Higher-order accuracy of multiscale double-bootstrap resampling for testing regions

Hidetoshi Shimodaira Osaka University

Bernoulli Society Satellite Meeting to the ISI World Statistics Congress 2013 Asymptotic Statistics and Related Topics: Theories and Methodologies Sanjo Conference Hall, The University of Tokyo 2-4 September 2013

"The problem of regions" Efron and Tibshirani (1998)

(example) Model Selection of Polynomial Regression

0: constant, 1: linear, 2: quadratic

FIG. 1. An example of the problem of regions: a normally distributed vector $y = \hat{u}$, with covariance I, is observed to lie in the region \mathscr{R}_{quad} . With what confidence can we say that the true expectation vector μ lies in \mathscr{R}_{quad} ? This example, which concerns the choice of a polynomial regression model using the C_p criterion, is discussed in Section 5.

Region and a data-point

Multivariate Normal Model

$$y = (u, v) \in \mathbb{R}^{q+1} \qquad q = \dim u$$
$$Y \sim N_{q+1}(\mu, I_{q+1})$$

$$H = \left\{ (u, v) \mid v \leq -h(u), u \in \mathbb{R}^q
ight\}$$
region: $H = \mathcal{R}(h)$ boundary surface: $\partial H = \mathcal{B}(h)$

Null hypothesis: $\mu \in H$ v.s. Alternative hypothesis: $\mu
ot\in H$

Chi-square test (very conservative)

distance² \sim chi-square distribution with df=2

Normal test (rejecting too much)

distance ~ N(0,1)

Bootstrap probability (=Bayesian PP)

$$Y^* \sim N_{q+1}(y, \sigma^2 I_{q+1}) \qquad \sigma^2 = 1$$

$$Y^{*1}, \dots, Y^{*B}$$
 \Longrightarrow $\widehat{BP}_{\sigma^2}(H|y) = \frac{\#\{Y^{*b} \in H, b = 1, \dots, B\}}{B}$

$$BP_{\sigma^2}(H|y) = P(Y^* \in H|y)$$

BP is interpreted as the Bayesian posterior probability of H if the prior distribution of mu is uniform.

Efron and Tibshirani (1998)

BP is even worse

Double bootstrap probability

Projection of y onto the boundary surface:

$$\hat{\mu}(H|y) = \arg\min_{\mu \in \partial H} \|y - \mu\|$$

Adjusting BP using resampling from the projection

$$Y^+ \sim N_{q+1}(\hat{\mu}(H|y), \tau^2 I_{q+1}) \qquad \tau^2 = 1$$

$$\mathrm{DBP}_{\sigma^2,\tau^2}(H|y) = P\Big[\mathrm{BP}_{\sigma^2}(H|Y^+) \le \mathrm{BP}_{\sigma^2}(H|y) \mid \hat{\mu}(H|y)\Big]$$

Hall (1992), Efron and Tibshirani (1998)

contour surface of BP=0.019

Computing DBP:

DBP adjusts the bias of BP

Approximately unbiased p-values via Multiscale bootstrap

m out of n bootstrap : Politis and Romano (1994), Bickel et al. (1997)

$$\mathcal{X} = \{x_1, \dots, x_n\} \quad \longrightarrow \quad \mathcal{X}^* = \{x_1^*, \dots, x_m^*\}$$

The idea of multiscale bootstrap : Shimodaira (2002, 2004, 2008)

$$\sigma^2 = \frac{n}{m}$$

We compute BP for $\sigma_1^2,\ldots,\sigma_S^2$ and extrapolate BP to $\sigma^2=-1$ (equivalently m=-n)

The BP with m = -n is denoted as AU (= Approximately Unbiased)

Extrapolation to sigma²=-1

$$\bar{\Phi}(z) = 1 - \Phi(z) = \int_{z}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^{2}}{2}} dx$$

We apply the multiscale bootstrap to DBP for getting DAU (THIS PRESENTATION) Equivalently, we could say applying double bootstrap to AU for getting DAU 13

contour curves of p=0.05

BP, AU, DBP, DAU

Rejection probabilities P(p<0.05)

Error: DAU < {DBP, AU} < BP

15

Evolution of mammal species

ML tree topology: ((G1,G2), (G3,G4), G5)

Fig 1 of Shimodaira and Hasegawa (2005) from the book (ed. Nielsen) Data: mt protein sequences of n=3392 amino acids for s=32 species

Comparing 15 trees (cont.)

