
Semiparametric Statistical Approach
to Reinforcement Learning

Tsuyoshi Ueno

Japan Science and Technology
Minato Discrete Strucure Manipulation System Project



Summary of This Talk

Background
Reinforcement learning (RL) = sampling-based stochastic optimal control

An open issue in RL is to rigorously evaluate statistical properties of
RL algorithms and compare their performance.

Contributions
1 Reformulate model-free policy evaluation, which is a key of RL, as

a general semiparametric statistical inference problem

2 Derive a general class of consistent estimators which leads to almost all
of model-free policy evaluation algorithms proposed so far

3 Propose a new estimator which minimizes the estimation variance
in asymptotics among the general class
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What is RL ?

RL is a solution for optimal control for Markovian stochastic processes
by iterating between sampling and inference

action  a 

state  s 
reward  r �

stochastic  process	

state  s 

next  state  s, 

action  a 

state  s 

policy 

Infer the best policy that maximizes some measure incorporating
long-term future rewards from sequences of states, actions and rewards
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Optimal Control vs RL

Classical Optimal Control Scheme
1 System Identification

Identify the stochastic process using a statistical model

2 Dynamic Programming [Bellman, 1957]
Optimize the policy based on the identified model

RL Scheme
Iterate the following two steps until the convergence:

1 Sampling
Generate the sequence under the current policy

2 Inference for Policy
Infer the be er policy than the current one from the sequence directly

RL can find the optimal policy without the system identification.
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Acrobot Swing-up Task
[Yoshimoto et al., 2005]

Acrobot: 2 link 1 actuator

Goal: make the acrobot stand upside-down at the top

Reward: take the higher value when the acrobot is close to standing up

( befor ) ( after )
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Fighting Game
[Graepel et al., 2004]

Video game for Xbox: Tao feng published by Microsoft

Learn the non player character's motions by RL

Reward: damage of enemy
( before ) ( after )

Reward: damage of enemy with the
remained life of learning agent

( after )
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Optimal Control Problem

Markov Decision Processes (MDPs)
state s ∈ S

action a ∈ A

state transition distribution p(st |st−1,at−1)

reward function rt+1 := r(st ,at ,st+1)

policy π(at |st) := p(at |st)

Goal of Optimal Control
Find the optimal policy that maximizes the value functionVπ(s) for any s ∈ S

Vπ(s) := lim
T→∞

Eπ

(
∑T

t ′=t βt−t ′rt+1

∣∣∣st = s
)

where β ∈ [0,1)
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How to Solve Optimal Control Problems

Policy Iteration [Howard, 1960]

Is the common mathmatical basis for both optimal control and RL

Iterate the following two procedures:
1 Policy Evaluation

Evaluate the value function under the current policy based on the
identified model p̂(s′|s,a)

2 Policy Improvement
Update the policy so as to maximize the value function

Converge the optimal policy
as long as the value function can be exactly evaluated
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How to Solve Optimal Control Problems

Policy Iteration based RL
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Estimate the value function from the sequence of observations
directly

2 Policy Improvement
Update the policy so as to maximize the value function

Converge the optimal policy
as long as the value function can be exactly evaluated
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Model-free Policy Evaluation:
TD Learning [Su on, 1984]

Model for Value Function
Assume that Vπ(s) can be represented by a parametric model g(s,θ):

Vπ(s)≈ g(s,θ) for any s ∈ S.

Bellman Equation
Express the value function as

Vπ(st) = lim
T→∞

Eπ
(

∑T
t ′=t βt ′−trt ′+1

∣∣∣st

)
= Eπ ( rt+1|st)+β · lim

T→∞
Eπ

(
∑T

t ′=t+1
βt ′−t−1rt ′+1

∣∣∣st

)
Derive the Bellman equation by

Vπ(st)= Eπ (rt+1|st)+βEπ (Vπ(st+1)|st)

g(st ,θ) = Eπ(rt+1|st)+βEπ(g(st+1,θ)|st)
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Model-free Policy Evaluation:
TD Learning [Su on, 1984]

Define the temporal difference (TD) error as
ε(zt ,θ) := rt+1+βg(st+1,θ)−g(st ,θ), where zt := (st−1,st ,rt).

Satisfy Eπ (ε(zt ,θ)|st) = 0 for any st ∈ S because

Eπ (ε(zt ,θ)|st) = Eπ (rt+1+βg(st+1,θ)|st)−g(st ,θ) = g(st ,θ)−g(st ,θ) = 0,

where we used the Bellman equation g(st ,θ) = Eπ(rt+1+βg(st+1)|st)

Update the parameter incrementally by stochastic gradient descent:

θ̂t+1 = θ̂t −αt∂θg(st ,θ)|θ=θ̂t
· ε(zt , θ̂t), where αt is the stepsize parameter

Converges to the true parameter
that can represent the value function under some conditions

TD learning does not require any knowledge of the stochastic process,
but can estimate the value function exactly.
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Extensions of TD Learning� �
Online algorithms Batch algorithms

■ TD [Su on, 1984] ■ LSTD [Bradtke and Barto, 1996]

■ TD(λ) [Su on and Barto, 1998] ■ LSTD(λ) [Boyan, 2002]
■ LSPE [Nedić and Bertsekas, 2003] ■ LSTDc [Ueno et al., 2008]

■ iLSTD [Geramifard et al., 2006]

■ RG [Baird, 1995]

■ TDC [Su on et al., 2009a]

■ GTD [Su on et al., 2009b]

■ GTD2 [Su on et al., 2009a]� �

The validation of the performance of their proposed algorithms has been
performed only in numerical experiments.

