
Higher-‐order	  accuracy	  of	  mul2scale	  
double-‐bootstrap	  resampling	  

	  for	  tes2ng	  regions	

Hidetoshi	  Shimodaira	  
Osaka	  University	

Bernoulli	  Society	  Satellite	  Mee2ng	  to	  the	  ISI	  World	  Sta2s2cs	  Congress	  2013	  
Asympto2c	  Sta2s2cs	  and	  Related	  Topics:	  Theories	  and	  Methodologies	  	  
Sanjo	  Conference	  Hall,	  The	  University	  of	  Tokyo	  
2-‐4	  September	  2013	  	

1	



“The	  problem	  of	  regions”	  
Efron	  and	  Tibshirani	  (1998)	

2	
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Region	  and	  a	  data-‐point	
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σ2 = τ 2 = 1

Y + ∼ N2(µ̂(H|y), I2)

DBP(H|y) = P
[
BP(H|Y +) ≤ BP(H|y) | µ̂(H|y)

]

Y + ∼ N2(µ̂, I2)

DBP = P
[
BP(H|Y +) ≤ 0.019 | µ̂

]

O(1) O(n−1/2) O(n−1) O(n−3/2) O(n−2)

Another approach for calibrating BPσ2(H|y) is the multiscale bootstrap. The nor-

malized bootstrap probability of Shimodaira (2008) is defined by

NBPσ2(H|y) = Φ
[
σΦ−1(BPσ2(H|y))

]
(6)

for σ2 > 0. Φ(·) is the cumulative distribution function of the standard normal dis-

tribution N(0, 1), and we denote the density function as φ(·). For several σ2 values,

say, σ2
1, . . . , σ

2
S, we compute BPσ2

i
(H|y), i = 1, . . . , S, and extrapolate NBPσ2(H|y)

to σ2 = −1. More specifically, we fit a model

NBPσ2(H|y) = 1− Φ(β0 + β1σ
2 + β2σ

4)
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Mul2variate	  Normal	  Model	
identity matrix Iq+1,

Y ∼ Nq+1(µ, Iq+1). (1)

Let H ⊂ Rq+1 be an arbitrary-shaped region of positive volume. Giving an observed

value y, we are interested in testing the null hypothesis µ ∈ H against the alternative

hypothesis µ $∈ H. The boundary surface ∂H of H is assumed to be smooth in this

paper.

Bootstrap procedures are utilized for computing approximate p-values. We as-

sume that we can generate bootstrap replicate Y ∗ of Y by

Y ∗ ∼ Nq+1(y, σ
2Iq+1) (2)

for any σ2 > 0. The bootstrap probability of H for a given y is defined as

BPσ2(H|y) = P (Y ∗ ∈ H|y), (3)

where P (·|y) indicates the probability with respect to (2). In practice, we may

generate B bootstrap replicates

Y ∗1, . . . , Y ∗B,

and compute the frequency

B̂Pσ2(H|y) = #{Y ∗b ∈ H, b = 1, . . . , B}
B

for estimating BPσ2(H|y). We ignore the sampling error of O(B−1/2) and use only

(3) in the theoretical argument throughout. For approximating the distribution of

Y in (1), the scale should be σ2 = 1 in (2). The ordinary bootstrap probability

BP1(H|y) is often used as an approximate p-value. However, it is biased in the

sense explained in Section 2.5, and there are several attempts to adjust the bias.

5

at least approximately. We consider the local alternatives for the asymptotic the-

ory. The transformed statistic is scaled by the factor
√
n so that the variance of

y remains constant in (1). For example, we use y =
√
n x̄ instead of the average

x̄ = (x1 + · · ·+ xn)/n itself. As a result, the size of H is also scaled by
√
n.

Efron and Tibshirani (1998) considered the local coordinates (u, v) ∈ Rq+1 with

u = (u1, . . . , uq) ∈ Rq, v ∈ R for representing H in a neighbourhood of (0, 0) ∈ Rq+1.

Definition 1 (Region and boundary surface). For a continuous function h(u) of

u ∈ Rq, the region

H =
{
(u, v) | v ≤ −h(u), u ∈ Rq

}
(8)

is denoted as R(h). The boundary surface

∂H =
{
(u, v) | v = −h(u), u ∈ Rq

}

is denoted as B(h).

By taking the origin at a point on ∂H and rotating the axes properly, u1, . . . , uq

are orthgonal coordinates of the tangent space and v is the coordinate of the direction

normal to the tangent space. The smooth function h(u) is then represented in the

Taylor series as

h(u) =
q∑

i=1

q∑

j=1

hijuiuj +
q∑

i=1

q∑

j=1

q∑

k=1

hijkuiujuk + · · · , (9)

where the derivatives are denoted as

hij =
1

2

∂2h(u)

∂ui∂uj

∣∣∣
0
, hijk =

1

6

∂3h(u)

∂ui∂uj∂uk

∣∣∣
0
.
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Null	  hypothesis:	  	 v.s.	  	  	  Alterna2ve	  hypothesis:	
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region:	 boundary	  surface:	

4	

θ = 0.0, 0.5, 1.0, . . . , 3.0

DBP = PV +O(n−3/2)

DAU = PV +O(n−2)

y = (u, v) q = dim u

5.3 Higher order terms of double bootstrap probabilities

µ̂(H|y) = (0,−h(0)) ∈ ∂H

∆̃(θ) = (3hmmi − 6λ0hmlhmli)θi + (6hmmij − 2γ1hmihmj − 4hmlhmihlj)θiθj = O(n−1)

Theorem 4 (Asymptotic expansion of double bootstrap probabilities). For the H

and y = (0,λ0−h0) given in Theorem 1, the double bootstrap probability is expressed

asymptotically as

DBPτ2,σ2(H|y) # 1− Φ
[
β0τ

−1 − β1τ − β2τ
3 − β3τσ

2
]
. (29)

Let D̃BPτ2,σ2(H|y) denote the double bootstrap probability computed by replacing the

projection µ̂(H|y) in (4) by µ̃ = (θ,−h(θ)) ∈ ∂H for some θ ∈ Rq. Then,

D̃BPτ2,σ2(H|y) # 1− Φ
[
β0τ

−1 − β1τ − β2τ
3 − β3τσ

2 − τ−1(τ 2 + σ2)∆̃(θ)
]
, (30)

where ∆̃(θ) = (3hmmi − 6λ0hmlhmli)θi + (6hmmij − 2γ1hmihmj − 4hmlhmihlj)θiθj. In

particular, τ 2 = 1, σ2 = ±1, gives

D̃BP1,1(H|y) = DBP1,1(H|y) +O(n−1),

D̃BP1,−1(H|y) # DBP1,−1(H|y).
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Chi-‐square	  test	  (very	  conserva2ve)	

1.836	

1.778	

p=0.185	

distance2	  	  ~	  	  chi-‐square	  distribu2on	  with	  df=2	

p=0.206	

5	



Normal	  test	  (rejec2ng	  too	  much)	

1.836	

1.778	

p=0.033	

distance	  ~	  N(0,1)	

p=0.038	

6	



Bootstrap	  probability	  (=Bayesian	  PP)	

identity matrix Iq+1,

Y ∼ Nq+1(µ, Iq+1). (1)

Let H ⊂ Rq+1 be an arbitrary-shaped region of positive volume. Giving an observed

value y, we are interested in testing the null hypothesis µ ∈ H against the alternative

hypothesis µ $∈ H. The boundary surface ∂H of H is assumed to be smooth in this

paper.

Bootstrap procedures are utilized for computing approximate p-values. We as-

sume that we can generate bootstrap replicate Y ∗ of Y by

Y ∗ ∼ Nq+1(y, σ
2Iq+1) (2)

for any σ2 > 0. The bootstrap probability of H for a given y is defined as

BPσ2(H|y) = P (Y ∗ ∈ H|y), (3)

where P (·|y) indicates the probability with respect to (2). In practice, we may

generate B bootstrap replicates

Y ∗1, . . . , Y ∗B,

and compute the frequency

B̂Pσ2(H|y) = #{Y ∗b ∈ H, b = 1, . . . , B}
B

for estimating BPσ2(H|y). We ignore the sampling error of O(B−1/2) and use only

(3) in the theoretical argument throughout. For approximating the distribution of

Y in (1), the scale should be σ2 = 1 in (2). The ordinary bootstrap probability

BP1(H|y) is often used as an approximate p-value. However, it is biased in the

sense explained in Section 2.5, and there are several attempts to adjust the bias.
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sense explained in Section 2.5, and there are several attempts to adjust the bias.

5

BP	  is	  interpreted	  as	  the	  Bayesian	  posterior	  probability	  of	  H	  
if	  the	  prior	  distribu2on	  of	  mu	  is	  uniform.	

