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“The	
  problem	
  of	
  regions”	
  
Efron	
  and	
  Tibshirani	
  (1998)	
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(example)	
  	
  Model	
  Selec2on	
  of	
  Polynomial	
  Regression	


0:	
  constant,	
  	
  1:	
  linear,	
  	
  2:	
  quadra2c	
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  and	
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AU = PV +O(n−3/2)

v = −
√

1

64
+

u2

3

∂H =
{
(u, v) : v = −

√
1

64
+

u2

3

}

H =
{
(u, v) : v ≤ −

√
1

64
+

u2

3

}

σ2 = τ 2 = 1

Y + ∼ N2(µ̂(H|y), I2)

DBP(H|y) = P
[
BP(H|Y +) ≤ BP(H|y) | µ̂(H|y)

]

Y + ∼ N2(µ̂, I2)

DBP = P
[
BP(H|Y +) ≤ 0.019 | µ̂

]

O(1) O(n−1/2) O(n−1) O(n−3/2) O(n−2)

Another approach for calibrating BPσ2(H|y) is the multiscale bootstrap. The nor-

malized bootstrap probability of Shimodaira (2008) is defined by

NBPσ2(H|y) = Φ
[
σΦ−1(BPσ2(H|y))

]
(6)

for σ2 > 0. Φ(·) is the cumulative distribution function of the standard normal dis-

tribution N(0, 1), and we denote the density function as φ(·). For several σ2 values,

say, σ2
1, . . . , σ

2
S, we compute BPσ2

i
(H|y), i = 1, . . . , S, and extrapolate NBPσ2(H|y)

to σ2 = −1. More specifically, we fit a model

NBPσ2(H|y) = 1− Φ(β0 + β1σ
2 + β2σ

4)
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Mul2variate	
  Normal	
  Model	

identity matrix Iq+1,

Y ∼ Nq+1(µ, Iq+1). (1)

Let H ⊂ Rq+1 be an arbitrary-shaped region of positive volume. Giving an observed

value y, we are interested in testing the null hypothesis µ ∈ H against the alternative

hypothesis µ $∈ H. The boundary surface ∂H of H is assumed to be smooth in this

paper.

Bootstrap procedures are utilized for computing approximate p-values. We as-

sume that we can generate bootstrap replicate Y ∗ of Y by

Y ∗ ∼ Nq+1(y, σ
2Iq+1) (2)

for any σ2 > 0. The bootstrap probability of H for a given y is defined as

BPσ2(H|y) = P (Y ∗ ∈ H|y), (3)

where P (·|y) indicates the probability with respect to (2). In practice, we may

generate B bootstrap replicates

Y ∗1, . . . , Y ∗B,

and compute the frequency

B̂Pσ2(H|y) = #{Y ∗b ∈ H, b = 1, . . . , B}
B

for estimating BPσ2(H|y). We ignore the sampling error of O(B−1/2) and use only

(3) in the theoretical argument throughout. For approximating the distribution of

Y in (1), the scale should be σ2 = 1 in (2). The ordinary bootstrap probability

BP1(H|y) is often used as an approximate p-value. However, it is biased in the

sense explained in Section 2.5, and there are several attempts to adjust the bias.

5

at least approximately. We consider the local alternatives for the asymptotic the-

ory. The transformed statistic is scaled by the factor
√
n so that the variance of

y remains constant in (1). For example, we use y =
√
n x̄ instead of the average

x̄ = (x1 + · · ·+ xn)/n itself. As a result, the size of H is also scaled by
√
n.

Efron and Tibshirani (1998) considered the local coordinates (u, v) ∈ Rq+1 with

u = (u1, . . . , uq) ∈ Rq, v ∈ R for representing H in a neighbourhood of (0, 0) ∈ Rq+1.

Definition 1 (Region and boundary surface). For a continuous function h(u) of

u ∈ Rq, the region

H =
{
(u, v) | v ≤ −h(u), u ∈ Rq

}
(8)

is denoted as R(h). The boundary surface

∂H =
{
(u, v) | v = −h(u), u ∈ Rq

}

is denoted as B(h).

By taking the origin at a point on ∂H and rotating the axes properly, u1, . . . , uq

are orthgonal coordinates of the tangent space and v is the coordinate of the direction

normal to the tangent space. The smooth function h(u) is then represented in the

Taylor series as

h(u) =
q∑

i=1

q∑

j=1

hijuiuj +
q∑

i=1

q∑

j=1

q∑

k=1

hijkuiujuk + · · · , (9)

where the derivatives are denoted as

hij =
1

2

∂2h(u)

∂ui∂uj

∣∣∣
0
, hijk =

1

6

∂3h(u)

∂ui∂uj∂uk

∣∣∣
0
.
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θ = 0.0, 0.5, 1.0, . . . , 3.0

DBP = PV +O(n−3/2)

DAU = PV +O(n−2)

y = (u, v) q = dim u

5.3 Higher order terms of double bootstrap probabilities

µ̂(H|y) = (0,−h(0)) ∈ ∂H

∆̃(θ) = (3hmmi − 6λ0hmlhmli)θi + (6hmmij − 2γ1hmihmj − 4hmlhmihlj)θiθj = O(n−1)

Theorem 4 (Asymptotic expansion of double bootstrap probabilities). For the H

and y = (0,λ0−h0) given in Theorem 1, the double bootstrap probability is expressed

asymptotically as

DBPτ2,σ2(H|y) # 1− Φ
[
β0τ

−1 − β1τ − β2τ
3 − β3τσ

2
]
. (29)

Let D̃BPτ2,σ2(H|y) denote the double bootstrap probability computed by replacing the

projection µ̂(H|y) in (4) by µ̃ = (θ,−h(θ)) ∈ ∂H for some θ ∈ Rq. Then,

D̃BPτ2,σ2(H|y) # 1− Φ
[
β0τ

−1 − β1τ − β2τ
3 − β3τσ

2 − τ−1(τ 2 + σ2)∆̃(θ)
]
, (30)

where ∆̃(θ) = (3hmmi − 6λ0hmlhmli)θi + (6hmmij − 2γ1hmihmj − 4hmlhmihlj)θiθj. In

particular, τ 2 = 1, σ2 = ±1, gives

D̃BP1,1(H|y) = DBP1,1(H|y) +O(n−1),

D̃BP1,−1(H|y) # DBP1,−1(H|y).

21

θ = 0.0, 0.5, 1.0, . . . , 3.0

DBP = PV +O(n−3/2)

DAU = PV +O(n−2)

y = (u, v) ∈ Rq+1 q = dim u

5.3 Higher order terms of double bootstrap probabilities

µ̂(H|y) = (0,−h(0)) ∈ ∂H

∆̃(θ) = (3hmmi − 6λ0hmlhmli)θi + (6hmmij − 2γ1hmihmj − 4hmlhmihlj)θiθj = O(n−1)

Theorem 4 (Asymptotic expansion of double bootstrap probabilities). For the H

and y = (0,λ0−h0) given in Theorem 1, the double bootstrap probability is expressed

asymptotically as

DBPτ2,σ2(H|y) # 1− Φ
[
β0τ

−1 − β1τ − β2τ
3 − β3τσ

2
]
. (29)

Let D̃BPτ2,σ2(H|y) denote the double bootstrap probability computed by replacing the

projection µ̂(H|y) in (4) by µ̃ = (θ,−h(θ)) ∈ ∂H for some θ ∈ Rq. Then,

D̃BPτ2,σ2(H|y) # 1− Φ
[
β0τ

−1 − β1τ − β2τ
3 − β3τσ

2 − τ−1(τ 2 + σ2)∆̃(θ)
]
, (30)

where ∆̃(θ) = (3hmmi − 6λ0hmlhmli)θi + (6hmmij − 2γ1hmihmj − 4hmlhmihlj)θiθj. In

particular, τ 2 = 1, σ2 = ±1, gives

D̃BP1,1(H|y) = DBP1,1(H|y) +O(n−1),

D̃BP1,−1(H|y) # DBP1,−1(H|y).

