Learning ancestral atom of structured dictionary via sparse coding Bernoulli Society Satellite Meeting

Noboru Murata

Waseda University

2 September, 2013

joint work with Toshimitsu Aritake, Hideitsu Hino

- a methodology for representing observations with a sparse combination of basis vectors (atoms)
- related with various problems:
 - associative memory (Palm, 1980)
 - visual cortex model (Olshausen & Field, 1996)
 - Lasso (least absolute shrinkage and selection operator; Tibshirani, 1996)
 - compressive sensing (Candès & Tao, 2006)
 - image restoration/compression (Elad et al., 2005)

basic problem

•
$$y = (y_1, \dots, y_n)^T$$
: target signal
• $d = (d_1, \dots, d_n)^T$: atom
• $\mathbf{D} = (d_1, \dots, d_m)$: dictionary (redundant: $m > n$)
• $x = (x_1, \dots, x_m)^T$: coefficient vector
• objective:

$$\underset{\boldsymbol{x}}{\mathsf{minimize}} \|\boldsymbol{y} - \mathbf{D}\boldsymbol{x}\|_2^2 + \eta \|\boldsymbol{x}\|_*$$

where $\|\cdot\|_*$ is a sparse norm, e.g. ℓ_0 and ℓ_1 .

dictionary determines overall quality of reconstruction.

- predefined dictionary: structured
 - wavelets (Daubechies, 1992)
 - curvelets (Candès & Donoho, 2001)
 - contourlets (Do & Vetterli, 2005)
- learned dictionary: unstructured
 - gradient-based method (Olshausen & Field, 1996)
 - Method of Optimal Directions (Engan et al., 1999)
 - K-SVD (Aharon et al., 2006)
- structured dictionary learning: intermediate
 - Image Signature Dictionary (Aharon & Elad, 2008)
 - Double Sparsity (Rubinstein et al., 2010)

• ordered dictionary: $\mathbf{D} = (\boldsymbol{d}_{\lambda}; \lambda \in \Lambda)$

• typical approaches:

• meta dictionary:
$$\tilde{\mathbf{D}} = (\tilde{d}_1, \dots, \tilde{d}_M)$$

$$oldsymbol{d}_\lambda = ilde{\mathrm{D}}\,oldsymbol{lpha}_\lambda$$

where α_{λ} is a meta-coefficient vector additional constraints are imposed on α_{λ} , e.g. sparsity ancestral atom (ancestor): $\boldsymbol{a} = (a_1, \dots, a_N)^T$

$$\boldsymbol{d}_{\lambda} = \mathbf{F}_{\lambda} \, \boldsymbol{a}$$

where \mathbf{F}_{λ} is an extraction operator

- structure: designed by a set of extraction operators
- extraction operator: $\mathbf{F}_{p,q}$

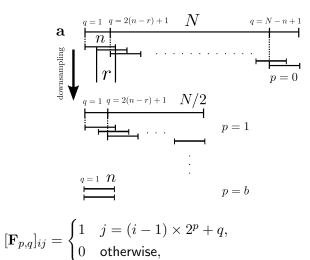
 $d_{p,q} = \mathbf{F}_{p,q} \, \boldsymbol{a}, \quad (p: \mathsf{scale} \text{ or downsample level}, \, q: \mathsf{shift})$

cut off a piece of ancestor

generating operator: D

$$\mathbb{D} \boldsymbol{a} = (\boldsymbol{d}_{p,q}; (p,q) \in \Lambda)$$
$$= (\mathbf{F}_{p,q} \boldsymbol{a}; (p,q) \in \Lambda)$$

a structured collection of $\mathbf{F}_{p,q}$



$$\mathbf{F}_{0,1} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & 0 & 1 & 0 & \cdots & 0 \\ \end{bmatrix} \in \Re^{n \times N}$$
$$\mathbf{F}_{1,1} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \cdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & \cdots & 0 \end{bmatrix} \in \Re^{n \times N}$$

basic idea

projection-based algorithm

related spaces:

 $\mathcal{D}:$ space of dictionary

 $\mathcal{S}:$ space of structured dictionary

 \mathcal{A} : space of ancestor

related maps:

 $\begin{array}{lll} \mbox{dictionary learning:} & \mathcal{D} \to \mathcal{D} \\ \mbox{structured dictionary:} & \mathcal{A} \to \mathcal{S} \subset \mathcal{D} \end{array}$

 \blacksquare introduce a fiber bundle structure to ${\cal D}$ by defining projection from ${\cal D}$ to ${\cal S}$

condition:

$$\mathbf{G} = \sum_{(p,q) \in \Lambda} \mathbf{F}_{p,q}^T \mathbf{F}_{p,q}: \ \mathcal{A} o \mathcal{A} \quad ext{is bijective}$$

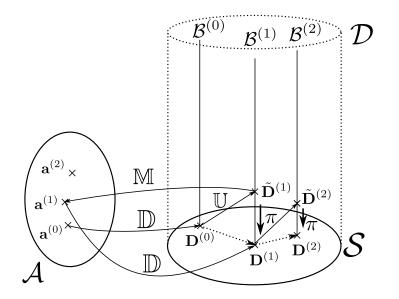
where $\mathbf{F}_{p,q}^T$ is the adjoint operator of $\mathbf{F}_{p,q}$ mean operator: $\mathbb{M} : \mathcal{D} \to \mathcal{A}$

$$egin{aligned} \mathbb{M} \, \mathbf{D} &= \mathbb{M} \, \left(oldsymbol{d}_{p,q}; (p,q) \in \Lambda
ight) \ &= \mathbf{G}^{-1} \sum_{p,q} \mathbf{F}_{p,q}^T \, oldsymbol{d}_{p,q} \end{aligned}$$

important relations:

$$oldsymbol{\pi} = \mathbb{D} \circ \mathbb{M} : \ \mathcal{D} o \mathcal{S} \quad (ext{projection})$$
 $ext{Id} = \mathbb{M} \circ \mathbb{D} : \ \mathcal{A} o \mathcal{A} \quad (ext{identity})$

relation of operators

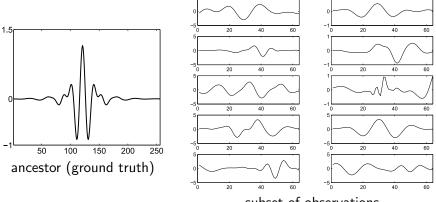


 $\begin{array}{ll} \textbf{procedure ANCESTOR LEARNING}(\ \boldsymbol{a}^{(0)}, \ \mathbb{D}, \ \mathbb{M}, \ \mathbb{U}, \ \varepsilon > 0 \) \\ \textbf{repeat} \\ \mathbf{D}^{(t)} \leftarrow \mathbb{D} \ \boldsymbol{a}^{(t)} \\ \tilde{\mathbf{D}}^{(t+1)} \leftarrow \mathbb{U} \ \mathbf{D}^{(t)} \\ \boldsymbol{a}^{(t+1)} \leftarrow \mathbb{M} \ \tilde{\mathbf{D}}^{(t+1)} \\ \textbf{until } \| \boldsymbol{a}^{(t+1)} - \boldsymbol{a}^{(t)} \| < \varepsilon \\ \textbf{return } \ \boldsymbol{a} \\ \textbf{end procedure} \end{array} \right) \\ \begin{array}{l} \boldsymbol{b} \text{ generate dictionary} \\ \boldsymbol{b} \text{ update dictionary} \\ \boldsymbol{b} \text{ update ancestor} \\ \boldsymbol{b} \text{ update ancestor} \\ \boldsymbol{c} \text{ and constraints} \\ \boldsymbol{c} \text{ and constraints} \\ \boldsymbol{c} \text{ and constraints} \\ \boldsymbol{c} \text{ b} \text{ update ancestor} \\ \boldsymbol{c} \text{ and constraints} \\ \boldsymbol{c} \text{ b} \text{ update ancestor} \\ \boldsymbol{c} \text{ c} \text{ c} \text{ b} \text{ update ancestor} \\ \boldsymbol{c} \text{ c} \text{ c} \text{ c} \text{ c} \text{ c} \\ \boldsymbol{c} \text{ c} \text{ c} \text{ c} \text{ c} \text{ c} \text{ c} \\ \boldsymbol{c} \text{ c} \text{ c} \text{ c} \text{ c} \text{ c} \\ \boldsymbol{c} \text{ c} \\ \boldsymbol{c} \text{ c} \text{ c} \text{ c} \text{ c} \text{ c} \\ \boldsymbol{c} \text{ c} \text{ c} \text{ c} \text{ c} \text{ c} \text{ c} \\ \boldsymbol{c} \text{ c} \\ \boldsymbol{c} \text{ c} \\ \boldsymbol{c} \text{ c} \\ \boldsymbol{c} \text{ c} \text{$

