
Counting and Locating Multiple Solutions

of Estimating Equations

Speaker: Donald Richards (Penn State University)

This talk is based on joint work with:

Despina Stasi (Penn State University)

Elizabeth Gross (NC State University)
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Logistic regression

θi: The probability that individual i in a random sample of n
individuals will develop a particular characteristic during a
follow-up period.

Yi: Bernoulli random variable which indicates whether or not
individual i develops the characteristic.

Y1, . . . , Yn are assumed independent, so they have joint p.d.f.

f(y1, . . . , yn; θ1, . . . , θn) =

n
∏

i=1

θ
yi

i (1− θi)
1−yi , yi = 0 or 1

List the individuals so that the first m are those who have the
characteristic; so, yi = 1, i ≤ m, and yi = 0, i > m.
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Likelihood function:

L(θ1, . . . , θn) =

m
∏

i=1

θi ·

n
∏

i=m+1

(1− θi)

Predictor variables: x1, x2, . . . , xk (and x0 ≡ 1)

Data: xij , the observed value of xj for the ith individual.

β = (β0, β1, . . . , βk): A vector of unknown parameters to be

estimated by the method of maximum likelihood.

Model θi through a logistic relationship:

θi =
1

1 + e−
∑

k

j=0
βjxij
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The likelihood function:

L(β) =

m
∏

i=1

1

1 + e−
∑

k

j=0
βjxij

·

n
∏

i=m+1

1

1 + e
∑

k

j=0
βjxij

The derivatives of logL(β) w.r.t. βr, r = 0, . . . , k:

∂

∂βr
logL(β) =

m
∑

i=1

xir
e−

∑
k

j=0
βjxij

1 + e−
∑

k

j=0
βjxij

−

n
∑

i=m+1

xir
e
∑

k

j=0
βjxij

1 + e
∑

k

j=0
βjxij
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The system of k + 1 likelihood equations:

m
∑

i=1

1

1 + e
∑

k

j=0
βjxij













xi0

xi1
...

xik













=

n
∑

i=m+1

e
∑

k

j=0
βjxij

1 + e
∑

k

j=0
βjxij













xi0

xi1
...

xik













Change of variables:

γj ≡ eβj , j = 0, . . . , k
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The likelihood equations: For γ0, . . . , γk > 0,

m
∑

i=1

1

1 + γxi0

0
· · · γxik

k













xi0

xi1
...

xik













=

n
∑

i=m+1

γxi0

0
· · · γxik

k

1 + γxi0

0
· · · γxik

k













xi0

xi1
...

xik













Problems:

1. Count the number of solutions of this system of equations?

2. Can we calculate all solutions?
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The Donner party data

Row 1: Age

Row 2: Sex (1=male, 0=female)

Survived vs. Died

40 40 28 22 23

0 1 1 0 0

28 15 20 18 25

1 0 0 1 1

20 32 32 24 30

1 1 0 0 1

21 46 32 23 25

0 1 0 1 0

23 30 28 40 45

1 1 1 1 0

62 65 45 25 28

1 1 0 0 1

23 47 57 25 60

1 0 1 1 1

15 50 25 30 25

1 0 1 1 1

25 25 30 35 24

1 1 1 1 1
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Suppose we were given the data on individuals 8, 10, 29, and
43 only, then the system of likelihood equations is:







1 1 1 1

20 25 25 30

0 1 0 1

















a

b

c

d











= 0,

where γ0, γ1, γ2 > 0 and

a =
1

1 + γ0γ
20
1
γ0
2

, b =
1

1 + γ0γ
25
1
γ1
2

,

c = −
γ0γ

25
1 γ02

1 + γ0γ
25
1
γ0
2

, d = −
γ0γ

30
1 γ12

1 + γ0γ
30
1
γ1
2

.

Row-reduction leads to: a = −b = −c = d, so ab < 0, cd < 0.