21



Chi-­‐square	
  test	
  (very	
  conserva2ve)	


1.836	


1.778	


p=0.185	


distance2	
  	
  ~	
  	
  chi-­‐square	
  distribu2on	
  with	
  df=2	


p=0.206	
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Normal	
  test	
  (rejec2ng	
  too	
  much)	


1.836	


1.778	


p=0.033	


distance	
  ~	
  N(0,1)	


p=0.038	
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Bootstrap	
  probability	
  (=Bayesian	
  PP)	


identity matrix Iq+1,

Y ∼ Nq+1(µ, Iq+1). (1)

Let H ⊂ Rq+1 be an arbitrary-shaped region of positive volume. Giving an observed

value y, we are interested in testing the null hypothesis µ ∈ H against the alternative

hypothesis µ $∈ H. The boundary surface ∂H of H is assumed to be smooth in this

paper.

Bootstrap procedures are utilized for computing approximate p-values. We as-

sume that we can generate bootstrap replicate Y ∗ of Y by

Y ∗ ∼ Nq+1(y, σ
2Iq+1) (2)

for any σ2 > 0. The bootstrap probability of H for a given y is defined as

BPσ2(H|y) = P (Y ∗ ∈ H|y), (3)

where P (·|y) indicates the probability with respect to (2). In practice, we may

generate B bootstrap replicates

Y ∗1, . . . , Y ∗B,

and compute the frequency

B̂Pσ2(H|y) = #{Y ∗b ∈ H, b = 1, . . . , B}
B

for estimating BPσ2(H|y). We ignore the sampling error of O(B−1/2) and use only

(3) in the theoretical argument throughout. For approximating the distribution of

Y in (1), the scale should be σ2 = 1 in (2). The ordinary bootstrap probability

BP1(H|y) is often used as an approximate p-value. However, it is biased in the

sense explained in Section 2.5, and there are several attempts to adjust the bias.
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BP	
  is	
  interpreted	
  as	
  the	
  Bayesian	
  posterior	
  probability	
  of	
  H	
  
if	
  the	
  prior	
  distribu2on	
  of	
  mu	
  is	
  uniform.	


Efron	
  and	
  Tibshirani	
  (1998)	


7	




BP	
  is	
  even	
  worse	


p=0.033	


p=0.038	


BP=0.019	


BP=0.037	
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Double	
  bootstrap	
  probability	


2.2 Double bootstrap

For calibrating BPσ2(H|y), we first consider the projection of y onto the boundary

surface ∂H. The projection is the point on ∂H that is closest to y;

µ̂(H|y) = arg min
µ∈∂H

‖y − µ‖,

where ‖y − µ‖2 =
∑q+1

i=1 (yi − µi)2. We generate bootstrap replicate Y + by

Y + ∼ Nq+1(µ̂(H|y), τ 2Iq+1) (4)

for some τ 2 > 0. For each observed value y+, we generate a second-level bootstrap

replicate

Y ∗∗ ∼ Nq+1(y
+, σ2Iq+1)

for computing

BPσ2(H|y+) = P (Y ∗∗ ∈ H|y+).

We calibrate BPσ2(H|y) by the distribution of BPσ2(H|Y +). The double bootstrap

probability of H for a given y is defined as

DBPσ2,τ2(H|y) = P
[
BPσ2(H|Y +) ≤ BPσ2(H|y) | µ̂(H|y)

]
, (5)

where the probability is calculated by (4). When σ2 = τ 2 = 1, this is the ordinary

double bootstrap probability DBP1,1(H|y).

2.3 Multiscale bootstrap

Another approach for calibrating BPσ2(H|y) is the multiscale bootstrap. The nor-

malized bootstrap probability of Shimodaira (2008) is defined by

NBPσ2(H|y) = Φ
[
σΦ−1(BPσ2(H|y))

]
(6)
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(6)
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say, σ2
1, . . . , σ

2
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i
(H|y), i = 1, . . . , S, and extrapolate NBPσ2(H|y)

to σ2 = −1. More specifically, we fit a model

NBPσ2(H|y) = 1− Φ(β0 + β1σ
2 + β2σ

4)

with parameters (β0, β1, β2) to the observed values of NBPσ2
i
(H|y), i = 1, . . . , S, and

compute NBP−1(H|y) using the estimated parameters.
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Lemma 5 (Additivity of the contour surfaces). For h, s ∈ S, we say h and s are

equivalent, denoted as h
.
= s, if h0 = s0, hij = sij, hijk = sijk, and hijkl = sijkl by

ignoring hi and si. We formally extend the operator Lσ2(h,λ0) for σ2 ≤ 0 via (24).

Then, for λ0, ξ0, σ2, τ 2 ∈ R,

Lτ2(Lσ2(h,λ0), ξ0)
.
= Lσ2+τ2(h,λ0 + ξ0). (26)

The identity operator is L0(h, 0)
.
= h, and the inverse operator is L−σ2(s,−λ0)

.
= h

for Lσ2(h,λ0)
.
= s.

5.2 Higer-order terms of unbiased p-values

Theorem 3 (Fourth-order accurate p-value). For the H and y = (0,λ0−h0) given in

Theorem 1, an approximately unbiased p-value of fourth-order accuracy is expressed

asymptotically as

PV(H|y) $ 1− Φ
[
λ0 − γ1 + λ0γ2 + 3γ4 − γ1γ2 − 4

3(2 + λ2
0)γ3

]
(27)

= 1− Φ
[
β0 − β1 − β2 + β3

]
(28)

PV(H|y) $ 1− Φ
[
β0 − β1 − β2 + β3

]

Φ̄−1
[
DBP1,σ2(H|y)

]
$ (β0 − β1 − β2)− β3σ

2

µ ∈ ∂H

µ = (θ,−h(θ)) ∈ ∂H

20

θ = 0.0, 0.5, 1.0, . . . , 3.0

DBP = PV +O(n−3/2)

DAU = PV +O(n−2)

5.3 Higher order terms of double bootstrap probabilities

µ̂(H|y) = (0,−h(0)) ∈ ∂H

∆̃(θ) = (3hmmi − 6λ0hmlhmli)θi + (6hmmij − 2γ1hmihmj − 4hmlhmihlj)θiθj = O(n−1)

Theorem 4 (Asymptotic expansion of double bootstrap probabilities). For the H

and y = (0,λ0−h0) given in Theorem 1, the double bootstrap probability is expressed

asymptotically as

DBPτ2,σ2(H|y) # 1− Φ
[
β0τ

−1 − β1τ − β2τ
3 − β3τσ

2
]
. (29)