Efron	  and	  Tibshirani	  (1998)	
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BP	  is	  even	  worse	

p=0.033	

p=0.038	

BP=0.019	

BP=0.037	
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Double	  bootstrap	  probability	

2.2 Double bootstrap

For calibrating BPσ2(H|y), we first consider the projection of y onto the boundary

surface ∂H. The projection is the point on ∂H that is closest to y;

µ̂(H|y) = arg min
µ∈∂H

‖y − µ‖,

where ‖y − µ‖2 =
∑q+1

i=1 (yi − µi)2. We generate bootstrap replicate Y + by

Y + ∼ Nq+1(µ̂(H|y), τ 2Iq+1) (4)

for some τ 2 > 0. For each observed value y+, we generate a second-level bootstrap

replicate

Y ∗∗ ∼ Nq+1(y
+, σ2Iq+1)

for computing

BPσ2(H|y+) = P (Y ∗∗ ∈ H|y+).

We calibrate BPσ2(H|y) by the distribution of BPσ2(H|Y +). The double bootstrap

probability of H for a given y is defined as

DBPσ2,τ2(H|y) = P
[
BPσ2(H|Y +) ≤ BPσ2(H|y) | µ̂(H|y)

]
, (5)

where the probability is calculated by (4). When σ2 = τ 2 = 1, this is the ordinary

double bootstrap probability DBP1,1(H|y).

2.3 Multiscale bootstrap

Another approach for calibrating BPσ2(H|y) is the multiscale bootstrap. The nor-

malized bootstrap probability of Shimodaira (2008) is defined by

NBPσ2(H|y) = Φ
[
σΦ−1(BPσ2(H|y))

]
(6)
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Projec2on	  of	  y	  onto	  the	  boundary	  surface:	

Adjus2ng	  BP	  using	  resampling	  from	  the	  projec2on	

Hall	  (1992),	  Efron	  and	  Tibshirani	  (1998)	
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contour	  surface	  of	  BP=0.019	

BP(H|y)=0.019	

10	

AU = PV +O(n−3/2)

v = −
√

1

64
+

u2

3

∂H =
{
(u, v) : v = −

√
1

64
+

u2

3
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H =
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(u, v) : v ≤ −

√
1

64
+

u2

3

}

σ2 = τ 2 = 1
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DBP(H|y) = P
[
BP(H|Y +) ≤ BP(H|y) | µ̂(H|y)
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Y + ∼ N2(µ̂, I2)

DBP = P
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BP(H|Y +) ≤ 0.019 | µ̂

]
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NBPσ2(H|y) = Φ
[
σΦ−1(BPσ2(H|y))

]
(6)

for σ2 > 0. Φ(·) is the cumulative distribution function of the standard normal dis-

tribution N(0, 1), and we denote the density function as φ(·). For several σ2 values,

say, σ2
1, . . . , σ

2
S, we compute BPσ2

i
(H|y), i = 1, . . . , S, and extrapolate NBPσ2(H|y)

to σ2 = −1. More specifically, we fit a model

NBPσ2(H|y) = 1− Φ(β0 + β1σ
2 + β2σ

4)

with parameters (β0, β1, β2) to the observed values of NBPσ2
i
(H|y), i = 1, . . . , S, and

compute NBP−1(H|y) using the estimated parameters.
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DBP=0.049	

Compu2ng	  DBP:	



DBP	  adjusts	  the	  bias	  of	  BP	

p=0.033	

p=0.038	

BP=0.019	

BP=0.037	

DBP=0.049	

DBP=0.039	DBP=0.05	

BP=0.05	

P(BP<0.05)	

P(DBP<0.05)	
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Lemma 5 (Additivity of the contour surfaces). For h, s ∈ S, we say h and s are

equivalent, denoted as h
.
= s, if h0 = s0, hij = sij, hijk = sijk, and hijkl = sijkl by

ignoring hi and si. We formally extend the operator Lσ2(h,λ0) for σ2 ≤ 0 via (24).

Then, for λ0, ξ0, σ2, τ 2 ∈ R,

Lτ2(Lσ2(h,λ0), ξ0)
.
= Lσ2+τ2(h,λ0 + ξ0). (26)

The identity operator is L0(h, 0)
.
= h, and the inverse operator is L−σ2(s,−λ0)

.
= h

for Lσ2(h,λ0)
.
= s.

5.2 Higer-order terms of unbiased p-values

Theorem 3 (Fourth-order accurate p-value). For the H and y = (0,λ0−h0) given in

Theorem 1, an approximately unbiased p-value of fourth-order accuracy is expressed

asymptotically as

PV(H|y) $ 1− Φ
[
λ0 − γ1 + λ0γ2 + 3γ4 − γ1γ2 − 4

3(2 + λ2
0)γ3

]
(27)

= 1− Φ
[
β0 − β1 − β2 + β3

]
(28)

PV(H|y) $ 1− Φ
[
β0 − β1 − β2 + β3

]

Φ̄−1
[
DBP1,σ2(H|y)

]
$ (β0 − β1 − β2)− β3σ

2

µ ∈ ∂H

µ = (θ,−h(θ)) ∈ ∂H

20

θ = 0.0, 0.5, 1.0, . . . , 3.0

DBP = PV +O(n−3/2)

DAU = PV +O(n−2)

5.3 Higher order terms of double bootstrap probabilities

µ̂(H|y) = (0,−h(0)) ∈ ∂H

∆̃(θ) = (3hmmi − 6λ0hmlhmli)θi + (6hmmij − 2γ1hmihmj − 4hmlhmihlj)θiθj = O(n−1)

Theorem 4 (Asymptotic expansion of double bootstrap probabilities). For the H

and y = (0,λ0−h0) given in Theorem 1, the double bootstrap probability is expressed

asymptotically as

DBPτ2,σ2(H|y) # 1− Φ
[
β0τ

−1 − β1τ − β2τ
3 − β3τσ

2
]
. (29)

Let D̃BPτ2,σ2(H|y) denote the double bootstrap probability computed by replacing the

projection µ̂(H|y) in (4) by µ̃ = (θ,−h(θ)) ∈ ∂H for some θ ∈ Rq. Then,

D̃BPτ2,σ2(H|y) # 1− Φ
[
β0τ

−1 − β1τ − β2τ
3 − β3τσ

2 − τ−1(τ 2 + σ2)∆̃(θ)
]
, (30)

where ∆̃(θ) = (3hmmi − 6λ0hmlhmli)θi + (6hmmij − 2γ1hmihmj − 4hmlhmihlj)θiθj. In

particular, τ 2 = 1, σ2 = ±1, gives

D̃BP1,1(H|y) = DBP1,1(H|y) +O(n−1),

D̃BP1,−1(H|y) # DBP1,−1(H|y).

21



Approximately	  unbiased	  p-‐values	  via	  
Mul2scale	  bootstrap	

2.3 Multiscale bootstrap

Φ̄(z) = Φ(−z) =

∫ ∞

z

1√
2π

e−
x2

2 dx

BZ(σ2) = −σΦ−1
[
BPσ2(H|y)

]

DBZ(σ2) = −Φ−1
[
DBPσ2,1(H|y)

]

f(σ2) = σΦ̄−1
[
BPσ2(H|y)

]

g(σ2) = Φ̄−1
[
DBPσ2,1(H|y)

]

σ2

AU = Φ(−BZ(−1))

DAU = Φ(−DBZ(−1))

AU = Φ̄(f(−1))

DAU = Φ̄(g(−1))

σ2 =
n

m

Another approach for calibrating BPσ2(H|y) is the multiscale bootstrap. The nor-

malized bootstrap probability of Shimodaira (2008) is defined by

NBPσ2(H|y) = Φ
[
σΦ−1(BPσ2(H|y))

]
(6)

for σ2 > 0. Φ(·) is the cumulative distribution function of the standard normal dis-

tribution N(0, 1), and we denote the density function as φ(·). For several σ2 values,

say, σ2
1, . . . , σ

2
S, we compute BPσ2

i
(H|y), i = 1, . . . , S, and extrapolate NBPσ2(H|y)

to σ2 = −1. More specifically, we fit a model

NBPσ2(H|y) = 1− Φ(β0 + β1σ
2 + β2σ

4)

7

play important roles for the asymptotic theory. For proving the fourth-order accu-

racy, expressions of the asymptotic expansion tend to be very complicated yet the

computations are often straightforward. I devised a way of the proof by combining

techniques of Shimodaira (2004) and Shimodaira (2008) so that the proof becomes

simpler.