Table 2. *p*-values for the fifteen constrained candidate tree topologies.

Recont Results									<u>^</u>		
~	Recon	tree topology	WSH	SH	KH	AU	BP	PP2	PP1	$1 \Delta \ell$	model
Nishahara crad	(3) ⊢	((G1,G2),(G3,G4),G5)	0.95	0.97	0.55	0.69	0.23	0.61	0.28	0.0	T_1
		((G1, (G2, G3)), G4, G5)	0.86	0.83	0.46	0.60	0.28	0.14	0.49	1.5	T_2
(2000)	~ @ ((((G1,G2),G3),G4,G5) ←	0.84	0.84	0.41	0.47	0.16	0.12	0.15	1.7	T_3
I Galance Scale		(G1, (G2, (G3, G4)), G5)	0.81	0.84	0.33	0.45	0.13	0.09	0.06	1.9	T_4
Genome serie		((G1, (G3, G4)), G2, G5)	0.73	0.80	0.27	0.37	0.09	0.04	0.01	2.6	T_5
analysis of	-0/	(((<mark>G1,G2),</mark> G4),G3,G5) <	0.54	0.64	0.15	0.16	0.02	0.00	0.00	6.2	T_6
IMBP	- /	((G1,G4),(G2,G3),G5)	0.61	0.58	0.28	0.25	0.03	0.00	0.00	6.8	T_7
		(G1, ((G2, G3), G4), G5)	0.40	0.51	0.23	0.08	0.01	0.00	0.00	8.3	T_8
		(((G1,G4),G2),G3,G5)	0.66	0.50	0.21	0.25	0.04	0.00	0.00	8.7	T_9
		(((G1,G4),G3),G2,G5)	0.59	0.43	0.18	0.14	0.02	0.00	0.00	9.9	T_{10}
		(((G1,G3),G2),G4,G5)	0.20	0.29	0.10	0.00	0.00	0.00	0.00	12.7	T_{11}
		((G1, (G2, G4)), G3, G5)	0.27	0.17	0.05	0.01	0.00	0.00	0.00	15.9	T_{12}
		(G1, ((G2, G4), G3), G5)	0.13	0.09	0.03	0.00	0.00	0.00	0.00	18.6	T_{13}
		(((G1,G3),G4),G2,G5)	0.09	0.09	0.02	0.00	0.00	0.00	0.00	18.8	T_{14}
		((G1,G3),(G2,G4),G5)	0.10	0.04	0.01	0.00	0.00	0.00	0.00	21.5	T_{15}

Note: Only the fifteen candidate tree topologies are considered; the subtree topologies for G1, ..., G5 are specified in Fig. 1. $\Delta \ell$ denotes the loglikelihood difference from the ML topology. The trees are numbered by increasing order of $\Delta \ell$. PP1 denotes the PP calculated by the MCMCMC using MrBayes with clade constraints, and PP2 denotes the PP calculated by the BIC approximation. *p*-values ≥ 0.05 are in boldface. Ο.