Let D̃BPτ2,σ2(H|y) denote the double bootstrap probability computed by replacing the

projection µ̂(H|y) in (4) by µ̃ = (θ,−h(θ)) ∈ ∂H for some θ ∈ Rq. Then,

D̃BPτ2,σ2(H|y) # 1− Φ
[
β0τ

−1 − β1τ − β2τ
3 − β3τσ

2 − τ−1(τ 2 + σ2)∆̃(θ)
]
, (30)

where ∆̃(θ) = (3hmmi − 6λ0hmlhmli)θi + (6hmmij − 2γ1hmihmj − 4hmlhmihlj)θiθj. In

particular, τ 2 = 1, σ2 = ±1, gives

D̃BP1,1(H|y) = DBP1,1(H|y) +O(n−1),

D̃BP1,−1(H|y) # DBP1,−1(H|y).
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2.3 Multiscale bootstrap
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∫ ∞

z
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x2

2 dx
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σ2 =
n

m

Another approach for calibrating BPσ2(H|y) is the multiscale bootstrap. The nor-

malized bootstrap probability of Shimodaira (2008) is defined by

NBPσ2(H|y) = Φ
[
σΦ−1(BPσ2(H|y))

]
(6)

for σ2 > 0. Φ(·) is the cumulative distribution function of the standard normal dis-

tribution N(0, 1), and we denote the density function as φ(·). For several σ2 values,

say, σ2
1, . . . , σ

2
S, we compute BPσ2

i
(H|y), i = 1, . . . , S, and extrapolate NBPσ2(H|y)

to σ2 = −1. More specifically, we fit a model

NBPσ2(H|y) = 1− Φ(β0 + β1σ
2 + β2σ

4)

7

play important roles for the asymptotic theory. For proving the fourth-order accu-

racy, expressions of the asymptotic expansion tend to be very complicated yet the

computations are often straightforward. I devised a way of the proof by combining

techniques of Shimodaira (2004) and Shimodaira (2008) so that the proof becomes

simpler.

1 Introduction
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Y +
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1 , . . . , x∗∗

m}

Y ∗∗

σ2 = n/m

B̂Pσ2

ÂUσ2 = Φ(σΦ−1(B̂Pσ2))

k-th order accurate

bias reduces as O(n−k/2) as n goes larger

B̂P1
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with parameters (β0, β1, β2) to the observed values of NBPσ2
i
(H|y), i = 1, . . . , S, and

compute NBP−1(H|y) using the estimated parameters.

2.4 Multiscale-double bootstrap

Both DBP1,1(H|y) and NBP−1(H|y) are much better then BP1(H|y) for approxi-

mating an unbiased p-value. However, it is possible to improve them further. We

propose applying the double-bootstrap calibration to the multiscale bootstrap. We

call this procedure as multiscale-double bootstrap. For τ 2 = 1, we fit a model

DBPσ2,1(H|y) = 1− Φ(β′
0 + β′

1σ
2)
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Lemma 5 (Additivity of the contour surfaces). For h, s ∈ S, we say h and s are

equivalent, denoted as h
.
= s, if h0 = s0, hij = sij, hijk = sijk, and hijkl = sijkl by

ignoring hi and si. We formally extend the operator Lσ2(h,λ0) for σ2 ≤ 0 via (24).

Then, for λ0, ξ0, σ2, τ 2 ∈ R,

Lτ2(Lσ2(h,λ0), ξ0)
.
= Lσ2+τ2(h,λ0 + ξ0). (26)

The identity operator is L0(h, 0)
.
= h, and the inverse operator is L−σ2(s,−λ0)

.
= h

for Lσ2(h,λ0)
.
= s.

5.2 Higer-order terms of unbiased p-values

Theorem 3 (Fourth-order accurate p-value). For the H and y = (0,λ0−h0) given in

Theorem 1, an approximately unbiased p-value of fourth-order accuracy is expressed

asymptotically as

PV(H|y) $ 1− Φ
[
λ0 − γ1 + λ0γ2 + 3γ4 − γ1γ2 − 4

3(2 + λ2
0)γ3

]
(27)

= 1− Φ
[
β0 − β1 − β2 + β3

]
(28)

PV(H|y) $ 1− Φ
[
β0 − β1 − β2 + β3

]

Φ̄−1
[
DBP1,σ2(H|y)

]
$ (β0 − β1 − β2)− β3σ

2

µ ∈ ∂H

µ = (θ,−h(θ)) ∈ ∂H

20

θ = 0.0, 0.5, 1.0, . . . , 3.0

DBP = PV +O(n−3/2)

DAU = PV +O(n−2)

5.3 Higher order terms of double bootstrap probabilities

µ̂(H|y) = (0,−h(0)) ∈ ∂H

∆̃(θ) = (3hmmi − 6λ0hmlhmli)θi + (6hmmij − 2γ1hmihmj − 4hmlhmihlj)θiθj = O(n−1)

Theorem 4 (Asymptotic expansion of double bootstrap probabilities). For the H

and y = (0,λ0−h0) given in Theorem 1, the double bootstrap probability is expressed

asymptotically as

DBPτ2,σ2(H|y) # 1− Φ
[
β0τ

−1 − β1τ − β2τ
3 − β3τσ

2
]
. (29)

Let D̃BPτ2,σ2(H|y) denote the double bootstrap probability computed by replacing the

projection µ̂(H|y) in (4) by µ̃ = (θ,−h(θ)) ∈ ∂H for some θ ∈ Rq. Then,

D̃BPτ2,σ2(H|y) # 1− Φ
[
β0τ

−1 − β1τ − β2τ
3 − β3τσ

2 − τ−1(τ 2 + σ2)∆̃(θ)
]
, (30)

where ∆̃(θ) = (3hmmi − 6λ0hmlhmli)θi + (6hmmij − 2γ1hmihmj − 4hmlhmihlj)θiθj. In

particular, τ 2 = 1, σ2 = ±1, gives

D̃BP1,1(H|y) = DBP1,1(H|y) +O(n−1),

D̃BP1,−1(H|y) # DBP1,−1(H|y).
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x̄ = (x1 + · · ·+ xn)/n itself. As a result, the size of H is also scaled by
√
n.

Efron and Tibshirani (1998) considered the local coordinates (u, v) ∈ Rq+1 with

u = (u1, . . . , uq) ∈ Rq, v ∈ R for representing H in a neighbourhood of (0, 0) ∈ Rq+1.

Definition 1 (Region and boundary surface). For a continuous function h(u) of

u ∈ Rq, the region

H =
{
(u, v) | v ≤ −h(u), u ∈ Rq

}
(8)

is denoted as R(h). The boundary surface

∂H =
{
(u, v) | v = −h(u), u ∈ Rq

}

is denoted as B(h).

By taking the origin at a point on ∂H and rotating the axes properly, u1, . . . , uq

are orthgonal coordinates of the tangent space and v is the coordinate of the direction

normal to the tangent space. The smooth function h(u) is then represented in the

Taylor series as

h(u) =
q∑

i=1

q∑

j=1

hijuiuj +
q∑

i=1

q∑

j=1

q∑

k=1

hijkuiujuk + · · · , (9)

where the derivatives are denoted as

hij =
1

2

∂2h(u)

∂ui∂uj

∣∣∣
0
, hijk =

1

6

∂3h(u)

∂ui∂uj∂uk

∣∣∣
0
.

As n becomes larger, the coefficients approach zero asymptoticlly as hij = O(n−1/2)

and hijk = O(n−1). The k-th order derivatives are O(n−(k−1)/2) for k ≥ 1, because

the coordinates u1, . . . , uq as well as h(u) are scaled by the factor
√
n.
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More generally, we allow h belongs to class S defined below so that the origin

may not be on ∂H, and the axes u1, . . . , uq are slightly rotated from the tangent

space.

Definition 2 (Class S). Let h(u) be a smooth function of u ∈ Rq. The function h

is said to be class S if it is expressed asymptotically as

h(u) " h0 + hiui + hijuiuj + hijkuiujuk + hijkluiujukul, (10)

where the coefficients are h0 = O(1), hi = O(n−1), hij = O(n−1/2), hijk = O(n−1),

hijkl = O(n−3/2). Here " denotes the equality correct up to O(n−3/2) erring O(n−2).