Conclusion: The likelihood equations have no real solutions.
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Suppose we were given the data on individuals 2, 20, 24, and
29 only. Then the likelihood equations are







1 1 1 1

40 25 40 25

1 0 1 0

















a

b

c

d











= 0

where γ0, γ1, γ2 > 0 and

a =
1

1 + γ0γ
40
1
γ1
2

, b =
1

1 + γ0γ
25
1
γ0
2

,

c = −
γ0γ

40
1 γ12

1 + γ0γ
40
1
γ1
2

, d = −
γ0γ

25
1 γ02

1 + γ0γ
25
1
γ0
2

.

Row-reduction leads to two equations in four variables:

a+ c = 0 and b+ d = 0
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There are infinitely many real solutions to this system:

γ0 = γ−25
1

, γ2 = γ−15
1

, γ1 > 0

This is not surprising, for we were given uninformative data:

40 25 40 25

1 0 1 0

A rigorous estimation method should not be able to provide
unique estimates from such data.

Is it possible to maximize L(γ−25
1

, γ1, γ
−15
1

) w.r.t. γ1 and describe

the root surface corresponding to each γ1?

– p. 10/18



If we were given the data on individuals 16-20 and 31-35 only,
then the likelihood equations are







1 1 1 1 1 1 1 1 1 1

21 46 32 23 25 23 47 57 25 60

0 1 0 1 0 1 0 1 1 1













a1
...

a10






= 0

where

a1 =
1

1 + γ0γ
21
1
γ0
2

, . . . , a10 = −
γ0γ

60
1 γ12

1 + γ0γ
60
1
γ1
2

Load the data into Macaulay2, a software package for numerical
algebraic geometry

Let a laptop computer run for hours
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Macaulay2 finds all 1,346 complex solutions

Only 3 of the 1,346 solutions are real

Only 1 of the 3 real solutions has all components positive:

(87982.8, 0.751485, 0.0197566)

Conclusion: (87982.8, 0.751485, 0.0197566) is the unique MLE.

Macaulay2 has therefore proved that the MLE exists and is
unique.
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The General Case

Suppose that the xij are integers (e.g., the Donner data) or

rational numbers.

The ML equations reduce to a system of polynomial equations.

The Fundamental Theorem of Algebra: Every non-zero,
one-variable polynomial of degree n, with complex coefficients,
has exactly n complex roots (counted with multiplicity).

Rothe (1608), Euler (1749), Lagrange (1772), Laplace (1795),
Gauss (1799), Argand (1806), Ostrowski (1920), . . .

How does the Fundamental Theorem of Algebra generalize to
several variables?
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1841: F. Minding generalizes the FTA to two variables.

1975: D. Bernstein generalizes the FTA to arbitrary number of
variables.

Bernstein’s proof motivated numerical algorithms for sweeping
through the values of the polynomial system to find all complex
isolated roots.

Polynomial Homotopy Continuation algorithms

J. Verschelde, Univ. Illinois at Chicago: Extensive PHC website
with software, examples, manuals, free downloads.

Garcia-Puente, Gross, Kahle, Petrović, Stasi, Sommese: People
who know how to apply the software
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Gross, Drton, and Petrović (2012). The maximum likelihood
degree of variance component models. Electron. J. Statist.

Sturmfels (1998). Polynomial equations and convex polytopes.
Amer. Math. Monthly

– p. 15/18



As n → ∞, the number of roots of ML equations does not
always converge to 1

Problem: Estimate the correlation matrix of a multivariate normal
distribution

Social scientists wish to estimate tetrachoric and polychoric
correlations.

Constrained estimation problems; more difficult than estimating
the covariance matrix.

This problem cannot be solved by estimating each bivariate
correlation separately.

We must parametrize the set of correlation matrices carefully.
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N3(0, R), a trivariate normal distribution with mean 0 and
correlation matrix R

Collect a random sample and write down the likelihood function.

We solve the likelihood equations using Bertini , a software
package for numerical algebraic geometry.

The likelihood equations seem to always have 35 complex
solutions.

The number of statistically relevant solutions varies from 5 to 9.

Even with n = 107, we found cases with 9 statistically relevant
solutions.
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Conclusions

Statisticians often have complicated estimating equations with:

Small sample sizes

Large numbers of parameters

Multiple roots

We recommend the use of numerical algebraic geometry

21st-century mathematical methods

Powerful algorithms for solving estimating equations

These algorithms compute all solutions of the equations
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