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Reinforcement Learning

Reinforcement learning is one of machine learning, which
deals with a problem that an agent decides an optimal

policy in an environment.

We consider a finite state space, and an agent gets a

reward when he moves from a state to next state.

Our purpose is to evaluate an expectation of a cumulative
reward and to find an optimal policy which maximizes or

minimizes the reward.



Setting

S: finite state space [

state sequence (s¢);—0,1,..: Markov chain on S
so: follows some probability distribution on S
P € Mg (R): transition probability matrix
has a stationary distribution d(s)

reward sequence (7¢)ien:

sequence of uniformly bounded random variables

P("“t+1|50a S19 e St+1) — p("“t+1|8ta St-|-1)
E|r;,1|s¢ = s] is independent of t

cumulative reward: R; = Z 'yk_er_k
k=1
where, v: discount rate (0 < v < 1)
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Setting

value function:

V*(s) = E [Ry|s; =

o @)

kE—1 .
Y rt—l—k S = S
k=1

|
2,

|

&

Here, let

R(s) = Elrii1|s: = s,
we have

V*=R+~PV"*.

We solve this problem when observations are given, and R

and P are unknown.



Temporal difference learning

o € RISLE=1,..., K: feature vectors

® = (¢1,...,0K) € RISIXK: feature matrix
wo € R¥: initial values of parameters

V;: estimator of V* defined as follows

K
Vi = Zwt(k)¢k = Pw;
k=1
w; = (w¢(k))k=1,.. k is updated as the following rules:

0t =1 +vYVie1(st) — Vic1(St—1)
wy = Wi—1 + a10:P(S¢—1)

where, ¢(3t) — (¢k(3t))k=1,---,K°

cf. 0=R+~PV*—V*



Notation and Assumption

Notation:

D = M|S|(R):
diagonal matrix whose elements are d(s)’s

{ék(s) = ¢k(3)~_ v o P(5,8")Pr(s)
D = (¢P1,-..,0K) = (Ijs] — YP)® € RISIXK

Assumption:

&T D®: invertible



Convergence limit

Consider next rules:
Wy = Wi_1 + @ (<I>TDR — <I>TD<i>wt_1)
= w1 + a®TDP (W — wy_1)
where, w = (#TD®) '®TDR.

Then, we have
~\1
wy — D = (IK _ a(I)TD<I>> (wo — )

where, Ik is a K X K identity matrix.



Convergence limit

Theorem. Under Assumption, w; converges to w for small

enough a > 0 as t — oo.

outline of proof.

Lemma 1. Under Assumption, every eigenvalue of dTDP

has positive real part.

Lemma 2. There exists some positive number o such that
the absolute value of every eigenvalue of Ix — a®TDP is

less than 1.



Motivation

The limit V. of an estimator V; is the form of
Voo = @ = &(®TDP)'®TDR,

and if the true value V* is expressed as linear combination
of feature vectors, then the limit consists with the true

value, but it is not true in general.

Then, I propose the construction of the feature vector

related to this limit to converge the true value.
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Property of the limit

Fact. The limit V_, satisfies the following equation:
VID(I —~P)(V*—V,) =0
proof.
VID(I — vP)Vy
= wT®TD(I — vP)®(®TD®) '®TDR
= w!'®TDR
=VID(I —~P)V*
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Construction of the feature vector

Here, consider the following algorithm:
1. Let a limit V; # 0 be an initial vector.
2. Obtain D(I — vP)(V* — V,).

3. Obtain the limit V5 for two feature vectors,
Vi and D(I —~P)(V* — V;).

4. Repeat 2 and 3.

Then, the limit V; converges to the true value V* as
t — oo.
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Numerical experiments

Consider the model as follows:

[ —2 ) (1/2 1/2 0 0 )
ro| ¢ | p_ 1/2 0 1/2 0
—6 0 1/2 0 1/2
\ 4 ) \ 0 0 1/2 1/2 )

and we use an initial feature vector

o' = (1,0,0,0).
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Numerical experiments

Black line is a theoretical line and the value of y-axis is
Ve = V7.

Red points are obtained by 100 simulations, and 500

observations are given in each simulation.
The value of y-axis is ||V, — V|2, where V = (I —~vP)"'R

and P is an estimator of P.
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Numerical experiments
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Numerical experiments

Iteration 1 2 3 4

Error 8.86 | 4.72 | 1.95 | 1.27

S.D. 10.26 | 5.38 | 1.76 | 0.922

Iteration 5 6 7 8

Error 0.587 | 0.358 | 0.161 | 0.0965

S.D. 0.229 | 0.0996 | 0.0261 | 0.0106
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Conclusion

When the true value is not expressed as linear
combination of feature vectors, I constructed the feature
vector based on the limit vector, and proposed the

algorithm where the estimator converges to the true value.
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