1 Introduction

bootstrap

X = {x1, . . . , xn}

Y

X ∗ = {x∗
1, . . . , x

∗
m}

Y ∗

X+ = {x+
1 , . . . , x

+
n }

Y +

X ∗∗ = {x∗∗
1 , . . . , x∗∗

m}

Y ∗∗

σ2 = n/m

B̂Pσ2

ÂUσ2 = Φ(σΦ−1(B̂Pσ2))

k-th order accurate

bias reduces as O(n−k/2) as n goes larger

B̂P1
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m	  out	  of	  n	  bootstrap	  :	  	  	  	  Poli2s	  and	  Romano	  (1994),	  Bickel	  et	  al.	  (1997)	
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NBPσ2(H|y) = 1− Φ(β0 + β1σ
2 + β2σ

4)

7

and	  extrapolate	  BP	  to	  	  	

2.3 Multiscale bootstrap

Φ̄(z) = Φ(−z) =

∫ ∞

z

1√
2π

e−
x2

2 dx

BZ(σ2) = −σΦ−1
[
BPσ2(H|y)

]

DBZ(σ2) = −Φ−1
[
DBPσ2,1(H|y)

]

f(σ2) = σΦ̄−1
[
BPσ2(H|y)

]

g(σ2) = Φ̄−1
[
DBPσ2,1(H|y)

]

σ2

AU = Φ(−BZ(−1))

DAU = Φ(−DBZ(−1))

AU = Φ̄(f(−1))

DAU = Φ̄(g(−1))

σ2 =
n

m

Another approach for calibrating BPσ2(H|y) is the multiscale bootstrap. The nor-

malized bootstrap probability of Shimodaira (2008) is defined by

NBPσ2(H|y) = Φ
[
σΦ−1(BPσ2(H|y))

]
(6)

for σ2 > 0. Φ(·) is the cumulative distribution function of the standard normal dis-

tribution N(0, 1), and we denote the density function as φ(·). For several σ2 values,

say, σ2
1, . . . , σ

2
S, we compute BPσ2

i
(H|y), i = 1, . . . , S, and extrapolate NBPσ2(H|y)

to σ2 = −1. More specifically, we fit a model

NBPσ2(H|y) = 1− Φ(β0 + β1σ
2 + β2σ

4)

7

2.3 Multiscale bootstrap

Φ̄(z) = Φ(−z) =

∫ ∞

z

1√
2π

e−
x2

2 dx

BZ(σ2) = −σΦ−1
[
BPσ2(H|y)

]

DBZ(σ2) = −Φ−1
[
DBPσ2,1(H|y)

]

f(σ2) = σΦ̄−1
[
BPσ2(H|y)

]

g(σ2) = Φ̄−1
[
DBPσ2,1(H|y)

]

σ2

AU = Φ(−BZ(−1))

DAU = Φ(−DBZ(−1))

AU = Φ̄(f(−1))

DAU = Φ̄(g(−1))

σ2 =
n

m

m = −n

Another approach for calibrating BPσ2(H|y) is the multiscale bootstrap. The nor-

malized bootstrap probability of Shimodaira (2008) is defined by
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[
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for σ2 > 0. Φ(·) is the cumulative distribution function of the standard normal dis-

tribution N(0, 1), and we denote the density function as φ(·). For several σ2 values,

7

(equivalently	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  )	  	

The	  BP	  with	  m	  =	  -‐n	  is	  denoted	  as	  AU	  (	  =	  Approximately	  Unbiased)	

The	  idea	  of	  mul2scale	  bootstrap	  :	  	  Shimodaira	  (2002,	  2004,	  2008)	  	

12	
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0 + β′

1σ
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We	  apply	  the	  mul2scale	  bootstrap	  to	  DBP	  for	  gebng	  DAU	  	  (THIS	  PRESENTATION)	  
Equivalently,	  we	  could	  say	  applying	  double	  bootstrap	  to	  AU	  for	  gebng	  DAU	 13	

double	  bootstrap	

mul2scale	  bootstrap	



contour	  curves	  of	  p=0.05	
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BP,	  AU,	  DBP,	  DAU	



Rejec2on	  probabili2es	  	  P(p<0.05)	

BP	

DBP	

DAU	

AU	

Error:	  	  DAU	  	  <	  	  {DBP,	  AU}	  	  <	  	  BP	
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Lemma 5 (Additivity of the contour surfaces). For h, s ∈ S, we say h and s are

equivalent, denoted as h
.
= s, if h0 = s0, hij = sij, hijk = sijk, and hijkl = sijkl by

ignoring hi and si. We formally extend the operator Lσ2(h,λ0) for σ2 ≤ 0 via (24).

Then, for λ0, ξ0, σ2, τ 2 ∈ R,

Lτ2(Lσ2(h,λ0), ξ0)
.
= Lσ2+τ2(h,λ0 + ξ0). (26)

The identity operator is L0(h, 0)
.
= h, and the inverse operator is L−σ2(s,−λ0)

.
= h

for Lσ2(h,λ0)
.
= s.

5.2 Higer-order terms of unbiased p-values

Theorem 3 (Fourth-order accurate p-value). For the H and y = (0,λ0−h0) given in

Theorem 1, an approximately unbiased p-value of fourth-order accuracy is expressed

asymptotically as

PV(H|y) $ 1− Φ
[
λ0 − γ1 + λ0γ2 + 3γ4 − γ1γ2 − 4

3(2 + λ2
0)γ3

]
(27)

= 1− Φ
[
β0 − β1 − β2 + β3

]
(28)

PV(H|y) $ 1− Φ
[
β0 − β1 − β2 + β3

]

Φ̄−1
[
DBP1,σ2(H|y)

]
$ (β0 − β1 − β2)− β3σ

2

µ ∈ ∂H

µ = (θ,−h(θ)) ∈ ∂H

20

θ = 0.0, 0.5, 1.0, . . . , 3.0

DBP = PV +O(n−3/2)

DAU = PV +O(n−2)

5.3 Higher order terms of double bootstrap probabilities

µ̂(H|y) = (0,−h(0)) ∈ ∂H

∆̃(θ) = (3hmmi − 6λ0hmlhmli)θi + (6hmmij − 2γ1hmihmj − 4hmlhmihlj)θiθj = O(n−1)

Theorem 4 (Asymptotic expansion of double bootstrap probabilities). For the H

and y = (0,λ0−h0) given in Theorem 1, the double bootstrap probability is expressed

asymptotically as

DBPτ2,σ2(H|y) # 1− Φ
[
β0τ

−1 − β1τ − β2τ
3 − β3τσ

2
]
. (29)

Let D̃BPτ2,σ2(H|y) denote the double bootstrap probability computed by replacing the

projection µ̂(H|y) in (4) by µ̃ = (θ,−h(θ)) ∈ ∂H for some θ ∈ Rq. Then,

D̃BPτ2,σ2(H|y) # 1− Φ
[
β0τ

−1 − β1τ − β2τ
3 − β3τσ

2 − τ−1(τ 2 + σ2)∆̃(θ)
]
, (30)

where ∆̃(θ) = (3hmmi − 6λ0hmlhmli)θi + (6hmmij − 2γ1hmihmj − 4hmlhmihlj)θiθj. In

particular, τ 2 = 1, σ2 = ±1, gives

D̃BP1,1(H|y) = DBP1,1(H|y) +O(n−1),

D̃BP1,−1(H|y) # DBP1,−1(H|y).
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Evolu2on	  of	  mammal	  species	

16	

ML	  tree	  topology:	  ((G1,G2),	  (G3,G4),	  G5)	

Fig	  1	  of	  Shimodaira	  and	  Hasegawa	  (2005)	  from	  the	  book	  (ed.	  Nielsen)	  	  
Data:	  mt	  protein	  sequences	  of	  n=3392	  amino	  acids	  for	  s=32	  species	



Comparing	  15	  trees	  (cont.)	
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Asympto2c	  theory	  of	  	  
4th	  order	  accuracy	

x̄ = (x1 + · · ·+ xn)/n itself. As a result, the size of H is also scaled by
√
n.

Efron and Tibshirani (1998) considered the local coordinates (u, v) ∈ Rq+1 with

u = (u1, . . . , uq) ∈ Rq, v ∈ R for representing H in a neighbourhood of (0, 0) ∈ Rq+1.

Definition 1 (Region and boundary surface). For a continuous function h(u) of

u ∈ Rq, the region

H =
{
(u, v) | v ≤ −h(u), u ∈ Rq

}
(8)

is denoted as R(h). The boundary surface

∂H =
{
(u, v) | v = −h(u), u ∈ Rq

}

is denoted as B(h).

By taking the origin at a point on ∂H and rotating the axes properly, u1, . . . , uq

are orthgonal coordinates of the tangent space and v is the coordinate of the direction

normal to the tangent space. The smooth function h(u) is then represented in the

Taylor series as

h(u) =
q∑

i=1

q∑

j=1

hijuiuj +
q∑

i=1

q∑

j=1

q∑

k=1

hijkuiujuk + · · · , (9)

where the derivatives are denoted as

hij =
1

2

∂2h(u)

∂ui∂uj

∣∣∣
0
, hijk =

1

6

∂3h(u)

∂ui∂uj∂uk

∣∣∣
0
.

As n becomes larger, the coefficients approach zero asymptoticlly as hij = O(n−1/2)

and hijk = O(n−1). The k-th order derivatives are O(n−(k−1)/2) for k ≥ 1, because

the coordinates u1, . . . , uq as well as h(u) are scaled by the factor
√
n.
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More generally, we allow h belongs to class S defined below so that the origin

may not be on ∂H, and the axes u1, . . . , uq are slightly rotated from the tangent

space.