1.0

Asymptotic theory of 4th order accuracy

$$h(u) = \sum_{i=1}^{q} \sum_{j=1}^{q} h_{ij} u_i u_j + \sum_{i=1}^{q} \sum_{j=1}^{q} \sum_{k=1}^{q} h_{ijk} u_i u_j u_k + \cdots$$

$$h_{ij} = \frac{1}{2} \frac{\partial^2 h(u)}{\partial u_i \partial u_j} \Big|_0 = O(n^{-1/2}) \qquad h_{ijk} = \frac{1}{6} \frac{\partial^3 h(u)}{\partial u_i \partial u_j \partial u_k} \Big|_0 = O(n^{-1})$$

The k-th order derivatives are $O(n^{-(k-1)/2})$ for $k \ge 1$, because the coordinates u_1, \ldots, u_q as well as h(u) are scaled by the factor \sqrt{n}

(Class S) We take care of terms up to $O(n^{-3/2})$ ignoring $O(n^{-2})$ $h(u) \simeq h_0 + h_i u_i + h_{ij} u_i u_j + h_{ijk} u_i u_j u_k + h_{ijkl} u_i u_j u_k u_l$ $h_0 = O(1), h_i = O(n^{-1}), h_{ij} = O(n^{-1/2}), h_{ijk} = O(n^{-1}), h_{ijkl} = O(n^{-3/2})$

Thm: Asymptotic expansion of BP1

$$BP_1(H|y) \simeq 1 - \Phi(\beta_0 + \beta_1 + \beta_2)$$

Proved by a simple argument of Taylor expansion and integration.

data point

signed distance
$$\beta_0 = \lambda_0 = O(1)$$

 $u = (0 \lambda_0 - h_0)$

curvature + ...

$$\beta_{1} = \gamma_{1} - \lambda_{0}\gamma_{2} + \frac{4}{3}\lambda_{0}^{2}\gamma_{3} = O(n^{-1/2})$$

$$\beta_{2} = 3\gamma_{4} - \gamma_{1}\gamma_{2} - \frac{4}{3}\gamma_{3} = O(n^{-3/2})$$

$$\beta_{3} = 6\gamma_{4} - 2\gamma_{1}\gamma_{2} - 4\gamma_{3} = O(n^{-3/2})$$

fourth-order terms

$$\gamma_1 = \frac{1}{2} \frac{\partial^2 h(u)}{\partial u_i \partial u_i} \Big|_0$$

mean curvature of the mean curvature

 $\beta_3 = \frac{1}{2} \frac{\partial^2 \gamma_1(h, u)}{\partial u \partial u} \Big|_{\gamma_1(h, u)} \Big|_{\gamma_2(h, u)} \Big|_{\gamma_2(h$

mean curvature of the surface

Thm: scaling law of BP

$$BP_{\sigma^{2}}(H|y) \simeq 1 - \Phi \Big[\beta_{0}\sigma^{-1} + \beta_{1}\sigma + \beta_{2}\sigma^{3}\Big]$$

$$\sigma \bar{\Phi}^{-1} \Big[BP_{\sigma^{2}}(H|y)\Big] \simeq \beta_{0} + \beta_{1}\sigma^{2} + \beta_{2}\sigma^{4}$$

Proved by a simple rescaling argument.

$$BP_{\sigma^2}(H|y) = BP_1(H/\sigma|y/\sigma)$$

$$\beta_0 \to \beta_0 \sigma^{-1}, \quad \beta_1 \to \beta_1 \sigma, \quad \beta_2 \to \beta_2 \sigma^3$$

$$\begin{split} \lambda_0 &\to \lambda_0 / \sigma \\ h_0 &\to h_0 / \sigma, h_i \to h_i, h_{ij} \to \sigma h_{ij}, h_{ijk} \to \sigma^2 h_{ijk}, h_{ijkl} \to \sigma^3 h_{ijkl}, \\ \gamma_1 &\to \sigma \gamma_1, \gamma_2 \to \sigma^2 \gamma_2, \gamma_3 \to \sigma^3 \gamma_3, \gamma_4 \to \sigma^3 \gamma_4 \end{split}$$

Thm: unbiased p-value

Def: k-th order accurate p-values should satisfy

$$P\Big[\mathrm{PV}(H|Y) < \alpha \mid \mu\Big] = \alpha + \underbrace{O(n^{-k/2})}_{\text{error}}, \quad \mu \in \partial H_{\mathbb{R}}$$