The methodology for evaluating and comparing the performance of
various policy evaluation algorithms has not been established yet.
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Challenge

Analyze the statistical properties of the variously-presented model-free
policy evaluation algorithms in a unified way and derive the optimal

model-free policy evaluation algorithm

Main Idea
Reformulate the model-free policy evaluation
as a general semiparametric statistical inference problem

Enable to apply various analysis techniques to the problem of
estimating the value function, and to discuss theoretical properties
which are common over model-free policy evaluation problems
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Preliminary

Discrete-time Markov Reward Process (MRP)
state s ∈ S ( S is a discrete state space )
reward r ∈ R
state transition probability p(st |st−1)

reward probability p(rt |st−1,st)

Value Function
Define the value function as

V (s) := E
(
∑∞

t ′=t βt ′−trt+1

∣∣∣st = s
)
, where β ∈ [0,1)

Model for Value Function
Characterize the value function by a parametric model g(s,θ): V (s)≈ g(s,θ)
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Assumptions
1 The MRP satisfies ergodicity.

2 The model g(s,θ) can completely represent the value function:
V (s) = g(s,θ) for any s ∈ S.

We do not consider the model error here,
and focus solely on the estimation error of the parameter.

Model-Free Policy Evaluation Problem on MRPs
Given an initial state s0,
the sequence of states and rewards ZT :=

(
(st)

T
t=0,(rt)

T
t=1

)
is obtained by

ZT ∼ p(ZT ) := ∏T−1

t=1
p(rt ,st |st−1).

Then, we estimate the parameter θ from the sample sequence ZT

without identifying p(rt ,st |st−1).
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Reformulation of Model-free Policy
Evaluation as Semiparametric Inference

Bellman Equation
Recall that

V (st−1) = E(rt |st−1)+βE(V (st)|st−1) ∀st−1 ∈ S

⇒ E(rt |st−1) = g(st−1,θ)−βE(g(st ,θ)|st−1) (1)

Semi-parameterization of MRPs
1 Specify the first-order moment E(rt |st−1) of p(rt ,st |st−1) by

the parameter θ through Bellman equation (1)

2 Specify the other moments by nuisance parameters η

14/26
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Reformulation of Model-free Policy
Evaluation as Semiparametric Inference

Semiparametric Model
The semiparametric model of MRP is given by

pθ,η(ZT ) = ∏T
t=1

pθ,η(st ,rt |st−1)

s.t. Eθ,η (rt |st−1) = g(st−1,θ)−βEθ,η (g(st ,θ)|st−1) ,

where Eθ,η(·|st−1) is the expectation with respect to pθ,η(rt ,st |st−1).

Semiparametric Inference Problem
Given an initial state s0, the sequence of states and rewards
ZT :=

(
(st)

T
t=0,(rt)

T
t=1

)
is obtained by

ZT ∼ pθ,η(ZT ) := ∏T−1

t=1
pθ,η(rt ,st |st−1).

Then, we estimate the parameter θ from the sample sequence ZT without
knowing η.
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How to Solve ?

Martingale Estimating Function [Godambe, 1991]
The function fT (ZT ,θ) = ∑T

t=1 ψt(Zt ,θ) is calledmartingale estimating
functionwhen ψt(Zt ,θ) satisfies

Eθ,η (ψt(Zt ,θ)|Zt−1) = 0, for any θ, η and t.

M-estimators
If there is a martingale estimating function, we can obtain a consistent
estiamtor θ̂T := θ̂T (ZT ), so-calledM-estimator, by solving the following
estimating equation:

∑T
t=1

ψt(Zt , θ̂T ) = 0.
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Design of Estimating Functions

Temporal Difference (TD) Error
ε(zt ,θ) := rt +βg(st ,θ)−g(st−1,θ), where zt := (st−1,st ,rt).

■ TD error satisfies Eθ,η(ε(zt ,θ)|Zt−1) = 0 for any θ, η and t.

■ Zero mean property holds
even when multiplied by any weight function wt−1 := wt−1(Zt−1,θ):

Eθ,η(wt−1 · ε(zt ,θ)|Zt−1) = wt−1 ·Eθ,η(ε(zt ,θ)|Zt−1) = 0, for any θ, η and t.

f (Zt ,θ) = ∑T
t=1 wt−1(Zt−1,θ) · ε(zt ,θ) is a candidate of

martingale estimating functions.
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Main Results

Theorem 1
Any martingale estimating functions in semiparametric model
{pθ,η(ZT )|θ,η} can be expressed as

fT (ZT ,θ) = ∑T
t=1

wt−1(Zt−1,θ)
weight

· ε(zt ,θ)
TD error

.