Definition 2 (Class S). Let h(u) be a smooth function of u ∈ Rq. The function h

is said to be class S if it is expressed asymptotically as

h(u) " h0 + hiui + hijuiuj + hijkuiujuk + hijkluiujukul, (10)

where the coefficients are h0 = O(1), hi = O(n−1), hij = O(n−1/2), hijk = O(n−1),

hijkl = O(n−3/2). Here " denotes the equality correct up to O(n−3/2) erring O(n−2).

The summation convention such as hijuiuj =
∑q

i=1

∑q
j=1 hijuiuj are used, where the

free indeces i, j, k, l run through 1, . . . , q if appeared twice in a formula.

We take care of terms up to O(n−3/2) ignoring O(n−2)

3.2 Asymptotic expansion of the bootstrap probability

Efron and Tibshirani (1998) showed the asymptotic expansion of BP1(H|y) up to

O(n−1) terms for h specified in (9). We generalize their eq. (2.19) to include O(n−3/2)

terms for h specified in (10).

Theorem 1 (Bootstrap probability for scale 1). Consider the region H = R(h) for

h ∈ S. Define four quantities γ1 = hii = O(n−1/2), γ2 = hijhij = O(n−1), γ3 =

hijhjkhki = O(n−3/2), γ4 = hiijj = O(n−3/2). Observing y in the (u, v) coordinates

as y = (0,λ0 − h0) with λ0 ∈ R, the bootstrap probability for σ = 1 is expressed

11
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Thm:	  Asympto2c	  expansion	  of	  BP1	

More generally, we allow h belongs to class S defined below so that the origin

may not be on ∂H, and the axes u1, . . . , uq are slightly rotated from the tangent

space.

Definition 2 (Class S). Let h(u) be a smooth function of u ∈ Rq. The function h

is said to be class S if it is expressed asymptotically as

h(u) " h0 + hiui + hijuiuj + hijkuiujuk + hijkluiujukul, (10)

where the coefficients are
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We take care of terms up to O(n−3/2) ignoring O(n−2)

3.2 Asymptotic expansion of the bootstrap probability

Efron and Tibshirani (1998) showed the asymptotic expansion of BP1(H|y) up to

O(n−1) terms for h specified in (9). We generalize their eq. (2.19) to include O(n−3/2)

terms for h specified in (10).
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asymptotically as

BP1(H|y) ! 1− Φ
[
λ0 + γ1 − λ0γ2 + 3γ4 − γ1γ2 − 4

3(1− λ2
0)γ3

]
(11)

= 1− Φ(β0 + β1 + β2), (12)

where β0 = λ0 = O(1), β1 = γ1 − λ0γ2 +
4
3λ

2
0γ3 = O(n−1/2), β2 = 3γ4 − γ1γ2 − 4

3γ3 =

O(n−3/2). We also define β3 = 6γ4 − 2γ1γ2 − 4γ3 = O(n−3/2) to be used later.
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Note that the first derivatives hi = O(n−1) do not appear in (11), implying that

we can ignore the slight rotation of u1, . . . , uq axes from the tangent space. The four

quantities γ1, . . . , γ4 represent geometric properties of ∂H at (0, 0) as mentioned

later in Section 4.2.

3.3 Rescaling the bootstrap probability
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O(n−1) terms. Here we include O(n−3/2) terms to it.

Theorem 2 (Bootstrap probability for scale σ). For the H and y = (0,λ0 − h0)

given in Theorem 1, the bootstrap probability for σ2 > 0 is expressed asymptotically

as

BPσ2(H|y) " 1− Φ
[
β0σ

−1 + β1σ + β2σ
3
]
. (13)

Corollary 1 (Asymptotic expansion of multiscale bootstrap). Using β0, β1, β2

defined in Theorem 1, the normalized bootstrap probability is expressed as

NBPσ2(H|y) " 1− Φ
[
β0 + β1σ

2 + β2σ
4
]
. (14)

In particular, the extrapolation to σ2 = −1 gives

NBP−1(H|y) " 1− Φ
[
β0 − β1 + β2

]
.

4 Geometry of smooth surfaces

In this section, we discuss only geometry of smooth surfaces without any probability

argument. The results will be used in later sections for deriving asymptotic accuracy

of the bootstrap methods. We work on the region H = R(h) and boundary surface

∂H = B(h) for h ∈ S expressed in the (u, v) coordiantes. We will consider local

coordinates at a point (u,−h(u)) on ∂H. In section 4.1, ∂H is expressed in the local

coordinates. In section 4.2, the four quantities γi, i = 1, . . . , 4, which are defined in

Theorem 1 for representing geometric properties of ∂H at (0, 0), will be redefined

at (u,−h(u)). In section 4.3, the signed distance between two surfaces is discussed.
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signed	  distance	

curvature	  +	  ...	

fourth-‐order	  terms	

Theorem 6 (Rejection probability of double bootstrap probabilities). For the

H given in Theorem 1, and µ = (0,−h0) ∈ ∂H, the rejection probability of

DBP1,σ2(H|Y ) is

P
(
DBP1,σ2(H|Y ) < α

)
# Φ

[
zα − (1 + σ2)β3

]
. (32)

6 Discussion

γ1 =
1

2

∂2h(u)

∂ui∂ui

∣∣∣
0

β3 =
1

2

∂2γ1(h, u)

∂ui∂ui

∣∣∣
0

A Appendix

The following lemma is used in the proof of Theorem 1 below.

Lemma 6 (Moments of normal random variables). Let δij denote the Kronecker

delta, and indeces i, j, . . . ∈ {1, . . . , q}. Consider the multivariate normal distibution

(U1, . . . , Uq) ∼ Nq(0, Iq). Then the first three even-order moments are

E(UiUj) = δij, E(UiUjUkUl) = δijδkl + δikδjl + δilδjk,

E(UiUjUkUlUmUn) = δijδklδmn + δikδjlδmn + · · ·+ δinδjkδlm︸ ︷︷ ︸
15 terms of partitioning {i,j,k,l,m,n} into 3 pairs

.

For k = 1, 2, . . ., the expectation of the product of 2k variables E(Ui1 · · ·Ui2k) is the

sum of (2k)!/(2kk!) terms of partitioning {i1, . . . , i2k} into k pairs, where each term

is the product of k Kronecker deltas corresponding to the k pairs. On the other hand,
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Proved	  by	  a	  simple	  argument	  of	  Taylor	  expansion	  and	  integra2on.	



Thm:	  scaling	  law	  of	  BP	
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Proved	  by	  a	  simple	  rescaling	  argument.	  	  	

Proof of Theorem 2. We rescale Y ∗ and H by multiplying σ−1. Y ∗ is replaced by

Y ∗/σ, and H is replaced by H/σ = {y/σ : y ∈ H}. Then (2) becomes Y ∗/σ ∼

Nq+1(y/σ, Iq+1). Since Y ∗ ∈ H is equivalent to Y ∗/σ ∈ H/σ, we have

BPσ2(H|y) = BP1(H/σ|y/σ).

In the (u, v) coordinates, replacement y → y/σ is expressed as λ0 → λ0/σ. H →

H/σ is expressed as h0 → h0/σ, hi → hi, hij → σhij, hijk → σ2hijk, hijkl → σ3hijkl,

and then γ1 → σγ1, γ2 → σ2γ2, γ3 → σ3γ3, γ4 → σ3γ4. By applying these repace-

ments to (11), we get (13).

Proof of Lemma 1. A point on ∂H is expressed as (u+∆ũ,−h(u+∆ũ)) in the (u, v)

coordinates for some ∆ũ = (∆ũ1, . . .∆ũq) ∈ Rq. For representing this point in the

(∆u,∆v) coordinates, we substitute ∆v = −h̃(∆u) in (15) to get

(u+∆ũ,−h(u+∆ũ)) = (u,−h(u)) +∆uibi − h̃(∆u)‖f‖−1f.

By looking at each element of the vector, we have

∆ũi = ∆ui − h̃(∆u)‖f‖−1 ∂h

∂ui
, i = 1, . . . , q, (37)

h(u+∆ũ) = h(u) +∆ui
∂h

∂ui
+ h̃(∆u)‖f‖−1. (38)

We are going to solve these equations by eliminating ∆ũ from (37) and (38). First

note that h̃(∆u) = O(n−1/2), ‖f‖ = O(1), ∂h/∂ui = O(n−1/2). It follows from (37)

that ∆ũi−∆ui = O(n−1), and the Taylor expansion of h(u+∆ũ) around u+∆u is

h(u+∆ũ) & h(u+∆u)− ∂h

∂ui

∣∣∣
u+∆u

h̃(∆u)‖f‖−1 ∂h

∂ui
.