Thm: fourth-order accuracy (k=4) is achieved by

$$PV(H|y) \simeq 1 - \Phi \begin{bmatrix} \beta_0 - \beta_1 - \beta_2 + \beta_3 \end{bmatrix}$$

Corollary: BP is first-order accurate (k=1), AU is third-order accurate (k=3)

$$\sigma \bar{\Phi}^{-1} \Big[\mathrm{BP}_{\sigma^2}(H|y) \Big] \simeq \beta_0 + \beta_1 \sigma^2 + \beta_2 \sigma^4$$
$$\mathrm{BP} = \mathrm{PV} + O(n^{-1/2}) \qquad \mathrm{AU} = \mathrm{PV} + O(n^{-3/2})$$

Rejection probabilities of BP and AU

BP is first-order accurate (k=1)

$$P\left(\mathrm{BP}(H|Y) < \alpha\right) = \Phi(z_{\alpha} + 2\gamma_1) + O(n^{-1}) = \alpha + O(n^{-1/2})$$
$$z_{\alpha} = \Phi^{-1}(\alpha)$$

AU is third-order accurate (k=3)

$$P\left(\operatorname{AU}(H|Y) < \alpha\right) \simeq \Phi(z_{\alpha} + \frac{4}{3}\gamma_3) = \alpha + O(n^{-3/2})$$

Using q x q hessian matrix
$$D = \left(\frac{\partial^2 h(u)}{\partial u_i \partial u_j}\Big|_0 : i, j = 1, ..., q\right)$$

 $\gamma_1 = h_{ii} = \frac{1}{2} \operatorname{tr}(D) \qquad \gamma_3 = h_{ij} h_{jk} h_{ki} = \frac{1}{8} \operatorname{tr}(D^3)$

sketch of the proof for PV

Consider contour surface of PV: PV(H|y) = constant for any $y \in \mathcal{B}(s)$

then unbiasedness requires $BP_1(\mathcal{R}(s)|\mu) = \text{constant for any } \mu \in \mathcal{B}(h)$

$$h = \mathcal{L}_1(s, -\lambda_0)$$
 \Longrightarrow $s = \mathcal{L}_{-1}(h, \lambda_0)$

Thm: scaling-law of DBP

$$DBP_{\tau^{2},\sigma^{2}}(H|y) \simeq 1 - \Phi \left[\beta_{0}\tau^{-1} - \beta_{1}\tau - \beta_{2}\tau^{3} - \beta_{3}\tau\sigma^{2}\right]$$

$$\bar{\Phi}^{-1} \left[DBP_{1,\sigma^{2}}(H|y)\right] \simeq (\beta_{0} - \beta_{1} - \beta_{2}) - \beta_{3}\sigma^{2}$$

Corollary: DBP is third-order accurate (k=3), DAU is fourth-order accurate (k=4)

$$PV(H|y) \simeq 1 - \Phi \left[\beta_0 - \beta_1 - \beta_2 + \beta_3\right]$$
$$DBP = PV + O(n^{-3/2}) \qquad DAU = PV + O(n^{-2})$$

sketch of the proof for DBP

 $s = \mathcal{L}_{\sigma^2}(h,\lambda_0)$ contour surface of BP

$$\widetilde{\mathrm{DBP}}_{\tau^2,\sigma^2}(H|y) = 1 - \mathrm{BP}_{\tau^2}(\mathcal{R}(s)|\tilde{\mu})$$

The proof completes by applying the asymptotic expansion of BP to R(s)

Rejection probabilities of DBP and DAU

$$P\left(\text{DBP}_{1,\sigma^2}(H|Y) < \alpha\right) \simeq \Phi\left[z_{\alpha} - (1+\sigma^2)\beta_3\right]$$

DBP is third-order accurate (k=3)

$$P\left(\text{DBP}(H|Y) < \alpha\right) \simeq \Phi(z_{\alpha} - 2\beta_3) = \alpha + O(n^{-3/2})$$

