ruin occurs as functions
of the initial level x
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Applications

Deficit |R(τx)|:
I If we were able to readily compute F|R(τx )| we would have a

family of distributions indexed by the initial reserve level.

I Ruin-based risk measures could then be constructed.

VaRx
α

The smallest deficit in the top 5% worst case scenarios.

I P(|R(τx)| > VaRx
α) = α .

I VaRx
0.05. If ruin occurs, we can expect to observe (five times

out of a hundred) a deficit of at least $ VaRx
0.05 when we start

off with a level x .

I It gives a solvency argument to set an appropriate initial
reserve x .
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Applications

Last minimum R(τ−):

I If we were able to readily compute FR(τ−) we would have a
family of distributions indexed by the initial reserve level.

I Due to its non-local nature at ruin, ruin-based risk measures
could be used to set warning levels.

VaRx
α

The smallest last minimum in the top 5% worst case scenarios.

I P(R(τ−) > VaRx
α) = α .

I VaRx
0.05. In those cases when ruin occurs, the last minimum

will be observed to be (ninety five times out of a hundred)
smaller than $ VaRx

0.05 when starting off with a level x .

I Does it give a warning level?

I Do you want to be below a reserve level of $ VaRx
0.05!!!!
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Computing the EDPF

Theorem (Biffis and Morales (2010))

Let φδG denote the Generalized EDPF. Moreover, let K denote the
exponential distribution with mean σ2/2c and density k. Then, φG
is given by

φδG (x) =
[
w0 e

−ρx (1− K (x)) + HG (x)
]
∗
∑
n>0

g∗(n)(x) , x > 0 .

(7)
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Computing the EDPF

Functions involved are

I The function g is given by

g(y) =
1

c

∫ y

0
e−ρ(y−s)k(y−s)

[∫ +∞

s
e−ρ(x−s)νS(dx) + Gρ(s)

]
ds ,

(8)
with the function Gρ defined through its Laplace transform∫ +∞

0
e−ξxGρ(x)dx =

Ψ
J̃
(ξ)−Ψ

J̃
(ρ)

ρ− ξ
, ξ > 0 , (9)

and ρ the unique non-negative solution of the generalized
Lundberg equation

cr + ΨS−Z (r) = δ .
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Computing the EDPF

I The function HG is given by

HG (u) =
1

c

∫ u

0
e−ρ(u−s)k(u−s)

∫ +∞

s
e−ρ(x−s)χG (x , s) dx ds ,

(10)
where, for x , s > 0, the function χG is defined as

χG (x , s) =

∫ +∞

x+
w(y − x , x , s)νS−Z (dy) . (11)
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Three examples

I θ-process with parameter λ = 3/2

ψX (z) =
1

2
σ2z2 + µz − c

√
α + z/β coth

(
π
√
α + z/β

)
+c
√
α coth

(
π
√
α
)
,

I θ-process with parameter λ = 5/2

ψX (z) =
1

2
σ2z2 + µz + c (α + z/β)

3
2 coth

(
π
√
α + z/β

)
−cα 3

2 coth
(
π
√
α
)
,

I β-process with parameter λ ∈ (0, 3) \ {1, 2}

ψX (z) =
1

2
σ2z2 + µz + cB(1 + α + z/β, 1− λ)

−cB(1 + α, 1− λ) .

where B(x , y) = Γ(x)Γ(y)/Γ(x + y) is the Beta function.
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Three examples

These were introduced in Kuznetsov (2009) with first-passage
times problems in mind.
Features

I Good risk models equivalent to GIG, IG and Gamma.

I

π(x) ∼ |x |−λ, as x → 0− ,

π(x) ∼ eβ(1+α)x , as x → −∞ .

I No closed-form densities

I Infinite series expressions for the Lévy measures

π(x) =
∑
m≥1

bme
ρmx .

I Quasi-closed form expressions for the EPDF in both infinite-
and finite- time horizon!!!!
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π(x) =
∑
m≥1

bme
ρmx .

I Quasi-closed form expressions for the EPDF in both infinite-
and finite- time horizon!!!!



Main Results: Infinite-time Horizon

The discounted joint density of all three quantities under these
three models is given in the following result.

Theorem
For δ ≥ 0, x > 0, y > 0, z > 0 and u ∈ (0, z ∧ x)

E
[
e−δτx I(|Rτx | < y ; Rτx− < z ; Rτx− < u) I{τx<∞}|R0 = x

]
=

Φ(δ)

δ

∑
n≥1

cnζne
−ζnx

{
σ2

2
+
∑
m≥1

bm(1− e−ρmy )

ρm(Φ(δ) + ρm)

×

[
e(ζn−ρm)u − 1

ζn − ρm
− e−(Φ(δ)+ρm)z × e(Φ(δ)+ζn)u − 1

Φ(δ) + ζn

]}
,

where Φ(δ) as the unique positive solution to ψX (z) = δ
(generalized Lundberg equation).
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Non-ruin quantities