23

Proof of Theorem 2. We rescale Y ∗ and H by multiplying σ−1. Y ∗ is replaced by

Y ∗/σ, and H is replaced by H/σ = {y/σ : y ∈ H}. Then (2) becomes Y ∗/σ ∼

Nq+1(y/σ, Iq+1). Since Y ∗ ∈ H is equivalent to Y ∗/σ ∈ H/σ, we have

BPσ2(H|y) = BP1(H/σ|y/σ).

In the (u, v) coordinates, replacement y → y/σ is expressed as λ0 → λ0/σ. H →

H/σ is expressed as h0 → h0/σ, hi → hi, hij → σhij, hijk → σ2hijk, hijkl → σ3hijkl,

and then γ1 → σγ1, γ2 → σ2γ2, γ3 → σ3γ3, γ4 → σ3γ4. By applying these repace-

ments to (11), we get (13).

Proof of Lemma 1. A point on ∂H is expressed as (u+∆ũ,−h(u+∆ũ)) in the (u, v)
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h(u+∆ũ) & h(u+∆u)− ∂h

∂ui

∣∣∣
u+∆u

h̃(∆u)‖f‖−1 ∂h

∂ui
.

23

Proof of Theorem 2. We rescale Y ∗ and H by multiplying σ−1. Y ∗ is replaced by

Y ∗/σ, and H is replaced by H/σ = {y/σ : y ∈ H}. Then (2) becomes Y ∗/σ ∼

Nq+1(y/σ, Iq+1). Since Y ∗ ∈ H is equivalent to Y ∗/σ ∈ H/σ, we have

BPσ2(H|y) = BP1(H/σ|y/σ).

In the (u, v) coordinates, replacement y → y/σ is expressed as λ0 → λ0/σ. H →

H/σ is expressed as h0 → h0/σ, hi → hi, hij → σhij, hijk → σ2hijk, hijkl → σ3hijkl,

and then γ1 → σγ1, γ2 → σ2γ2, γ3 → σ3γ3, γ4 → σ3γ4. By applying these repace-

ments to (11), we get (13).

Proof of Lemma 1. A point on ∂H is expressed as (u+∆ũ,−h(u+∆ũ)) in the (u, v)
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2.3 Multiscale bootstrap

Φ̄(z) = Φ(−z) =

∫ ∞

z

1√
2π

e−
x2

2 dx

BZ(σ2) = −σΦ−1
[
BPσ2(H|y)

]

DBZ(σ2) = −Φ−1
[
DBPσ2,1(H|y)

]

f(σ2) = σΦ̄−1
[
BPσ2(H|y)

]

σΦ̄−1
[
BPσ2(H|y)

]
# β0 + β1σ

2 + β2σ
4

g(σ2) = Φ̄−1
[
DBPσ2,1(H|y)

]

σ2

AU = Φ(−BZ(−1))

DAU = Φ(−DBZ(−1))

AU = Φ̄(f(−1))

DAU = Φ̄(g(−1))

σ2 =
n

m

m = −n

Another approach for calibrating BPσ2(H|y) is the multiscale bootstrap. The nor-

malized bootstrap probability of Shimodaira (2008) is defined by

NBPσ2(H|y) = Φ
[
σΦ−1(BPσ2(H|y))

]
(6)

for σ2 > 0. Φ(·) is the cumulative distribution function of the standard normal dis-

tribution N(0, 1), and we denote the density function as φ(·). For several σ2 values,

7

20	

AU = PV +O(n−3/2)

v = −
√

1

64
+

u2

3

∂H =
{
(u, v) : v = −

√
1

64
+

u2

3

}

H =
{
(u, v) : v ≤ −

√
1

64
+

u2

3

}

zα = Φ−1(α)

β0 → β0σ
−1, β1 → β1σ, β2 → β2σ

3

σ2 = τ 2 = 1

Y + ∼ N2(µ̂(H|y), I2)

DBP(H|y) = P
[
BP(H|Y +) ≤ BP(H|y) | µ̂(H|y)

]

Y + ∼ N2(µ̂, I2)

DBP = P
[
BP(H|Y +) ≤ 0.019 | µ̂

]

O(1) O(n−1/2) O(n−1) O(n−3/2) O(n−2)

Another approach for calibrating BPσ2(H|y) is the multiscale bootstrap. The nor-

malized bootstrap probability of Shimodaira (2008) is defined by

NBPσ2(H|y) = Φ
[
σΦ−1(BPσ2(H|y))

]
(6)

for σ2 > 0. Φ(·) is the cumulative distribution function of the standard normal dis-

tribution N(0, 1), and we denote the density function as φ(·). For several σ2 values,

8



Thm:	  unbiased	  p-‐value	  	

5.2 Higer-order terms of unbiased p-values

Theorem 3 (Fourth-order accurate p-value). For the H and y = (0,λ0−h0) given in

Theorem 1, an approximately unbiased p-value of fourth-order accuracy is expressed

asymptotically as

PV(H|y) " 1− Φ
[
λ0 − γ1 + λ0γ2 + 3γ4 − γ1γ2 − 4

3(2 + λ2
0)γ3

]
(27)

= 1− Φ
[
β0 − β1 − β2 + β3

]
(28)

PV(H|y) " 1− Φ
[
β0 − β1 − β2 + β3

]

5.3 Higher order terms of double bootstrap probabilities

Theorem 4 (Asymptotic expansion of double bootstrap probabilities). For the H

and y = (0,λ0−h0) given in Theorem 1, the double bootstrap probability is expressed

asymptotically as

DBPτ2,σ2(H|y) " 1− Φ
[
β0τ

−1 − β1τ − β2τ
3 − β3τσ

2
]
. (29)

Let D̃BPτ2,σ2(H|y) denote the double bootstrap probability computed by replacing the

projection µ̂(H|y) in (4) by µ̃ = (θ,−h(θ)) ∈ ∂H for some θ ∈ Rq. Then,

D̃BPτ2,σ2(H|y) " 1− Φ
[
β0τ

−1 − β1τ − β2τ
3 − β3τσ

2 − τ−1(τ 2 + σ2)∆̃(θ)
]
, (30)

where ∆̃(θ) = (3hmmi − 6λ0hmlhmli)θi + (6hmmij − 2γ1hmihmj − 4hmlhmihlj)θiθj. In

particular, τ 2 = 1, σ2 = ±1, gives

D̃BP1,1(H|y) = DBP1,1(H|y) +O(n−1),
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2.5 Approximately unbiased tests

For evaluating the approximate p-values defined in the previous sections, we look at

the bias of testing. Let PV(H|y) denote an approximate p-value for testing H given

y. We may reject H if PV(H|y) < α with a significance level 0 < α < 1. If µ is

on the boundary surface of H, the rejection probability of an unbiased test should

be equal to α. An approximately unbiased test as well as its approximate p-value is

said to be k-th order accurate asymptotically if it is correct up to O(n−(k−1)/2) with

bias of order O(n−k/2). That is,

P
[
PV(H|Y ) < α | µ

]
= α +O(n−k/2), µ ∈ ∂H, (7)

where the probability is calculated by (1). It has been known in the literature

that BP1(H|y) is first order accurate, and DBP1,1(H|y) and NBP−1(H|y) are third-

order accurate. Our new multiscale-double bootstrap has higher-order accuracy

than these existing methods, and in fact DBP−1,1(H|y) is fourth order accurate. In

later sections, we will derive the asymptotic accuracy of all these methods.

3 Higer-order terms of bootstrap probability

3.1 Asymptotic theory

Although we have a single observation y, we work on the asymptotic theory with

respect to the sample size n. We assume that there is a non-parametric transfor-

mation from the i.i.d. observation {x1, . . . , xn} to y. For example, y may be the

maximum likelihood estimate of parameters of interest so that the normality holds
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Rejec2on	  probabili2es	  of	  BP	  and	  AU	

D̃BP1,−1(H|y) ! DBP1,−1(H|y).

5.4 Asymptotic accuracy of bootstrap methods

The probability is calculated by (1), and zα = Φ−1(α), 0 < α < 1.

Theorem 5 (Rejection probability of bootstrap probabilities). For the H given in

Theorem 1, and µ = (0,−h0) ∈ ∂H, the rejection probability of NBPσ2(H|Y ) is

P
(
NBPσ2(H|Y ) < α

)
! Φ

[
zα + (1 + σ2)

{
γ1 + zαγ2 +

4
3z

2
αγ3 − γ1γ2

}

+ (1 + σ2)2
{
3γ4 − 4

3γ3
}
− σ2 4

3γ3
]
. (31)

In particular, σ2 = ±1 gives

P
(
BP1(H|Y ) < α

)
= Φ(zα + 2γ1) +O(n−1) = α +O(n−1/2),

P
(
NBP−1(H|Y ) < α

)
! Φ(zα + 4

3γ3) = α +O(n−3/2).

P
(
BP(H|Y ) < α

)
= Φ(zα + 2γ1) +O(n−1) = α +O(n−1/2)

P
(
AU(H|Y ) < α

)
! Φ(zα + 4

3γ3) = α +O(n−3/2).

