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Reinforcement Learning

Reinforcement learning is one of machine learning, which

deals with a problem that an agent decides an optimal

policy in an environment.

We consider a finite state space, and an agent gets a

reward when he moves from a state to next state.

Our purpose is to evaluate an expectation of a cumulative

reward and to find an optimal policy which maximizes or

minimizes the reward.
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Setting

S: finite state space　
state sequence (st)t=0,1,...: Markov chain on S

s0: follows some probability distribution on S

P ∈ M|S|(R): transition probability matrix

has a stationary distribution d(s)

reward sequence (rt)t∈N:

sequence of uniformly bounded random variables

p(rt+1|s0, s1, . . . , st+1) = p(rt+1|st, st+1)

E[rt+1|st = s] is independent of t

cumulative reward: Rt =
∞∑
k=1

γk−1rt+k

where, γ: discount rate (0 ≤ γ ≤ 1)
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Setting

value function:

V ∗(s) = E [Rt|st = s] = E

[
∞∑
k=1

γk−1rt+k|st = s

]
Here, let

R(s) = E[rt+1|st = s],

we have

V ∗ = R + γPV ∗.

We solve this problem when observations are given, and R

and P are unknown.
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Temporal difference learning

ϕk ∈ R|S|, k = 1, . . . ,K: feature vectors
Φ = (ϕ1, . . . , ϕK) ∈ R|S|×K: feature matrix
w0 ∈ RK: initial values of parameters
Vt: estimator of V ∗ defined as follows

Vt =
K∑

k=1

wt(k)ϕk = Φwt

wt = (wt(k))k=1,...,K is updated as the following rules: δt = rt + γVt−1(st) − Vt−1(st−1)

wt = wt−1 + atδtϕ(st−1)

where, ϕ(st) = (ϕk(st))k=1,...,K.

cf. 0 = R + γPV ∗ − V ∗
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Notation and Assumption

Notation:

D ∈ M|S|(R):
diagonal matrix whose elements are d(s)′s

ϕ̃k(s) = ϕk(s) − γ
∑

s′ P (s, s′)ϕk(s
′)

Φ̃ = (ϕ̃1, . . . , ϕ̃K) = (I|S| − γP )Φ ∈ R|S|×K

Assumption:

ΦTDΦ̃: invertible
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Convergence limit

Consider next rules:

wt = wt−1 + α
(
ΦTDR − ΦTDΦ̃wt−1

)
= wt−1 + αΦTDΦ̃(ŵ − wt−1)

where, ŵ = (ΦTDΦ̃)−1ΦTDR.

Then, we have

wt − ŵ =
(
IK − αΦTDΦ̃

)t

(w0 − ŵ)

where, IK is a K × K identity matrix.
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Convergence limit

Theorem. Under Assumption, wt converges to ŵ for small

enough α > 0 as t → ∞.

outline of proof.

Lemma 1. Under Assumption, every eigenvalue of ΦTDΦ̃

has positive real part.

Lemma 2. There exists some positive number α such that

the absolute value of every eigenvalue of IK − αΦTDΦ̃ is

less than 1.
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Motivation

The limit V∞ of an estimator Vt is the form of

V∞ = Φŵ = Φ(ΦTDΦ̃)−1ΦTDR,

and if the true value V ∗ is expressed as linear combination

of feature vectors, then the limit consists with the true

value, but it is not true in general.

Then, I propose the construction of the feature vector

related to this limit to converge the true value.
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Property of the limit

Fact. The limit V∞ satisfies the following equation:

V T
∞D(I − γP )(V ∗ − V∞) = 0

proof.

V T
∞D(I − γP )V∞

= ŵTΦTD(I − γP )Φ(ΦTDΦ̃)−1ΦTDR

= ŵTΦTDR

= V T
∞D(I − γP )V ∗
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Construction of the feature vector

Here, consider the following algorithm:

1. Let a limit V1 ̸= 0 be an initial vector.

2. Obtain D(I − γP )(V ∗ − V1).

3. Obtain the limit V2 for two feature vectors,

V1 and D(I − γP )(V ∗ − V1).

4. Repeat 2 and 3.

Then, the limit Vt converges to the true value V ∗ as

t → ∞.
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Numerical experiments

Consider the model as follows:

R =


−2

6

−6

4

 , P =


1/2 1/2 0 0

1/2 0 1/2 0

0 1/2 0 1/2

0 0 1/2 1/2

 , γ = 0.8

and we use an initial feature vector

ϕT = (1, 0, 0, 0).
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Numerical experiments

Black line is a theoretical line and the value of y-axis is

||Vt − V ∗||2.

Red points are obtained by 100 simulations, and 500

observations are given in each simulation.

The value of y-axis is ||Vt − V̂ ||2, where V̂ = (I − γP̂ )−1R

and P̂ is an estimator of P .
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Numerical experiments
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Numerical experiments

Iteration 1 2 3 4

Error 8.86 4.72 1.95 1.27

S.D. 10.26 5.38 1.76 0.922

Iteration 5 6 7 8

Error 0.587 0.358 0.161 0.0965

S.D. 0.229 0.0996 0.0261 0.0106
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Conclusion

When the true value is not expressed as linear

combination of feature vectors, I constructed the feature

vector based on the limit vector, and proposed the

algorithm where the estimator converges to the true value.
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