The summation convention such as hijuiuj =
∑q

i=1

∑q
j=1 hijuiuj are used, where the

free indeces i, j, k, l run through 1, . . . , q if appeared twice in a formula.

We take care of terms up to O(n−3/2) ignoring O(n−2)

3.2 Asymptotic expansion of the bootstrap probability

Efron and Tibshirani (1998) showed the asymptotic expansion of BP1(H|y) up to

O(n−1) terms for h specified in (9). We generalize their eq. (2.19) to include O(n−3/2)

terms for h specified in (10).

Theorem 1 (Bootstrap probability for scale 1). Consider the region H = R(h) for

h ∈ S. Define four quantities γ1 = hii = O(n−1/2), γ2 = hijhij = O(n−1), γ3 =

hijhjkhki = O(n−3/2), γ4 = hiijj = O(n−3/2). Observing y in the (u, v) coordinates

as y = (0,λ0 − h0) with λ0 ∈ R, the bootstrap probability for σ = 1 is expressed
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More generally, we allow h belongs to class S defined below so that the origin

may not be on ∂H, and the axes u1, . . . , uq are slightly rotated from the tangent

space.
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asymptotically as
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3(1− λ2
0)γ3

]
(11)

= 1− Φ(β0 + β1 + β2), (12)

where β0 = λ0 = O(1), β1 = γ1 − λ0γ2 +
4
3λ

2
0γ3 = O(n−1/2), β2 = 3γ4 − γ1γ2 − 4

3γ3 =

O(n−3/2). We also define β3 = 6γ4 − 2γ1γ2 − 4γ3 = O(n−3/2) to be used later.
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Note that the first derivatives hi = O(n−1) do not appear in (11), implying that

we can ignore the slight rotation of u1, . . . , uq axes from the tangent space. The four

quantities γ1, . . . , γ4 represent geometric properties of ∂H at (0, 0) as mentioned

later in Section 4.2.
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O(n−1) terms. Here we include O(n−3/2) terms to it.

Theorem 2 (Bootstrap probability for scale σ). For the H and y = (0,λ0 − h0)

given in Theorem 1, the bootstrap probability for σ2 > 0 is expressed asymptotically

as

BPσ2(H|y) " 1− Φ
[
β0σ

−1 + β1σ + β2σ
3
]
. (13)

Corollary 1 (Asymptotic expansion of multiscale bootstrap). Using β0, β1, β2

defined in Theorem 1, the normalized bootstrap probability is expressed as

NBPσ2(H|y) " 1− Φ
[
β0 + β1σ

2 + β2σ
4
]
. (14)

In particular, the extrapolation to σ2 = −1 gives

NBP−1(H|y) " 1− Φ
[
β0 − β1 + β2

]
.

4 Geometry of smooth surfaces

In this section, we discuss only geometry of smooth surfaces without any probability

argument. The results will be used in later sections for deriving asymptotic accuracy

of the bootstrap methods. We work on the region H = R(h) and boundary surface

∂H = B(h) for h ∈ S expressed in the (u, v) coordiantes. We will consider local

coordinates at a point (u,−h(u)) on ∂H. In section 4.1, ∂H is expressed in the local

coordinates. In section 4.2, the four quantities γi, i = 1, . . . , 4, which are defined in

Theorem 1 for representing geometric properties of ∂H at (0, 0), will be redefined

at (u,−h(u)). In section 4.3, the signed distance between two surfaces is discussed.
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Theorem 6 (Rejection probability of double bootstrap probabilities). For the

H given in Theorem 1, and µ = (0,−h0) ∈ ∂H, the rejection probability of

DBP1,σ2(H|Y ) is

P
(
DBP1,σ2(H|Y ) < α

)
# Φ

[
zα − (1 + σ2)β3

]
. (32)

6 Discussion

γ1 =
1

2

∂2h(u)

∂ui∂ui

∣∣∣
0

β3 =
1

2

∂2γ1(h, u)

∂ui∂ui

∣∣∣
0

A Appendix

The following lemma is used in the proof of Theorem 1 below.

Lemma 6 (Moments of normal random variables). Let δij denote the Kronecker

delta, and indeces i, j, . . . ∈ {1, . . . , q}. Consider the multivariate normal distibution

(U1, . . . , Uq) ∼ Nq(0, Iq). Then the first three even-order moments are

E(UiUj) = δij, E(UiUjUkUl) = δijδkl + δikδjl + δilδjk,

E(UiUjUkUlUmUn) = δijδklδmn + δikδjlδmn + · · ·+ δinδjkδlm︸ ︷︷ ︸
15 terms of partitioning {i,j,k,l,m,n} into 3 pairs

.

For k = 1, 2, . . ., the expectation of the product of 2k variables E(Ui1 · · ·Ui2k) is the

sum of (2k)!/(2kk!) terms of partitioning {i1, . . . , i2k} into k pairs, where each term

is the product of k Kronecker deltas corresponding to the k pairs. On the other hand,
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Proof of Theorem 2. We rescale Y ∗ and H by multiplying σ−1. Y ∗ is replaced by

Y ∗/σ, and H is replaced by H/σ = {y/σ : y ∈ H}. Then (2) becomes Y ∗/σ ∼

Nq+1(y/σ, Iq+1). Since Y ∗ ∈ H is equivalent to Y ∗/σ ∈ H/σ, we have

BPσ2(H|y) = BP1(H/σ|y/σ).

In the (u, v) coordinates, replacement y → y/σ is expressed as λ0 → λ0/σ. H →

H/σ is expressed as h0 → h0/σ, hi → hi, hij → σhij, hijk → σ2hijk, hijkl → σ3hijkl,

and then γ1 → σγ1, γ2 → σ2γ2, γ3 → σ3γ3, γ4 → σ3γ4. By applying these repace-

ments to (11), we get (13).

Proof of Lemma 1. A point on ∂H is expressed as (u+∆ũ,−h(u+∆ũ)) in the (u, v)

coordinates for some ∆ũ = (∆ũ1, . . .∆ũq) ∈ Rq. For representing this point in the

(∆u,∆v) coordinates, we substitute ∆v = −h̃(∆u) in (15) to get

(u+∆ũ,−h(u+∆ũ)) = (u,−h(u)) +∆uibi − h̃(∆u)‖f‖−1f.