DAU is fourth-order accurate (k=4)

$$P\left(\mathrm{DAU}(H|Y) < \alpha\right) \simeq \Phi(z_{\alpha}) = \alpha$$

$$\gamma_1 = \frac{1}{2} \frac{\partial^2 h(u)}{\partial u_i \partial u_i} \Big|_0 \qquad \beta_3 = \frac{1}{2} \frac{\partial^2 \gamma_1(h, u)}{\partial u_i \partial u_i} \Big|_0$$
mean curvature of the surface mean curvature of the mean curvature

Robustness to projection error

If $\hat{\mu}(H|y) = (0, -h(0)) \in \partial H$ is replaced by $\tilde{\mu} = (\theta, -h(\theta)) \in \partial H$

DBP becomes

$$\widetilde{\text{DBP}}_{\tau^2,\sigma^2}(H|y) \simeq 1 - \Phi \Big[\beta_0 \tau^{-1} - \beta_1 \tau - \beta_2 \tau^3 - \beta_3 \tau \sigma^2 - \tau^{-1} (\tau^2 + \sigma^2) \tilde{\Delta}(\theta) \Big]$$

error = O(n⁻¹)

 $\tilde{\Delta}(\theta) = (3h_{mmi} - 6\lambda_0 h_{ml} h_{mli})\theta_i + (6h_{mmij} - 2\gamma_1 h_{mi} h_{mj} - 4h_{ml} h_{mi} h_{lj})\theta_i\theta_j = O(n^{-1})$

Corollary: DBP becomes only second-order accurate (k=2), but DAU keeps fourth-order accuracy (k=4)

 $\widetilde{\text{DBP}} = \text{DBP} + O(n^{-1})$ $\widetilde{\text{DAU}} = \text{DAU} + O(n^{-2})$

Asymptotic Theories of approaching flat surfaces

Nearly Flat Surfaces (Shimodaira 2008)

Three conditions

1.
$$||h||_{\infty} = \sup_{u \in \mathbb{R}^m} |h(u)| = O(\tau), \quad \tau \to 0$$

(i.e., approaches a flat surface)

2.
$$||h||_1 = \int_{\mathbb{R}^m} |h(u)| \, du < \infty$$

Fourier transform: $\tilde{h}(\omega) = \mathcal{F}h(\omega) = \int_{\mathbb{R}^m} e^{-i\omega \cdot u}h(u) \, du$
for $\omega = (\omega_1, \dots, \omega_m)$

3. $\|\tilde{h}\|_1 < \infty$

$$E_{\sigma^2}h(u) := E_{\sigma^2}(h(U^*)|u)$$

Bridging Bayesian to Frequentist

$$\sigma\bar{\Phi}^{-1}\Big[\mathrm{BP}_{\sigma^2}(H|y)\Big] = \beta_0 + \beta_1\sigma^2 + \beta_2\sigma^4 + \beta_3\sigma^6 + \cdots$$

$$\bar{\Phi}^{-1}\Big[\mathrm{PV}(H|y)\Big] = \beta_0 - \beta_1 + \beta_2 - \beta_3 + \cdots$$

$$\sigma^2 = 1$$
 gives Bayesian posterior probability

 $\sigma^2 = -1$ gives unbiased p-value

Shown for smooth "nearly flat surfaces" in Shimodaira (2008)

Taylor expansion using k terms

Shimodaira (2008)

$$nBP_{k}(\sigma^{2}) = \overline{\Phi}\left[\sum_{j=0}^{k-1} \frac{(\sigma^{2} - \sigma_{0}^{2})^{j}}{j!} \frac{\partial^{j} f(\sigma^{2})}{\partial(\sigma^{2})^{j}}\Big|_{\sigma_{0}^{2}}\right] \qquad f(\sigma^{2}) = \sigma \overline{\Phi}^{-1}\left[BP_{\sigma^{2}}(H|y)\right]$$

extrapolation (sing.3)