Theorem 6 (Rejection probability of double bootstrap probabilities). For the

H given in Theorem 1, and µ = (0,−h0) ∈ ∂H, the rejection probability of

DBP1,σ2(H|Y ) is

P
(
DBP1,σ2(H|Y ) < α

)
! Φ

[
zα − (1 + σ2)β3

]
. (32)
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(
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! Φ

[
zα − (1 + σ2)β3

]
. (32)
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AU	  is	  third-‐order	  accurate	  (k=3)	

BP	  is	  first-‐order	  accurate	  (k=1)	
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A Appendix

The following lemma is used in the proof of Theorem 1 below.

Lemma 6 (Moments of normal random variables). Let δij denote the Kronecker

delta, and indeces i, j, . . . ∈ {1, . . . , q}. Consider the multivariate normal distibution
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Using	  q	  x	  q	  hessian	  matrix	

22	

P
(
NBP−1(H|Y ) < α

)
! Φ(zα + 4

3γ3) = α +O(n−3/2).

P
(
BP(H|Y ) < α

)
= Φ(zα + 2γ1) +O(n−1) = α +O(n−1/2)

P
(
DAU(H|Y ) < α

)
! Φ(zα) = α

P
(
DBP(H|Y ) < α

)
! Φ(zα − 2β3) = α +O(n−3/2)

Theorem 6 (Rejection probability of double bootstrap probabilities). For the

H given in Theorem 1, and µ = (0,−h0) ∈ ∂H, the rejection probability of

DBP1,σ2(H|Y ) is

P
(
DBP1,σ2(H|Y ) < α

)
! Φ

[
zα − (1 + σ2)β3

]
. (32)

6 Discussion

D =

(
∂2h(u)

∂ui∂uj

∣∣∣
0
: i, j = 1, . . . , q

)

γ1 =
1
2 tr(D)

γ3 =
1
8 tr(D

3)

γ1 = hii =
1
2 tr(D)

γ3 = hijhjkhki =
1
8 tr(D

3)

γ1 =
1

2

∂2h(u)

∂ui∂ui

∣∣∣
0

β3 =
1

2

∂2γ1(h, u)

∂ui∂ui

∣∣∣
0

23

P
(
NBP−1(H|Y ) < α

)
! Φ(zα + 4

3γ3) = α +O(n−3/2).

P
(
BP(H|Y ) < α

)
= Φ(zα + 2γ1) +O(n−1) = α +O(n−1/2)

P
(
DAU(H|Y ) < α

)
! Φ(zα) = α

P
(
DBP(H|Y ) < α

)
! Φ(zα − 2β3) = α +O(n−3/2)

Theorem 6 (Rejection probability of double bootstrap probabilities). For the

H given in Theorem 1, and µ = (0,−h0) ∈ ∂H, the rejection probability of

DBP1,σ2(H|Y ) is

P
(
DBP1,σ2(H|Y ) < α

)
! Φ

[
zα − (1 + σ2)β3

]
. (32)

6 Discussion

D =

(
∂2h(u)

∂ui∂uj

∣∣∣
0
: i, j = 1, . . . , q

)

γ1 =
1
2 tr(D)

γ3 =
1
8 tr(D

3)

γ1 = hii =
1
2 tr(D)

γ3 = hijhjkhki =
1
8 tr(D

3)

γ1 =
1

2

∂2h(u)

∂ui∂ui

∣∣∣
0

β3 =
1

2

∂2γ1(h, u)

∂ui∂ui

∣∣∣
0

23

AU = PV +O(n−3/2)

v = −
√

1

64
+

u2

3

∂H =
{
(u, v) : v = −

√
1

64
+

u2

3

}

H =
{
(u, v) : v ≤ −

√
1

64
+

u2

3

}

zα = Φ−1(α)

σ2 = τ 2 = 1

Y + ∼ N2(µ̂(H|y), I2)

DBP(H|y) = P
[
BP(H|Y +) ≤ BP(H|y) | µ̂(H|y)

]

Y + ∼ N2(µ̂, I2)

DBP = P
[
BP(H|Y +) ≤ 0.019 | µ̂

]

O(1) O(n−1/2) O(n−1) O(n−3/2) O(n−2)

Another approach for calibrating BPσ2(H|y) is the multiscale bootstrap. The nor-

malized bootstrap probability of Shimodaira (2008) is defined by
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sketch	  of	  the	  proof	  for	  PV	

5 Asymptotic accuracy of bootstrap methods

5.1 Contour surfaces of bootstrap probability

s = Lσ2(h, a)

h = L−σ2(s,−a)

BPσ2(H|y) = constant for any y ∈ B(s)

Lσ2
2
(Lσ2

1
(H, a1), a2)

.
= Lσ2

1+σ2
2
(H, a1 + a2)

h = L0(h, 0)

s = L−1(h,λ0)

h = L1(s,−λ0)

B(s) = {(u, v) : v = −s(u)}

PV(H|y) = constant for any y ∈ B(s)

R(s)

BP1(R(s)|µ) = constant for any µ ∈ B(h)

Lemma 4 (Contour surfaces of bootstrap probability). For h ∈ S, 0 < α < 1, and

σ2 > 0, we consider a function s(u) of u ∈ Rq satisfying

BPσ2(R(h)|(u,−s(u))) = 1− α, u ∈ Rq. (23)

Then, B(s), as well as s itself, will be called as a contour surface of the bootstrap

probability of R(h) with squared scale σ2 at level 1− α. In particular, we choose α
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Thm:	  scaling-‐law	  of	  DBP	

5.2 Higer-order terms of unbiased p-values

Theorem 3 (Fourth-order accurate p-value). For the H and y = (0,λ0−h0) given in

Theorem 1, an approximately unbiased p-value of fourth-order accuracy is expressed

asymptotically as

PV(H|y) " 1− Φ
[
λ0 − γ1 + λ0γ2 + 3γ4 − γ1γ2 − 4

3(2 + λ2
0)γ3

]
(27)

= 1− Φ
[
β0 − β1 − β2 + β3

]
(28)

PV(H|y) " 1− Φ
[
β0 − β1 − β2 + β3

]

5.3 Higher order terms of double bootstrap probabilities

Theorem 4 (Asymptotic expansion of double bootstrap probabilities). For the H

and y = (0,λ0−h0) given in Theorem 1, the double bootstrap probability is expressed

asymptotically as

DBPτ2,σ2(H|y) " 1− Φ
[
β0τ

−1 − β1τ − β2τ
3 − β3τσ

2
]
. (29)

Let D̃BPτ2,σ2(H|y) denote the double bootstrap probability computed by replacing the

projection µ̂(H|y) in (4) by µ̃ = (θ,−h(θ)) ∈ ∂H for some θ ∈ Rq. Then,

D̃BPτ2,σ2(H|y) " 1− Φ
[
β0τ

−1 − β1τ − β2τ
3 − β3τσ

2 − τ−1(τ 2 + σ2)∆̃(θ)
]
, (30)

where ∆̃(θ) = (3hmmi − 6λ0hmlhmli)θi + (6hmmij − 2γ1hmihmj − 4hmlhmihlj)θiθj. In

particular, τ 2 = 1, σ2 = ±1, gives

D̃BP1,1(H|y) = DBP1,1(H|y) +O(n−1),
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Corollary:	  DBP	  is	  third-‐order	  accurate	  (k=3),	  	  DAU	  is	  fourth-‐order	  accurate	  (k=4)	
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sketch	  of	  the	  proof	  for	  DBP	

25	

where 0 < α < 1 is defined so that λ0 − h0 = −s0, meaning y ∈ B(s). Then, (7)

with k = 4 is expressed as

BP1(R(s)|(θ,−h(θ))) # 1− α, θ ∈ Rq.

Therefore, B(h) is interpreted as a contour surface of the bootstrap proability; h
.
=

L1(s,−λ0). According to Lemma 5, the inverse operator is written as s
.
= L−1(h,λ0).

Letting σ2 = −1 in (25), we have γ1(s, 0) # γ1−2λ0γ2+4λ2
0γ3− (6γ4−2γ1γ2−4γ3),

γ2(s, 0) # γ2 − 4λ0γ3, γ3(s, 0) # γ3, γ4(s, 0) # γ4. Applying Theorem 1 to

α # 1− BP1(R(s)|(0,−h0)),

we get 1−α by substituting s for h and −h0 for λ0−h0 into (11). More specifically,

we substitute −λ0 for λ0, γi(s, 0) for γi. Then we obtain (27) as α.

Proof of Theorem 4. Let s = Lσ2(h,λ0). Then,

D̃BPτ2,σ2(H|y) = 1− BPτ2(R(s)|µ̃).