By looking at each element of the vector, we have

∆ũi = ∆ui − h̃(∆u)‖f‖−1 ∂h

∂ui
, i = 1, . . . , q, (37)

h(u+∆ũ) = h(u) +∆ui
∂h

∂ui
+ h̃(∆u)‖f‖−1. (38)

We are going to solve these equations by eliminating ∆ũ from (37) and (38). First

note that h̃(∆u) = O(n−1/2), ‖f‖ = O(1), ∂h/∂ui = O(n−1/2). It follows from (37)

that ∆ũi−∆ui = O(n−1), and the Taylor expansion of h(u+∆ũ) around u+∆u is

h(u+∆ũ) & h(u+∆u)− ∂h

∂ui

∣∣∣
u+∆u

h̃(∆u)‖f‖−1 ∂h

∂ui
.
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2.3 Multiscale bootstrap

Φ̄(z) = Φ(−z) =

∫ ∞

z

1√
2π

e−
x2

2 dx

BZ(σ2) = −σΦ−1
[
BPσ2(H|y)

]

DBZ(σ2) = −Φ−1
[
DBPσ2,1(H|y)

]

f(σ2) = σΦ̄−1
[
BPσ2(H|y)

]

σΦ̄−1
[
BPσ2(H|y)

]
# β0 + β1σ

2 + β2σ
4

g(σ2) = Φ̄−1
[
DBPσ2,1(H|y)

]

σ2

AU = Φ(−BZ(−1))

DAU = Φ(−DBZ(−1))

AU = Φ̄(f(−1))

DAU = Φ̄(g(−1))

σ2 =
n

m

m = −n

Another approach for calibrating BPσ2(H|y) is the multiscale bootstrap. The nor-

malized bootstrap probability of Shimodaira (2008) is defined by
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5.2 Higer-order terms of unbiased p-values

Theorem 3 (Fourth-order accurate p-value). For the H and y = (0,λ0−h0) given in

Theorem 1, an approximately unbiased p-value of fourth-order accuracy is expressed

asymptotically as

PV(H|y) " 1− Φ
[
λ0 − γ1 + λ0γ2 + 3γ4 − γ1γ2 − 4

3(2 + λ2
0)γ3

]
(27)

= 1− Φ
[
β0 − β1 − β2 + β3

]
(28)

PV(H|y) " 1− Φ
[
β0 − β1 − β2 + β3

]

5.3 Higher order terms of double bootstrap probabilities

Theorem 4 (Asymptotic expansion of double bootstrap probabilities). For the H

and y = (0,λ0−h0) given in Theorem 1, the double bootstrap probability is expressed

asymptotically as

DBPτ2,σ2(H|y) " 1− Φ
[
β0τ

−1 − β1τ − β2τ
3 − β3τσ

2
]
. (29)

Let D̃BPτ2,σ2(H|y) denote the double bootstrap probability computed by replacing the

projection µ̂(H|y) in (4) by µ̃ = (θ,−h(θ)) ∈ ∂H for some θ ∈ Rq. Then,

D̃BPτ2,σ2(H|y) " 1− Φ
[
β0τ

−1 − β1τ − β2τ
3 − β3τσ

2 − τ−1(τ 2 + σ2)∆̃(θ)
]
, (30)

where ∆̃(θ) = (3hmmi − 6λ0hmlhmli)θi + (6hmmij − 2γ1hmihmj − 4hmlhmihlj)θiθj. In

particular, τ 2 = 1, σ2 = ±1, gives

D̃BP1,1(H|y) = DBP1,1(H|y) +O(n−1),

19

2.5 Approximately unbiased tests

For evaluating the approximate p-values defined in the previous sections, we look at

the bias of testing. Let PV(H|y) denote an approximate p-value for testing H given

y. We may reject H if PV(H|y) < α with a significance level 0 < α < 1. If µ is

on the boundary surface of H, the rejection probability of an unbiased test should

be equal to α. An approximately unbiased test as well as its approximate p-value is

said to be k-th order accurate asymptotically if it is correct up to O(n−(k−1)/2) with

bias of order O(n−k/2). That is,

P
[
PV(H|Y ) < α | µ

]
= α +O(n−k/2), µ ∈ ∂H, (7)

where the probability is calculated by (1). It has been known in the literature

that BP1(H|y) is first order accurate, and DBP1,1(H|y) and NBP−1(H|y) are third-

order accurate. Our new multiscale-double bootstrap has higher-order accuracy

than these existing methods, and in fact DBP−1,1(H|y) is fourth order accurate. In

later sections, we will derive the asymptotic accuracy of all these methods.

3 Higer-order terms of bootstrap probability

3.1 Asymptotic theory

Although we have a single observation y, we work on the asymptotic theory with

respect to the sample size n. We assume that there is a non-parametric transfor-

mation from the i.i.d. observation {x1, . . . , xn} to y. For example, y may be the

maximum likelihood estimate of parameters of interest so that the normality holds
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for σ2 > 0. Φ(·) is the cumulative distribution function of the standard normal dis-

tribution N(0, 1), and we denote the density function as φ(·). For several σ2 values,
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Another approach for calibrating BPσ2(H|y) is the multiscale bootstrap. The nor-

malized bootstrap probability of Shimodaira (2008) is defined by

NBPσ2(H|y) = Φ
[
σΦ−1(BPσ2(H|y))

]
(6)

for σ2 > 0. Φ(·) is the cumulative distribution function of the standard normal dis-

tribution N(0, 1), and we denote the density function as φ(·). For several σ2 values,

say, σ2
1, . . . , σ

2
S, we compute BPσ2

i
(H|y), i = 1, . . . , S, and extrapolate NBPσ2(H|y)

to σ2 = −1. More specifically, we fit a model

NBPσ2(H|y) = 1− Φ(β0 + β1σ
2 + β2σ

4)
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D̃BP1,−1(H|y) ! DBP1,−1(H|y).

5.4 Asymptotic accuracy of bootstrap methods

The probability is calculated by (1), and zα = Φ−1(α), 0 < α < 1.

Theorem 5 (Rejection probability of bootstrap probabilities). For the H given in

Theorem 1, and µ = (0,−h0) ∈ ∂H, the rejection probability of NBPσ2(H|Y ) is

P
(
NBPσ2(H|Y ) < α

)
! Φ

[
zα + (1 + σ2)

{
γ1 + zαγ2 +

4
3z

2
αγ3 − γ1γ2

}

+ (1 + σ2)2
{
3γ4 − 4

3γ3
}
− σ2 4

3γ3
]
. (31)

In particular, σ2 = ±1 gives

P
(
BP1(H|Y ) < α

)
= Φ(zα + 2γ1) +O(n−1) = α +O(n−1/2),

P
(
NBP−1(H|Y ) < α

)
! Φ(zα + 4

3γ3) = α +O(n−3/2).

P
(
BP(H|Y ) < α

)
= Φ(zα + 2γ1) +O(n−1) = α +O(n−1/2)

P
(
AU(H|Y ) < α

)
! Φ(zα + 4

3γ3) = α +O(n−3/2).

Theorem 6 (Rejection probability of double bootstrap probabilities). For the

H given in Theorem 1, and µ = (0,−h0) ∈ ∂H, the rejection probability of

DBP1,σ2(H|Y ) is

P
(
DBP1,σ2(H|Y ) < α

)
! Φ

[
zα − (1 + σ2)β3

]
. (32)
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P
(
DBP1,σ2(H|Y ) < α

)
! Φ

[
zα − (1 + σ2)β3

]
. (32)

21

AU	
  is	
  third-­‐order	
  accurate	
  (k=3)	


BP	
  is	
  first-­‐order	
  accurate	
  (k=1)	


P
(
DAU(H|Y ) < α

)
! Φ(zα) = α

P
(
DBP(H|Y ) < α

)
! Φ(zα − 2β3) = α +O(n−3/2)
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A Appendix

The following lemma is used in the proof of Theorem 1 below.