This estimating function generalizes almost all of the conventional
model-free policy evaluation algorithms.
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Extensions of TD Learning

� �
Online algorithms Batch algorithms

■ TD [Su on, 1984] ■ LSTD [Bradtke and Barto, 1996]

■ TD(λ) [Su on and Barto, 1998] ■ LSTD(λ) [Boyan, 2002]
■ LSPE [Nedić and Bertsekas, 2003] ■ LSTDc [Ueno et al., 2008]

■ iLSTD [Geramifard et al., 2006]

■ RG [Baird, 1995]

■ TDC [Su on et al., 2009a]

■ GTD [Su on et al., 2009b]

■ GTD2 [Su on et al., 2009a]� �
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■ TDC [Su on et al., 2009a]

■ GTD [Su on et al., 2009b]

■ GTD2 [Su on et al., 2009a]� �
wt= ∂g(st ,θ) wt= ∑t

t ′=1
λt−t ′∂g(st ,θ)

wt= Eθ⋆,η⋆ [∂ε(zt ,θ)|st−1] wt = g(st ,θ)+ c

The variation of the weight functions lead to many major model-free
policy evaluation algorithms
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Main Results

Lemma 2
Suppose that sample sequence ZT is generated by pθ⋆,η⋆(ZT ).
Also suppose that the estimator θ̂T is obtained from

∑T
t=1

wt−1(Zt−1, θ̂T ) · ε(zt , θ̂T ) = 0. (2)

Then, under reasonable assumptions, we have
√

T
(

θ̂T −θ⋆
)
∼ N

(
0,Av(θ̂T )

)
,

where Av(θ̂T ) := Eθ⋆,η⋆((θ̂T −θ⋆)(θ̂T −θ⋆)⊤) = A−1MA−⊤

is the estimation variance.

The optimal estimator among the class of estimators given by Eq. (2)
can be derived by minimizing Av(θ̂T ).
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Main Results

Theorem 3
The martingale estimating function with the minimum estimation variance
is given by

f ⋆T (ZT ,θ) := ∑T
t=1

w⋆
t (st−1,θ⋆) · ε(zt ,θ),

where

w⋆
t (st−1,θ⋆) : =

Eθ⋆,η⋆(∂θε(zt ,θ)|θ=θ⋆ |st−1)

Eθ⋆,η⋆(ε(zt ,θ⋆)2|st−1)
.

■ The true parameter θ⋆ and the conditional expectation Eθ⋆,η⋆(·|s)
are unknown.

We have proposed online and batch approximation methods
See the details in [Ueno et al., 2011].

21/26



Main Results

Theorem 3
The martingale estimating function with the minimum estimation variance
is given by

f ⋆T (ZT ,θ) := ∑T
t=1

w⋆
t (st−1,θ⋆) · ε(zt ,θ),

where

w⋆
t (st−1,θ⋆) : =

Eθ⋆,η⋆(∂θε(zt ,θ)|θ=θ⋆ |st−1)

Eθ⋆,η⋆(ε(zt ,θ⋆)2|st−1)
.

■ The true parameter θ⋆ and the conditional expectation Eθ⋆,η⋆(·|s)
are unknown.

We have proposed online and batch approximation methods
See the details in [Ueno et al., 2011].

21/26



Main Results

Theorem 3
The martingale estimating function with the minimum estimation variance
is given by

f ⋆T (ZT ,θ) := ∑T
t=1

w⋆
t (st−1,θ⋆) · ε(zt ,θ),

where

w⋆
t (st−1,θ⋆) : =

Eθ⋆,η⋆(∂θε(zt ,θ)|θ=θ⋆ |st−1)

Eθ⋆,η⋆(ε(zt ,θ⋆)2|st−1)
.

■ The true parameter θ⋆ and the conditional expectation Eθ⋆,η⋆(·|s)
are unknown.

We have proposed online and batch approximation methods
See the details in [Ueno et al., 2011].

21/26



Outline

1 What is RL ?

2 Introduction of Mathmatics for RL

3 Semiparametric Statistical Inference Approach to RL

4 Summary & Future Works



Summary

Introduced a framework of semiparametric statistical inference for policy
evaluation which can be applied to analyzing statistical properties for policy
evaluation

Derived the general form of estimating function for policy evaluation in
MRPs, which provides a statistical basis to many model-free policy
evaluation algorithms

Found an estimating function which yields the minimum asymptotic
estimation variance among the general class
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Future Directions

Robustness
Propose estimators for the value function which provide robustness against
unpredictable outliers

Model Selection
Construct the scheme for selecting an appropriate model for the value
function from observations

Asymptotic Behavior of Policy Improvement
Analyze statistical properties not only for estimating the value function, but
also for estimating the policy
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