Let us define,
Dt = X t − Xt ,

where X t is the running supremum process X t = sups∈[0,t] Xs .
We are interested primarily in the following stopping-times:

τa = inf{t > 0 |Dt > a} ,
ρ = sup{t ∈ [0, τa] |X t = Xt} ,

for some predetermined value a > 0.
These are the times of the first drawdown larger than a and the last
time that the reserve was at its supremum before the a-drawdown.
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Non-ruin quantities

Related quantities are:

I Dτa size of drawdown ,

I τa − ρ speed of depletion ,

I X τa the maximum of X at the first-passage time,

I X τa the minimum of X at the first-passage time,

I Dτa− drawdown size just before it crosses the level a,

I Dτa − a the overshoot of the drawdown process over the
level a.
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Expressions

Work is not complete but a very advance stage. Key issues:

I All expressions are given in terms of scale functions ,

I Expressions are tractable for exponential jumps,

I And potentially some classes of subordinators,

I Expressions for the speed of depletion seems to be the most
complicated of all.
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We are currently studying the following particular cases:

R(t) := x + c t − X (t) , t > 0 , (12)

where X is

I Compound Poisson Process: Exponential claims

I Gamma Process
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Expressions

Let {W (q), q ≥ 0} be the q-scale function of the process X , i.e.
for every q ≥ 0, W (q) : R −→ [0,∞) such that W (q)(y) = 0 for all
y < 0 satisfying∫ ∞

0
e−λyW (q)(y)dy =

1

ψ(λ)− q
, λ > Φ(q) . (13)
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Compound Poisson - exponential jumps

Probability of ruin before the first a-sized drawdown:

Px [X τa
< 0] = λeµy−λ(a,0)(x∨a)

[
eλ(a,0)x − W (x ∧ a)

W (a)
eλ(a,0)(x∨a)

]
×

[
λ(a, 0)

λ(a, 0) + µ
e−µ(x∨a) − e−aµ

]
×

[(
−1

aλθ2(1 + θ) e
−aµθ

1+θ

[1 + θ − e
−aµθ

1+θ ] +
1

aλθ2

)

×
(

1− e
−a2µθ

1+θ

)
− aµ

λθ

]
,
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Compound Poisson - exponential jumps

Probability measure for the maximum level at drawdown time

Px(X τa ∈ dv) =

[(
−1

aθ(1 + θ)(1 + (1− a)θ) e
−aµθ

1+θ

[1 + θ − e
−aµθ

1+θ ]

× +
1

θ + θ2(1− a)

)
×

(
e−aµ − e

−aµθ
1+θ

)
+

1

θ
(1− e−aµ)

]
F0,0,a(v − x)dv ,

for v ≥ x .
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Compound Poisson - exponential jumps

Probability measure of overshoot over drawdown level a:

Px (Dτa − a ∈ dh) =


 −1

aθ(1 + θ)(1 + (1− a)θ) e
−aµθ

1+θ

[1 + θ − e
−aµθ

1+θ ] +
1

θ + θ2(1− a)


×

(
e−aµ − e

−aµθ
1+θ

)
+

1

θ
(1− e−aµ)

]
µe−µhdh ,

for h ∈ (0,∞).
It does not depend on the initial level x .
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Compound Poisson - exponential jumps

Bivariate Laplace transform of the speed of depletion variables:

Ex (e−qτa−rρ) =
λ

λ(a, q + r)
[W (q)(a)− e−µaW (q)(0)]

−
(

λµ

λ(a, q + r)
e−µa +

λ λ(a, q)

λ(a, q + r)
e−µa

)

×
[(

1

(Φ(q) + µ)c
+

λµ

(Φ(q) + µ)3c2 − λµ(Φ(q) + µ)c

)(
e(Φ(q)+µ)a − 1

)

−
(Φ(q) + µ)

(Φ(q) + µ)2c − λµ

(
e

λµa
(Φ(q)+µ)c − 1

)]
. (14)

It does not depend on the initial level x .
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Remarks and Further Work

I Technically, if we know the q- scale function of a risk Lévy
process then similar expressions can be found,

I Next step would to work out expressions for theta and beta
processes [Morales and Kuznetsov (2011)]

I Gamma processes

I Carry out numerical computation and empirical analysis

I Design risk measures with these quantities
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Mathematics and Economics.

3. Kuznetsov, A. (2009). On the Wiener-Hopf Factorization for
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a Family of Lévy Processes Realated to the Theta and Beta
Families. Working paper.

4. Mijatovic, A. and Pistorius, M. (2011). On the drawdown of
completely asymmetric Levy processes ARXIV

5. Zhang, H. and Hadjiliadis, O. (2011). Drawdowns and the
Speed of Market Crash. Methodology and Computing in
Applied Probability.



References

1. Biffis, E. and Morales, M. (2010). On the Expected
Discounted Penalty Function of Three Ruin-related Random
Variables in a General Lévy Risk Model. Insurance:
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