Lemma 6 (Moments of normal random variables). Let δij denote the Kronecker

delta, and indeces i, j, . . . ∈ {1, . . . , q}. Consider the multivariate normal distibution
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Another approach for calibrating BPσ2(H|y) is the multiscale bootstrap. The nor-

malized bootstrap probability of Shimodaira (2008) is defined by
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[
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for σ2 > 0. Φ(·) is the cumulative distribution function of the standard normal dis-

tribution N(0, 1), and we denote the density function as φ(·). For several σ2 values,
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5 Asymptotic accuracy of bootstrap methods

5.1 Contour surfaces of bootstrap probability

s = Lσ2(h, a)

h = L−σ2(s,−a)

BPσ2(H|y) = constant for any y ∈ B(s)

Lσ2
2
(Lσ2

1
(H, a1), a2)

.
= Lσ2

1+σ2
2
(H, a1 + a2)

h = L0(h, 0)

s = L−1(h,λ0)

h = L1(s,−λ0)

B(s) = {(u, v) : v = −s(u)}

PV(H|y) = constant for any y ∈ B(s)

R(s)

BP1(R(s)|µ) = constant for any µ ∈ B(h)

Lemma 4 (Contour surfaces of bootstrap probability). For h ∈ S, 0 < α < 1, and

σ2 > 0, we consider a function s(u) of u ∈ Rq satisfying

BPσ2(R(h)|(u,−s(u))) = 1− α, u ∈ Rq. (23)

Then, B(s), as well as s itself, will be called as a contour surface of the bootstrap

probability of R(h) with squared scale σ2 at level 1− α. In particular, we choose α
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5.2 Higer-order terms of unbiased p-values

Theorem 3 (Fourth-order accurate p-value). For the H and y = (0,λ0−h0) given in

Theorem 1, an approximately unbiased p-value of fourth-order accuracy is expressed

asymptotically as

PV(H|y) " 1− Φ
[
λ0 − γ1 + λ0γ2 + 3γ4 − γ1γ2 − 4

3(2 + λ2
0)γ3

]
(27)

= 1− Φ
[
β0 − β1 − β2 + β3

]
(28)

PV(H|y) " 1− Φ
[
β0 − β1 − β2 + β3

]

5.3 Higher order terms of double bootstrap probabilities

Theorem 4 (Asymptotic expansion of double bootstrap probabilities). For the H

and y = (0,λ0−h0) given in Theorem 1, the double bootstrap probability is expressed

asymptotically as

DBPτ2,σ2(H|y) " 1− Φ
[
β0τ

−1 − β1τ − β2τ
3 − β3τσ

2
]
. (29)

Let D̃BPτ2,σ2(H|y) denote the double bootstrap probability computed by replacing the

projection µ̂(H|y) in (4) by µ̃ = (θ,−h(θ)) ∈ ∂H for some θ ∈ Rq. Then,

D̃BPτ2,σ2(H|y) " 1− Φ
[
β0τ

−1 − β1τ − β2τ
3 − β3τσ

2 − τ−1(τ 2 + σ2)∆̃(θ)
]
, (30)

where ∆̃(θ) = (3hmmi − 6λ0hmlhmli)θi + (6hmmij − 2γ1hmihmj − 4hmlhmihlj)θiθj. In

particular, τ 2 = 1, σ2 = ±1, gives

D̃BP1,1(H|y) = DBP1,1(H|y) +O(n−1),
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where 0 < α < 1 is defined so that λ0 − h0 = −s0, meaning y ∈ B(s). Then, (7)

with k = 4 is expressed as

BP1(R(s)|(θ,−h(θ))) # 1− α, θ ∈ Rq.

Therefore, B(h) is interpreted as a contour surface of the bootstrap proability; h
.
=

L1(s,−λ0). According to Lemma 5, the inverse operator is written as s
.
= L−1(h,λ0).

Letting σ2 = −1 in (25), we have γ1(s, 0) # γ1−2λ0γ2+4λ2
0γ3− (6γ4−2γ1γ2−4γ3),

γ2(s, 0) # γ2 − 4λ0γ3, γ3(s, 0) # γ3, γ4(s, 0) # γ4. Applying Theorem 1 to

α # 1− BP1(R(s)|(0,−h0)),

we get 1−α by substituting s for h and −h0 for λ0−h0 into (11). More specifically,

we substitute −λ0 for λ0, γi(s, 0) for γi. Then we obtain (27) as α.

Proof of Theorem 4. Let s = Lσ2(h,λ0). Then,

D̃BPτ2,σ2(H|y) = 1− BPτ2(R(s)|µ̃).

We first compute D̃BPτ2,σ2(H|y) with µ̃ = (0,−h0) for θ = 0. Applying Theorem 2

to BPτ2(R(s)|µ̃), we get

D̃BPτ2,σ2(H|y) # Φ
[
β′
0τ

−1 + β′
1τ + β′

2τ
3
]
,

where β′
0, β

′
1, β

′
2 are defined by replacing γi by γi(s, 0) of (25) and λ0 by −λ0, repec-

tively, in β0, β1, β2 of Theorem 1. By substituting β′
0 = −λ0, β′

1 = γ1(s, 0) +

λ0γ2(s, 0) +
4
3λ

2
0γ3, β

′
2 = 3γ4 − γ1γ2 − 4

3γ3 into it, we have, for µ̃ = (0,−h0),

D̃BPτ2,σ2(H|y) # 1− Φ
[
β0τ

−1 − β1τ − β2τ
3 − β3τσ

2
]
. (46)
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Rejec2on	
  probabili2es	
  of	
  DBP	
  and	
  DAU	


DAU	
  is	
  fourth-­‐order	
  accurate	
  (k=4)	


DBP	
  is	
  third-­‐order	
  accurate	
  (k=3)	


Theorem 6 (Rejection probability of double bootstrap probabilities). For the

H given in Theorem 1, and µ = (0,−h0) ∈ ∂H, the rejection probability of

DBP1,σ2(H|Y ) is

P
(
DBP1,σ2(H|Y ) < α

)
# Φ

[
zα − (1 + σ2)β3

]
. (32)
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A Appendix

The following lemma is used in the proof of Theorem 1 below.

Lemma 6 (Moments of normal random variables). Let δij denote the Kronecker

delta, and indeces i, j, . . . ∈ {1, . . . , q}. Consider the multivariate normal distibution

(U1, . . . , Uq) ∼ Nq(0, Iq). Then the first three even-order moments are

E(UiUj) = δij, E(UiUjUkUl) = δijδkl + δikδjl + δilδjk,

E(UiUjUkUlUmUn) = δijδklδmn + δikδjlδmn + · · ·+ δinδjkδlm︸ ︷︷ ︸
15 terms of partitioning {i,j,k,l,m,n} into 3 pairs

.

For k = 1, 2, . . ., the expectation of the product of 2k variables E(Ui1 · · ·Ui2k) is the

sum of (2k)!/(2kk!) terms of partitioning {i1, . . . , i2k} into k pairs, where each term

is the product of k Kronecker deltas corresponding to the k pairs. On the other hand,

22
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)
! Φ(zα) = α
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)
! Φ(zα − 2β3) = α +O(n−3/2)
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H given in Theorem 1, and µ = (0,−h0) ∈ ∂H, the rejection probability of

DBP1,σ2(H|Y ) is

P
(
DBP1,σ2(H|Y ) < α

)
! Φ

[
zα − (1 + σ2)β3

]
. (32)
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A Appendix

The following lemma is used in the proof of Theorem 1 below.