• U: OMP + K-SVD (+ renormalization)

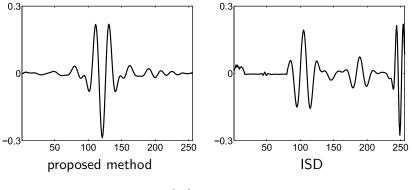
- OMP: greedy algorithm for ℓ_0 norm SC
- K-SVD: k-means algorithm for dictionary learning
- compare with ISD (Aharon & Elad, 2008)
 - gradient-based algorithm for estimating ancestor
 - including only shift operation in original version

artificial data



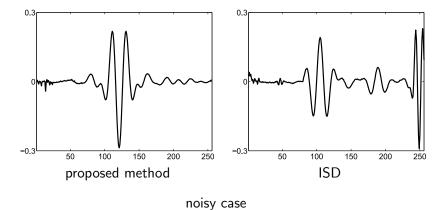
subset of observations

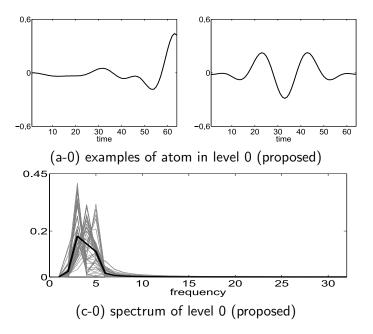
estimated ancestors

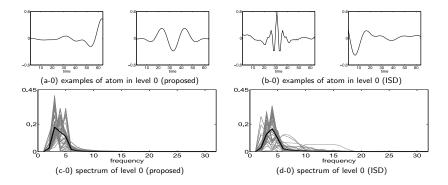


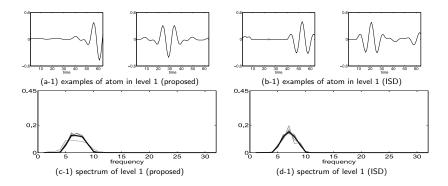
noiseless case

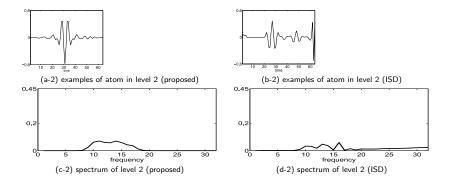
estimated ancestors







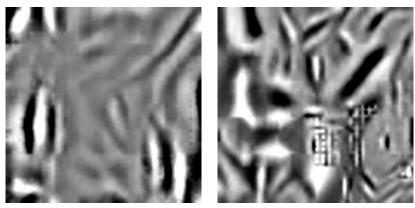




images (2D atoms)

test image (peppers)

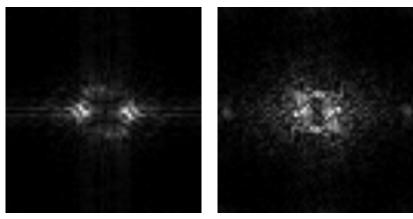
training image



proposed method

ISD

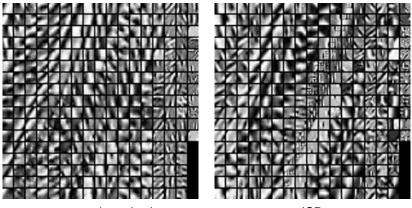
estimated ancestor



proposed method

ISD

spectrum of estimated ancestor



proposed method

ISD

learned dictionary

we proposed

- a dictionary generation scheme from an ancestor
- a condition of structured dictionary identifiability
- a projection-based algorithm to learn the ancestor

possible application would be

- image analysis and compression
- frequency analysis of signals