We first compute D̃BPτ2,σ2(H|y) with µ̃ = (0,−h0) for θ = 0. Applying Theorem 2

to BPτ2(R(s)|µ̃), we get

D̃BPτ2,σ2(H|y) # Φ
[
β′
0τ

−1 + β′
1τ + β′

2τ
3
]
,

where β′
0, β

′
1, β

′
2 are defined by replacing γi by γi(s, 0) of (25) and λ0 by −λ0, repec-

tively, in β0, β1, β2 of Theorem 1. By substituting β′
0 = −λ0, β′

1 = γ1(s, 0) +

λ0γ2(s, 0) +
4
3λ

2
0γ3, β

′
2 = 3γ4 − γ1γ2 − 4

3γ3 into it, we have, for µ̃ = (0,−h0),

D̃BPτ2,σ2(H|y) # 1− Φ
[
β0τ

−1 − β1τ − β2τ
3 − β3τσ

2
]
. (46)
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contour	  surface	  of	  BP	

The	  proof	  completes	  by	  applying	  the	  asympto2c	  expansion	  of	  BP	  to	  R(s)	



Rejec2on	  probabili2es	  of	  DBP	  and	  DAU	

DAU	  is	  fourth-‐order	  accurate	  (k=4)	

DBP	  is	  third-‐order	  accurate	  (k=3)	

Theorem 6 (Rejection probability of double bootstrap probabilities). For the

H given in Theorem 1, and µ = (0,−h0) ∈ ∂H, the rejection probability of

DBP1,σ2(H|Y ) is

P
(
DBP1,σ2(H|Y ) < α

)
# Φ

[
zα − (1 + σ2)β3

]
. (32)

6 Discussion
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A Appendix

The following lemma is used in the proof of Theorem 1 below.

Lemma 6 (Moments of normal random variables). Let δij denote the Kronecker

delta, and indeces i, j, . . . ∈ {1, . . . , q}. Consider the multivariate normal distibution

(U1, . . . , Uq) ∼ Nq(0, Iq). Then the first three even-order moments are

E(UiUj) = δij, E(UiUjUkUl) = δijδkl + δikδjl + δilδjk,

E(UiUjUkUlUmUn) = δijδklδmn + δikδjlδmn + · · ·+ δinδjkδlm︸ ︷︷ ︸
15 terms of partitioning {i,j,k,l,m,n} into 3 pairs

.

For k = 1, 2, . . ., the expectation of the product of 2k variables E(Ui1 · · ·Ui2k) is the

sum of (2k)!/(2kk!) terms of partitioning {i1, . . . , i2k} into k pairs, where each term

is the product of k Kronecker deltas corresponding to the k pairs. On the other hand,

22
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Lemma 6 (Moments of normal random variables). Let δij denote the Kronecker
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(U1, . . . , Uq) ∼ Nq(0, Iq). Then the first three even-order moments are
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15 terms of partitioning {i,j,k,l,m,n} into 3 pairs

.
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Robustness	  to	  projec2on	  error	

Let D̃BPτ2,σ2(H|y) denote the double bootstrap probability computed by replacing the

projection µ̂(H|y) in (4) by µ̃ = (θ,−h(θ)) ∈ ∂H for some θ ∈ Rq. Then,

D̃BPτ2,σ2(H|y) # 1− Φ
[
β0τ

−1 − β1τ − β2τ
3 − β3τσ

2 − τ−1(τ 2 + σ2)∆̃(θ)
]
, (30)

where ∆̃(θ) = (3hmmi − 6λ0hmlhmli)θi + (6hmmij − 2γ1hmihmj − 4hmlhmihlj)θiθj. In

particular, τ 2 = 1, σ2 = ±1, gives

D̃BP1,1(H|y) = DBP1,1(H|y) +O(n−1),

D̃BP1,−1(H|y) # DBP1,−1(H|y).

5.4 Asymptotic accuracy of bootstrap methods

The probability is calculated by (1), and zα = Φ−1(α), 0 < α < 1.

Theorem 5 (Rejection probability of bootstrap probabilities). For the H given in

Theorem 1, and µ = (0,−h0) ∈ ∂H, the rejection probability of NBPσ2(H|Y ) is

P
(
NBPσ2(H|Y ) < α

)
# Φ

[
zα + (1 + σ2)

{
γ1 + zαγ2 +

4
3z

2
αγ3 − γ1γ2

}

+ (1 + σ2)2
{
3γ4 − 4

3γ3
}
− σ2 4

3γ3
]
. (31)

In particular, σ2 = ±1 gives

P
(
BP1(H|Y ) < α

)
= Φ(zα + 2γ1) +O(n−1) = α +O(n−1/2),

P
(
NBP−1(H|Y ) < α

)
# Φ(zα + 4

3γ3) = α +O(n−3/2).

P
(
BP(H|Y ) < α

)
= Φ(zα + 2γ1) +O(n−1) = α +O(n−1/2)
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5.2 Higer-order terms of unbiased p-values

Theorem 3 (Fourth-order accurate p-value). For the H and y = (0,λ0−h0) given in

Theorem 1, an approximately unbiased p-value of fourth-order accuracy is expressed

asymptotically as

PV(H|y) " 1− Φ
[
λ0 − γ1 + λ0γ2 + 3γ4 − γ1γ2 − 4

3(2 + λ2
0)γ3

]
(27)

= 1− Φ
[
β0 − β1 − β2 + β3

]
(28)

PV(H|y) " 1− Φ
[
β0 − β1 − β2 + β3

]

Φ̄−1
[
DBP1,σ2(H|y)

]
" (β0 − β1 − β2)− β3σ

2

µ ∈ ∂H

DBP = PV +O(n−3/2)

DAU = PV +O(n−2)

5.3 Higher order terms of double bootstrap probabilities

µ̂(H|y) = (0,−h(0)) ∈ ∂H

∆̃(θ) = (3hmmi − 6λ0hmlhmli)θi + (6hmmij − 2γ1hmihmj − 4hmlhmihlj)θiθj

Theorem 4 (Asymptotic expansion of double bootstrap probabilities). For the H

and y = (0,λ0−h0) given in Theorem 1, the double bootstrap probability is expressed
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asymptotically as

DBPτ2,σ2(H|y) ! 1− Φ
[
β0τ

−1 − β1τ − β2τ
3 − β3τσ

2
]
. (29)
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P
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= Φ(zα + 2γ1) +O(n−1) = α +O(n−1/2),

P
(
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3γ3) = α +O(n−3/2).
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3z
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3γ4 − 4

3γ3
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− σ2 4

3γ3
]
. (31)
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If	  	 is	  replaced	  by	

DBP	  becomes	

Corollary:	  DBP	  becomes	  only	  second-‐order	  accurate	  (k=2),	  	  but	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  DAU	  keeps	  fourth-‐order	  accuracy	  (k=4)	

asymptotically as

DBPτ2,σ2(H|y) ! 1− Φ
[
β0τ

−1 − β1τ − β2τ
3 − β3τσ

2
]
. (29)
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y µ̂(H|y) µ̃

5.4 Asymptotic accuracy of bootstrap methods
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P
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NBPσ2(H|Y ) < α
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! Φ
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zα + (1 + σ2)
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γ1 + zαγ2 +

4
3z

2
αγ3 − γ1γ2

}

+ (1 + σ2)2
{
3γ4 − 4

3γ3
}
− σ2 4

3γ3
]
. (31)
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error	  =	  O(n-‐1)	



28	  

Asympto2c	  Theories	  of	  
approaching	  flat	  surfaces	  

Tradi&onal:	   (sample	  size)	  
v=yq+1	  

u=(y1,...,yq)	  

Higher	  order	  deriva2ves	  disappear	  faster	  

New	  proposal	  (Nearly	  Flat	  Surface):	   (an	  ar2ficial	  order	  parameter)	  

v=yq+1	  

u=(y1,...,yq)	  

This	  is	  interpreted	  as	  

All	  order	  deriva2ves	  disappear	  at	  the	  same	  rate	  
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Nearly	  Flat	  Surfaces	  (Shimodaira	  2008)	  

1.	  

2.	  

3.	  