Lemma 6 (Moments of normal random variables). Let δij denote the Kronecker

delta, and indeces i, j, . . . ∈ {1, . . . , q}. Consider the multivariate normal distibution

(U1, . . . , Uq) ∼ Nq(0, Iq). Then the first three even-order moments are

E(UiUj) = δij, E(UiUjUkUl) = δijδkl + δikδjl + δilδjk,

E(UiUjUkUlUmUn) = δijδklδmn + δikδjlδmn + · · ·+ δinδjkδlm︸ ︷︷ ︸
15 terms of partitioning {i,j,k,l,m,n} into 3 pairs

.
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For k = 1, 2, . . ., the expectation of the product of 2k variables E(Ui1 · · ·Ui2k) is the

sum of (2k)!/(2kk!) terms of partitioning {i1, . . . , i2k} into k pairs, where each term

is the product of k Kronecker deltas corresponding to the k pairs. On the other hand,
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Robustness	
  to	
  projec2on	
  error	


Let D̃BPτ2,σ2(H|y) denote the double bootstrap probability computed by replacing the

projection µ̂(H|y) in (4) by µ̃ = (θ,−h(θ)) ∈ ∂H for some θ ∈ Rq. Then,

D̃BPτ2,σ2(H|y) # 1− Φ
[
β0τ

−1 − β1τ − β2τ
3 − β3τσ

2 − τ−1(τ 2 + σ2)∆̃(θ)
]
, (30)

where ∆̃(θ) = (3hmmi − 6λ0hmlhmli)θi + (6hmmij − 2γ1hmihmj − 4hmlhmihlj)θiθj. In

particular, τ 2 = 1, σ2 = ±1, gives

D̃BP1,1(H|y) = DBP1,1(H|y) +O(n−1),

D̃BP1,−1(H|y) # DBP1,−1(H|y).

5.4 Asymptotic accuracy of bootstrap methods

The probability is calculated by (1), and zα = Φ−1(α), 0 < α < 1.

Theorem 5 (Rejection probability of bootstrap probabilities). For the H given in

Theorem 1, and µ = (0,−h0) ∈ ∂H, the rejection probability of NBPσ2(H|Y ) is

P
(
NBPσ2(H|Y ) < α

)
# Φ

[
zα + (1 + σ2)

{
γ1 + zαγ2 +

4
3z

2
αγ3 − γ1γ2

}

+ (1 + σ2)2
{
3γ4 − 4

3γ3
}
− σ2 4

3γ3
]
. (31)

In particular, σ2 = ±1 gives

P
(
BP1(H|Y ) < α

)
= Φ(zα + 2γ1) +O(n−1) = α +O(n−1/2),

P
(
NBP−1(H|Y ) < α

)
# Φ(zα + 4

3γ3) = α +O(n−3/2).

P
(
BP(H|Y ) < α

)
= Φ(zα + 2γ1) +O(n−1) = α +O(n−1/2)
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5.2 Higer-order terms of unbiased p-values

Theorem 3 (Fourth-order accurate p-value). For the H and y = (0,λ0−h0) given in

Theorem 1, an approximately unbiased p-value of fourth-order accuracy is expressed

asymptotically as

PV(H|y) " 1− Φ
[
λ0 − γ1 + λ0γ2 + 3γ4 − γ1γ2 − 4

3(2 + λ2
0)γ3

]
(27)

= 1− Φ
[
β0 − β1 − β2 + β3

]
(28)

PV(H|y) " 1− Φ
[
β0 − β1 − β2 + β3

]

Φ̄−1
[
DBP1,σ2(H|y)

]
" (β0 − β1 − β2)− β3σ

2

µ ∈ ∂H

DBP = PV +O(n−3/2)

DAU = PV +O(n−2)

5.3 Higher order terms of double bootstrap probabilities

µ̂(H|y) = (0,−h(0)) ∈ ∂H

∆̃(θ) = (3hmmi − 6λ0hmlhmli)θi + (6hmmij − 2γ1hmihmj − 4hmlhmihlj)θiθj

Theorem 4 (Asymptotic expansion of double bootstrap probabilities). For the H

and y = (0,λ0−h0) given in Theorem 1, the double bootstrap probability is expressed

20

asymptotically as

DBPτ2,σ2(H|y) ! 1− Φ
[
β0τ

−1 − β1τ − β2τ
3 − β3τσ

2
]
. (29)
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P
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3z
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αγ3 − γ1γ2

}

+ (1 + σ2)2
{
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− σ2 4

3γ3
]
. (31)

In particular, σ2 = ±1 gives

P
(
BP1(H|Y ) < α

)
= Φ(zα + 2γ1) +O(n−1) = α +O(n−1/2),

P
(
NBP−1(H|Y ) < α

)
! Φ(zα + 4

3γ3) = α +O(n−3/2).
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P
(
NBPσ2(H|Y ) < α
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! Φ

[
zα + (1 + σ2)
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γ1 + zαγ2 +

4
3z
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αγ3 − γ1γ2

}

+ (1 + σ2)2
{
3γ4 − 4

3γ3
}
− σ2 4

3γ3
]
. (31)
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Corollary:	
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y µ̂(H|y) µ̃

5.4 Asymptotic accuracy of bootstrap methods
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Theorem 5 (Rejection probability of bootstrap probabilities). For the H given in
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P
(
NBPσ2(H|Y ) < α
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! Φ
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{
γ1 + zαγ2 +

4
3z

2
αγ3 − γ1γ2

}

+ (1 + σ2)2
{
3γ4 − 4

3γ3
}
− σ2 4

3γ3
]
. (31)
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Asympto2c	
  Theories	
  of	
  
approaching	
  flat	
  surfaces	
  

Tradi&onal:	
   (sample	
  size)	
  
v=yq+1	
  

u=(y1,...,yq)	
  

Higher	
  order	
  deriva2ves	
  disappear	
  faster	
  

New	
  proposal	
  (Nearly	
  Flat	
  Surface):	
   (an	
  ar2ficial	
  order	
  parameter)	
  

v=yq+1	
  

u=(y1,...,yq)	
  

This	
  is	
  interpreted	
  as	
  

All	
  order	
  deriva2ves	
  disappear	
  at	
  the	
  same	
  rate	
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Nearly	
  Flat	
  Surfaces	
  (Shimodaira	
  2008)	
  

1.	
  

2.	
  

3.	
  

Three	
  condi2ons	
  

Fourier	
  transform:	
  

(i.e.,	
  approaches	
  a	
  flat	
  surface)	
  

for	
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Expecta2on	
  Operator	
  
(Gaussian	
  Smoothing)	
  

low-­‐pass	
  filter	
  
smoothing	
  filter	
  

Fourier	
  Transforms	
  Surfaces	
  



Bridging	
  Bayesian	
  to	
  Frequen2st	
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Shown	
  for	
  smooth	
  “nearly	
  flat	
  surfaces”	
  	
  in	
  Shimodaira	
  (2008)	


2.3 Multiscale bootstrap

Φ̄(z) = Φ(−z) =

∫ ∞

z

1√
2π

e−
x2

2 dx

Φ̄(z) = 1− Φ(z) =

∫ ∞

z

1√
2π

e−
x2

2 dx

BZ(σ2) = −σΦ−1
[
BPσ2(H|y)

]

DBZ(σ2) = −Φ−1
[
DBPσ2,1(H|y)

]

f(σ2) = σΦ̄−1
[
BPσ2(H|y)

]

σΦ̄−1
[
BPσ2(H|y)

]
# β0 + β1σ

2 + β2σ
4

σΦ̄−1
[
BPσ2(H|y)

]
= β0 + β1σ

2 + β2σ
4 + β3σ

6 + · · ·

Φ̄−1
[
PV(H|y)

]
= β0 − β1 + β2 − β3 + · · ·

g(σ2) = Φ̄−1
[
DBPσ2,1(H|y)

]

σ2

AU = Φ(−BZ(−1))

DAU = Φ(−DBZ(−1))

AU = Φ̄(f(−1))

DAU = Φ̄(g(−1))