Our Method and Generalization

Our corrected *p*-values are represented as:

$$q_{k}(u,v) = v + \sum_{j=0}^{k-1} \frac{(-1-\sigma_{0}^{2})^{j}}{j!} \frac{\partial^{j}}{\partial(\sigma^{2})^{j}} \Big|_{\sigma_{0}^{2}} \mathcal{F}^{-1} \Big[\tilde{h}(\omega) e^{-\sigma^{2} \frac{||\omega||^{2}}{2}} \Big] (u) + O(\tau^{2})$$

$$= v + \mathcal{F}^{-1} \Big[\tilde{h}(\omega) e^{\frac{||\omega||^{2}}{2}} (1-J_{k}(\omega)) \Big] (u) + O(\tau^{2}), \dots (*)$$
Generalization: (*) defines a new *p*-value from a given $J_{k}(w)$

$$\int_{k(\omega)}^{1} For \text{ our method, } J_{k}(w) \text{ is defined by}$$

$$J_{k}(\omega) = 1 - e^{-(1+\sigma_{0}^{2}) \frac{||\omega||^{2}}{2}} \sum_{j=0}^{k-1} \frac{(1+\sigma_{0}^{2})^{j}}{j!} (\frac{||\omega||^{2}}{2})^{j}}{\Gamma(k)} = \sum_{j=k}^{\infty} \frac{(-1)^{j-k}(1+\sigma_{0}^{2})^{j} ||\omega||^{2j}}{(k-1)!(j-k)!j2^{j}}.$$

Bootstrap Iteration

Another example satisfying conditions (i)-(iv).

$$q_{1}(u,v) = z_{1}(u,v)$$

$$q_{k+1}(u,v) = \Phi^{-1} \Big\{ P_{1}(q_{k}(U^{*},V^{*}) \leq q_{k}(u,v) \mid \widehat{\theta}(u,v), -h(\widehat{\theta}(u,v))) \Big\}.$$

Disadvantages:

- 1. computation requires $O(B^k)$ steps; B=10,000.
- 2. requires resampling from "projection" instead of data.

For bootstrap iteration, $J_k(w)$ is defined by $J_k(\omega) = (1 + e^{-\frac{||\omega||^2}{2}})(1 - e^{-\frac{||\omega||^2}{2}})^k$ $= (-1)^k k! \sum_{j=k}^{\infty} (S2(j,k) + S2(j+1,k+1)) \frac{(-1)^j ||\omega||^{2j}}{2^j j!}$ $S2(j,k) = \sum_{i=0}^k (-1)^{k-i} i^j / i! (k-i)!$ (Stirling numbers of the second kind)

Summary and other issues

- DAU = "DBP with m=-n" is proposed
- The accuracy of BP is first order (k=1), AU is third-order (k=3), DBP is third-order (k=3)
- DAU is fourth-order accurate (k=4)
- DAU is robust to the projection error (surprisingly, k=4)
- Geometry of surfaces played important roles
- Shimodaira (2008) showed another theory of AU using unusual asymptotic theory of "nearly flat surfaces"
- Shimodaira (2004) discussed deviation from the multivariate normal model, and results for exponential family distributions are given there for multistep-AU
- Future topics may be DAU for nearly flat surfaces, or for exponential family distributions

Estimating the skewness term A

$$D_{n} \xrightarrow{D_{m_{1}}^{*1}} D_{m_{2}}^{*1} \xrightarrow{\operatorname{Yes}} \operatorname{No} \xrightarrow{BP(\sigma_{1}^{2}, \sigma_{2}^{2}) = \frac{\#\{Yes\}}{10000}} = BP(\sigma^{2}) + O_{p}(n^{-1/2})$$
with $\sigma^{2} = \sigma_{1}^{2} + \sigma_{2}^{2}$

 $-\sigma\Phi^{-1}(BP(\sigma_1^2,\sigma_2^2)) = -\sigma\Phi^{-1}(BP(\sigma^2)) + n^{-1/2}A\sigma_1^2\sigma_2^2\sigma^{-4}(\beta_0 - \sigma^2) + O_p(n^{-1})$

Two-step multiscale bootstrap of Shimodaira (2004)