Three	  condi2ons	  

Fourier	  transform:	  

(i.e.,	  approaches	  a	  flat	  surface)	  

for	  
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Expecta2on	  Operator	  
(Gaussian	  Smoothing)	  

low-‐pass	  filter	  
smoothing	  filter	  

Fourier	  Transforms	  Surfaces	  



Bridging	  Bayesian	  to	  Frequen2st	

31	

Shown	  for	  smooth	  “nearly	  flat	  surfaces”	  	  in	  Shimodaira	  (2008)	

2.3 Multiscale bootstrap

Φ̄(z) = Φ(−z) =

∫ ∞

z

1√
2π

e−
x2

2 dx

Φ̄(z) = 1− Φ(z) =

∫ ∞

z

1√
2π

e−
x2

2 dx

BZ(σ2) = −σΦ−1
[
BPσ2(H|y)

]

DBZ(σ2) = −Φ−1
[
DBPσ2,1(H|y)

]

f(σ2) = σΦ̄−1
[
BPσ2(H|y)

]

σΦ̄−1
[
BPσ2(H|y)

]
# β0 + β1σ

2 + β2σ
4

σΦ̄−1
[
BPσ2(H|y)

]
= β0 + β1σ

2 + β2σ
4 + β3σ

6 + · · ·

Φ̄−1
[
PV(H|y)

]
= β0 − β1 + β2 − β3 + · · ·

g(σ2) = Φ̄−1
[
DBPσ2,1(H|y)

]

σ2

AU = Φ(−BZ(−1))

DAU = Φ(−DBZ(−1))

AU = Φ̄(f(−1))

DAU = Φ̄(g(−1))

σ2 =
n

m

m = −n

BP = PV +O(n−1/2)

7

2.3 Multiscale bootstrap

Φ̄(z) = Φ(−z) =

∫ ∞

z

1√
2π

e−
x2

2 dx

Φ̄(z) = 1− Φ(z) =

∫ ∞

z

1√
2π

e−
x2

2 dx

BZ(σ2) = −σΦ−1
[
BPσ2(H|y)

]

DBZ(σ2) = −Φ−1
[
DBPσ2,1(H|y)

]

f(σ2) = σΦ̄−1
[
BPσ2(H|y)

]

σΦ̄−1
[
BPσ2(H|y)

]
# β0 + β1σ

2 + β2σ
4

σΦ̄−1
[
BPσ2(H|y)

]
= β0 + β1σ

2 + β2σ
4 + β3σ

6 + · · ·

Φ̄−1
[
PV(H|y)

]
= β0 − β1 + β2 − β3 + · · ·

g(σ2) = Φ̄−1
[
DBPσ2,1(H|y)

]

σ2

AU = Φ(−BZ(−1))

DAU = Φ(−DBZ(−1))

AU = Φ̄(f(−1))

DAU = Φ̄(g(−1))

σ2 =
n

m

m = −n

BP = PV +O(n−1/2)

7

2.3 Multiscale bootstrap

Φ̄(z) = Φ(−z) =

∫ ∞

z

1√
2π

e−
x2

2 dx

Φ̄(z) = 1− Φ(z) =

∫ ∞

z

1√
2π

e−
x2

2 dx

BZ(σ2) = −σΦ−1
[
BPσ2(H|y)

]

DBZ(σ2) = −Φ−1
[
DBPσ2,1(H|y)

]

f(σ2) = σΦ̄−1
[
BPσ2(H|y)

]

σΦ̄−1
[
BPσ2(H|y)

]
# β0 + β1σ

2 + β2σ
4

σΦ̄−1
[
BPσ2(H|y)

]
= β0 + β1σ

2 + β2σ
4 + β3σ

6 + · · ·

Φ̄−1
[
PV(H|y)

]
= β0 − β1 + β2 − β3 + · · ·

g(σ2) = Φ̄−1
[
DBPσ2,1(H|y)

]

σ2 = −1

AU = Φ(−BZ(−1))

DAU = Φ(−DBZ(−1))

AU = Φ̄(f(−1))

DAU = Φ̄(g(−1))

σ2 =
n

m

m = −n

BP = PV +O(n−1/2)

7

gives	  unbiased	  p-‐value	

P
(
NBP−1(H|Y ) < α

)
! Φ(zα + 4

3γ3) = α +O(n−3/2).

P
(
BP(H|Y ) < α

)
= Φ(zα + 2γ1) +O(n−1) = α +O(n−1/2)

P
(
DAU(H|Y ) < α

)
! Φ(zα) = α

P
(
DBP(H|Y ) < α

)
! Φ(zα − 2β3) = α +O(n−3/2)

Theorem 6 (Rejection probability of double bootstrap probabilities). For the

H given in Theorem 1, and µ = (0,−h0) ∈ ∂H, the rejection probability of

DBP1,σ2(H|Y ) is

P
(
DBP1,σ2(H|Y ) < α

)
! Φ

[
zα − (1 + σ2)β3

]
. (32)

6 Discussion

D =

(
∂2h(u)

∂ui∂uj

∣∣∣
0
: i, j = 1, . . . , q

)

γ1 =
1
2 tr(D)

γ3 =
1
8 tr(D

3)

γ1 = hii =
1
2 tr(D)

γ3 = hijhjkhki =
1
8 tr(D

3)

σ2 = 1

γ1 =
1

2

∂2h(u)

∂ui∂ui

∣∣∣
0

β3 =
1

2

∂2γ1(h, u)

∂ui∂ui

∣∣∣
0
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gives	  Bayesian	  posterior	  probability	



Taylor	  expansion	  using	  k	  terms	  

Taylor	  expansion（k=1,2,3,4）	  

f (σ 2 ) = β0 + β1σ

nBPk (σ
2 ) =Φ

(σ 2 −σ 0
2 ) j

j!
∂ j f (σ 2 )
∂(σ 2 ) j

σ0
2j=0

k−1

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Shimodaira	  (2008)	
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AU ( 1)k knBP= −

2.3 Multiscale bootstrap

Φ̄(z) = Φ(−z) =

∫ ∞

z

1√
2π

e−
x2

2 dx

BZ(σ2) = −σΦ−1
[
BPσ2(H|y)

]

DBZ(σ2) = −Φ−1
[
DBPσ2,1(H|y)

]

f(σ2) = σΦ̄−1
[
BPσ2(H|y)

]

g(σ2) = Φ̄−1
[
DBPσ2,1(H|y)

]

σ2

AU = Φ(−BZ(−1))

DAU = Φ(−DBZ(−1))

AU = Φ̄(f(−1))

DAU = Φ̄(g(−1))

Another approach for calibrating BPσ2(H|y) is the multiscale bootstrap. The nor-

malized bootstrap probability of Shimodaira (2008) is defined by

NBPσ2(H|y) = Φ
[
σΦ−1(BPσ2(H|y))

]
(6)

for σ2 > 0. Φ(·) is the cumulative distribution function of the standard normal dis-

tribution N(0, 1), and we denote the density function as φ(·). For several σ2 values,

say, σ2
1, . . . , σ

2
S, we compute BPσ2

i
(H|y), i = 1, . . . , S, and extrapolate NBPσ2(H|y)

to σ2 = −1. More specifically, we fit a model

NBPσ2(H|y) = 1− Φ(β0 + β1σ
2 + β2σ

4)

7



33	  

Our	  Method	  and	  Generaliza2on	  

…(*)	  

For	  our	  method,	  Jk(w)	  is	  defined	  by	  

Generaliza2on:	  (*)	  defines	  a	  new	  p-‐value	  from	  a	  given	  Jk(w)	  	  

Our	  corrected	  p-‐values	  are	  represented	  as:	  
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Bootstrap	  Itera2on	  
Another	  example	  sa2sfying	  condi2ons	  (i)-‐(iv).	  

(S2rling	  numbers	  of	  the	  second	  kind)	  

Disadvantages:	  
1.	  computa2on	  requires	  O(Bk)	  steps;	  	  B=10,000.	  
2.	  requires	  resampling	  from	  “projec2on”	  instead	  of	  data.	  

For	  bootstrap	  itera2on,	  Jk(w)	  is	  defined	  by	  



Summary	  and	  other	  issues	
•  DAU	  =	  	  “DBP	  with	  m=-‐n”	  is	  proposed	  	  
•  The	  accuracy	  of	  BP	  is	  first	  order	  (k=1),	  AU	  is	  third-‐order	  (k=3),	  DBP	  is	  third-‐order	  

(k=3)	  
•  DAU	  is	  fourth-‐order	  accurate	  (k=4)	  
•  DAU	  is	  robust	  to	  the	  projec2on	  error	  (surprisingly,	  k=4)	  
•  Geometry	  of	  surfaces	  played	  important	  roles	  

•  Shimodaira	  (2008)	  showed	  another	  theory	  of	  AU	  using	  unusual	  asympto2c	  theory	  
of	  “nearly	  flat	  surfaces”	  

•  Shimodaira	  (2004)	  discussed	  devia2on	  from	  the	  mul2variate	  normal	  model,	  and	  
results	  for	  exponen2al	  family	  distribu2ons	  are	  given	  there	  for	  mul2step-‐AU	  

•  Future	  topics	  may	  be	  DAU	  for	  nearly	  flat	  surfaces,	  or	  for	  exponen2al	  family	  
distribu2ons	  
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Es2ma2ng	  the	  skewness	  term	  A	

nD
1

*1
mD

1

*2
mD

1

*10000
mD

2

*1
mD

2

*2
mD

2

*10000
mD

Yes	

No	

Yes	

2 2
1 2

#{ }( , )
10000
YesBP σ σ =

2 2 2
1 2σ σ σ= +

1 2 2 1 2 1/2 2 2 4 2 1
1 2 1 2 0( ( , )) ( ( )) ( ) ( )pBP BP n A O nσ σ σ σ σ σ σ σ β σ− − − − −− Φ = − Φ + − +

2 1/2( ) ( )pBP O nσ −= +

with	

Two-‐step	  mul2scale	  bootstrap	  of	  Shimodaira	  (2004)	
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