σ2 =
n

m

m = −n

BP = PV +O(n−1/2)
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7

2.3 Multiscale bootstrap

Φ̄(z) = Φ(−z) =

∫ ∞

z

1√
2π

e−
x2

2 dx

Φ̄(z) = 1− Φ(z) =

∫ ∞

z

1√
2π

e−
x2

2 dx

BZ(σ2) = −σΦ−1
[
BPσ2(H|y)

]

DBZ(σ2) = −Φ−1
[
DBPσ2,1(H|y)

]

f(σ2) = σΦ̄−1
[
BPσ2(H|y)

]

σΦ̄−1
[
BPσ2(H|y)

]
# β0 + β1σ

2 + β2σ
4

σΦ̄−1
[
BPσ2(H|y)

]
= β0 + β1σ

2 + β2σ
4 + β3σ

6 + · · ·

Φ̄−1
[
PV(H|y)

]
= β0 − β1 + β2 − β3 + · · ·

g(σ2) = Φ̄−1
[
DBPσ2,1(H|y)

]

σ2 = −1

AU = Φ(−BZ(−1))

DAU = Φ(−DBZ(−1))

AU = Φ̄(f(−1))

DAU = Φ̄(g(−1))

σ2 =
n

m

m = −n

BP = PV +O(n−1/2)

7

gives	
  unbiased	
  p-­‐value	


P
(
NBP−1(H|Y ) < α

)
! Φ(zα + 4

3γ3) = α +O(n−3/2).

P
(
BP(H|Y ) < α

)
= Φ(zα + 2γ1) +O(n−1) = α +O(n−1/2)

P
(
DAU(H|Y ) < α

)
! Φ(zα) = α

P
(
DBP(H|Y ) < α

)
! Φ(zα − 2β3) = α +O(n−3/2)

Theorem 6 (Rejection probability of double bootstrap probabilities). For the

H given in Theorem 1, and µ = (0,−h0) ∈ ∂H, the rejection probability of

DBP1,σ2(H|Y ) is

P
(
DBP1,σ2(H|Y ) < α

)
! Φ

[
zα − (1 + σ2)β3

]
. (32)

6 Discussion

D =

(
∂2h(u)

∂ui∂uj

∣∣∣
0
: i, j = 1, . . . , q

)

γ1 =
1
2 tr(D)

γ3 =
1
8 tr(D

3)

γ1 = hii =
1
2 tr(D)

γ3 = hijhjkhki =
1
8 tr(D

3)

σ2 = 1

γ1 =
1

2

∂2h(u)

∂ui∂ui

∣∣∣
0

β3 =
1

2

∂2γ1(h, u)

∂ui∂ui

∣∣∣
0
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gives	
  Bayesian	
  posterior	
  probability	




Taylor	
  expansion	
  using	
  k	
  terms	
  

Taylor	
  expansion（k=1,2,3,4）	
  

f (σ 2 ) = β0 + β1σ

nBPk (σ
2 ) =Φ

(σ 2 −σ 0
2 ) j

j!
∂ j f (σ 2 )
∂(σ 2 ) j

σ0
2j=0

k−1

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Shimodaira	
  (2008)	
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AU ( 1)k knBP= −

2.3 Multiscale bootstrap

Φ̄(z) = Φ(−z) =

∫ ∞

z

1√
2π

e−
x2

2 dx

BZ(σ2) = −σΦ−1
[
BPσ2(H|y)

]

DBZ(σ2) = −Φ−1
[
DBPσ2,1(H|y)

]

f(σ2) = σΦ̄−1
[
BPσ2(H|y)

]

g(σ2) = Φ̄−1
[
DBPσ2,1(H|y)

]

σ2

AU = Φ(−BZ(−1))

DAU = Φ(−DBZ(−1))

AU = Φ̄(f(−1))

DAU = Φ̄(g(−1))

Another approach for calibrating BPσ2(H|y) is the multiscale bootstrap. The nor-

malized bootstrap probability of Shimodaira (2008) is defined by

NBPσ2(H|y) = Φ
[
σΦ−1(BPσ2(H|y))

]
(6)

for σ2 > 0. Φ(·) is the cumulative distribution function of the standard normal dis-

tribution N(0, 1), and we denote the density function as φ(·). For several σ2 values,

say, σ2
1, . . . , σ

2
S, we compute BPσ2

i
(H|y), i = 1, . . . , S, and extrapolate NBPσ2(H|y)

to σ2 = −1. More specifically, we fit a model

NBPσ2(H|y) = 1− Φ(β0 + β1σ
2 + β2σ

4)

7
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Our	
  Method	
  and	
  Generaliza2on	
  

…(*)	
  

For	
  our	
  method,	
  Jk(w)	
  is	
  defined	
  by	
  

Generaliza2on:	
  (*)	
  defines	
  a	
  new	
  p-­‐value	
  from	
  a	
  given	
  Jk(w)	
  	
  

Our	
  corrected	
  p-­‐values	
  are	
  represented	
  as:	
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Bootstrap	
  Itera2on	
  
Another	
  example	
  sa2sfying	
  condi2ons	
  (i)-­‐(iv).	
  

(S2rling	
  numbers	
  of	
  the	
  second	
  kind)	
  

Disadvantages:	
  
1.	
  computa2on	
  requires	
  O(Bk)	
  steps;	
  	
  B=10,000.	
  
2.	
  requires	
  resampling	
  from	
  “projec2on”	
  instead	
  of	
  data.	
  

For	
  bootstrap	
  itera2on,	
  Jk(w)	
  is	
  defined	
  by	
  



Summary	
  and	
  other	
  issues	

•  DAU	
  =	
  	
  “DBP	
  with	
  m=-­‐n”	
  is	
  proposed	
  	
  
•  The	
  accuracy	
  of	
  BP	
  is	
  first	
  order	
  (k=1),	
  AU	
  is	
  third-­‐order	
  (k=3),	
  DBP	
  is	
  third-­‐order	
  

(k=3)	
  
•  DAU	
  is	
  fourth-­‐order	
  accurate	
  (k=4)	
  
•  DAU	
  is	
  robust	
  to	
  the	
  projec2on	
  error	
  (surprisingly,	
  k=4)	
  
•  Geometry	
  of	
  surfaces	
  played	
  important	
  roles	
  

•  Shimodaira	
  (2008)	
  showed	
  another	
  theory	
  of	
  AU	
  using	
  unusual	
  asympto2c	
  theory	
  
of	
  “nearly	
  flat	
  surfaces”	
  

•  Shimodaira	
  (2004)	
  discussed	
  devia2on	
  from	
  the	
  mul2variate	
  normal	
  model,	
  and	
  
results	
  for	
  exponen2al	
  family	
  distribu2ons	
  are	
  given	
  there	
  for	
  mul2step-­‐AU	
  

•  Future	
  topics	
  may	
  be	
  DAU	
  for	
  nearly	
  flat	
  surfaces,	
  or	
  for	
  exponen2al	
  family	
  
distribu2ons	
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Es2ma2ng	
  the	
  skewness	
  term	
  A	


nD
1

*1
mD

1

*2
mD

1

*10000
mD

2

*1
mD

2

*2
mD

2

*10000
mD

Yes	


No	


Yes	


2 2
1 2

#{ }( , )
10000
YesBP σ σ =

2 2 2
1 2σ σ σ= +

1 2 2 1 2 1/2 2 2 4 2 1
1 2 1 2 0( ( , )) ( ( )) ( ) ( )pBP BP n A O nσ σ σ σ σ σ σ σ β σ− − − − −− Φ = − Φ + − +

2 1/2( ) ( )pBP O nσ −= +

with	


Two-­‐step	
  mul2scale	
  bootstrap	
  of	
  Shimodaira	
  (2004)	
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